Optimization Toolbox | ![]() ![]() |
Box Constraints
The box constrained problem is of the form
![]() |
(4-7) |
where l is a vector of lower bounds, and u is a vector of upper bounds. Some (or all) of the components of can be equal to
and some (or all) of the components of
can be equal to
The method generates a sequence of strictly feasible points. Two techniques are used to maintain feasibility while achieving robust convergence behavior. First, a scaled modified Newton step replaces the unconstrained Newton step (to define the two-dimensional subspace
). Second, reflections are used to increase the stepsize.
The scaled modified Newton step arises from examining the Kuhn-Tucker necessary conditions for Eq. 4-7,
![]() |
(4-8) |
and the vector is defined below, for each
:
The nonlinear system Eq. 4-8 is not differentiable everywhere. Nondifferentiability occurs when You can avoid such points by maintaining strict feasibility, i.e., restricting
.
The scaled modified Newton step for Eq. 4-8 is defined as the solution to the linear system
![]() |
(4-9) |
![]() |
(4-10) |
![]() |
(4-11) |
Here plays the role of the Jacobian of
Each diagonal component of the diagonal matrix
equals 0, -1, or 1. If all the components of l and u are finite,
At a point where
,
might not be differentiable.
is defined at such a point. Nondifferentiability of this type is not a cause for concern because, for such a component, it is not significant which value
takes. Further,
will still be discontinuous at this point, but the function
is continuous.
Second, reflections are used to increase the stepsize. A (single) reflection step is defined as follows. Given a step that intersects a bound constraint, consider the first bound constraint crossed by p; assume it is the ith bound constraint (either the ith upper or ith lower bound). Then the reflection step
except in the ith component, where
.
![]() | Linear Equality Constraints | Nonlinear Least-Squares | ![]() |