MATLAB Function Reference | ![]() ![]() |
Syntax
x = minres(A,b) minres(A,b,tol) minres(A,b,tol,maxit) minres(A,b,tol.maxit,M) minres(A,b,tol,maxit,M1,M2) minres(A,b,tol,maxit,M1,M2,x0) minres(afun,b,tol,maxit,mifun,m2fun,x0,p1,p2,...) [x,flag] = minres(A,b,...) [x,flag,relres] = minres(A,b,...) [x,flag,relres,iter] = minres(A,b,...) [x,flag,relres,iter,resvec] = minres(A,b,...) [x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)
Description
x = minres(A,b)
attempts to find a minimum norm residual solution x
to the system of linear equations A*x=b
. The n
-by-n
coefficient matrix A
must be symmetric but need not be positive definite. It should be large and sparse. The column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
.
If minres
converges, a message to that effect is displayed. If minres
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
minres(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then minres
uses the default, 1e-6
.
minres(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then minres
uses the default, min(n,20)
.
minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2)
use symmetric positive definite preconditioner M
or M = M1*M2
and effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b
for y
and then return x = inv(sqrt(M))*y
. If M
is []
then minres
applies no preconditioner. M
can be a function that returns M\x
.
minres(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then minres
uses the default, an all-zero vector.
minres(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
, m1fun(x,p1,p2,...)
, and m2fun(x,p1,p2,...)
.
[x,flag] = minres(A,b,...)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = minres(A,b,...)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = minres(A,b,...)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
.
[x,flag,relres,iter,resvec] = minres(A,b,...)
also returns a vector of estimates of the minres
residual norms at each iteration, including norm(b-A*x0)
.
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)
also returns a vector of estimates of the Conjugate Gradients residual norms at each iteration.
Examples
n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -2*on],-1:1,n,n); b = sum(A,2); tol = 1e-10; maxit = 50; M1 = spdiags(4*on,0,n,n); x = minres(A,b,tol,maxit,M1,[],[]); minres converged at iteration 49 to a solution with relative residual 4.7e-014
Alternatively, use this matrix-vector product function
Use a symmetric indefinite matrix that fails with pcg
.
A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1
However, minres
can handle the indefinite matrix A
.
x = minres(A,b,1e-6,40); minres converged at iteration 39 to a solution with relative residual 1.3e-007
See Also
bicg
, bicgstab
, cgs
, cholinc
, gmres
, lsqr
, pcg
, qmr
, symmlq
@
(function handle), /
(slash),
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite Systems of Linear Equations." SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.
![]() | min | mislocked | ![]() |