| MATLAB Function Reference | ![]() |
LSQR implementation of Conjugate Gradients on the Normal Equations
Syntax
x = lsqr(A,b) lsqr(A,b,tol) lsqr(A,b,tol,maxit) lsqr(A,b,tol,maxit,M) lsqr(A,b,tol,maxit,M1,M2) lsqr(A,b,tol,maxit,M1,M2,x0) lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) [x,flag] = lsqr(A,b,...) [x,flag,relres] = lsqr(A,b,...) [x,flag,relres,iter] = lsqr(A,b,...) [x,flag,relres,iter,resvec] = lsqr(A,b,...) [x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,...)
Description
x = lsqr(A,b)
attempts to solve the system of linear equations A*x=b for x if A is consistent, otherwise it attempts to solve the least squares solution x that minimizes norm(b-A*x). The m-by-n coefficient matrix A need not be square but it should be large and sparse. The column vector b must have length m. A can be a function afun such that afun(x) returns A*x and afun(x,'transp') returns A'*x.
If lsqr converges, a message to that effect is displayed. If lsqr fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
lsqr(A,b,tol)
specifies the tolerance of the method. If tol is [], then lsqr uses the default, 1e-6.
lsqr(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit is [], then lsqr uses the default, min([m,n,20]).
lsqr(A,b,tol,maxit,M1) and lsqr(A,b,tol,maxit,M1,M2)
use n-by-n preconditioner M or M = M1*M2 and effectively solve the system A*inv(M)*y = b for y, where x = M*y. If M is [] then lsqr applies no preconditioner. M can be a function mfun such that mfun(x) returns M\x and mfun(x,'transp') returns M'\x.
lsqr(A,b,tol,maxit,M1,M2,x0)
specifies the n-by-1 initial guess. If x0 is [], then lsqr uses the default, an all zero vector.
lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,... to functions afun(x,p1,p2,...) and afun(x,p1,p2,...,'transp') and similarly to the preconditioner functions m1fun and m2fun.
[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a convergence flag.
Whenever flag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag output is specified.
[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns an estimate of the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.
[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns the iteration number at which x was computed, where 0 <= iter <= maxit.
[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of the residual norm estimates at each iteration, including norm(b-A*x0).
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of estimates of the scaled normal equations residual at each iteration: norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note that the estimate of norm(A*inv(M),'fro') changes, and hopefully improves, at each iteration.
Examples
n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -on],-1:1,n,n); b = sum(A,2); tol = 1e-8; maxit = 15; M1 = spdiags([on/(-2) on],-1:0,n,n); M2 = spdiags([4*on -on],0:1,n,n); x = lsqr(A,b,tol,maxit,M1,M2,[]); lsqr converged at iteration 11 to a solution with relative residual 3.5e-009
Alternatively, use this matrix-vector product function
function y = afun(x,n,transp_flag) if (nargin > 2) & strcmp(transp_flag,'transp') y = 4 * x; y(1:n-1) = y(1:n-1) - 2 * x(2:n); y(2:n) = y(2:n) - x(1:n-1); else y = 4 * x; y(2:n) = y(2:n) - 2 * x(1:n-1); y(1:n-1) = y(1:n-1) - x(2:n); end
See Also
bicg, bicgstab, cgs, gmres, minres, norm, pcg, qmr, symmlq
@ (function handle)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] Paige, C. C. and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations And Sparse Least Squares," ACM Trans. Math. Soft., Vol.8, 1982, pp. 43-71.
| lsqnonneg | lu | ![]() |