Statistics Toolbox | ![]() ![]() |
Parameter estimates and confidence intervals for negative binomial data
Syntax
Description
parmhat = nbinfit(x)
returns the maximum likelihood estimates (MLEs) of the parameters of the negative binomial distribution given the data in the vector x
.
[parmhat,parmci] = nbinfit(x,alpha)
returns MLEs and 100*(1-alpha)
percent confidence intervals. By default, alpha = 0.05
, which corresponds to 95% confidence intervals.
[...] = nbinfit(...,options)
specifies control parameters for the numerical optimization used to compute MLEs. Create this argument with the MATLAB optimset
function. The default is optimset('Display','notify')
.
Note
The variance of a negative binomial distribution is greater than its mean. If the sample variance of the data x is less than its sample mean, nbinfit cannot compute MLEs. You should use the poissfit function instead.
|
See Also
nbincdf
, nbininv
, nbinpdf
, nbinrnd
, nbinstat
, mle
, optimset
![]() | nbincdf | nbininv | ![]() |