Signal Processing Toolbox |
Generate a swept-frequency cosine
Syntax
y=
chirp(t,f0,t1,f1) y=
chirp(t,f0,t1,f1,'method
') y=
chirp(t,f0,t1,f1,'method
',phi) y=
chirp(t,f0,t1,f1,'quadratic'
,phi,'shape'
)
Description
y = chirp(t,f0,t1,f1)
generates samples of a linear swept-frequency cosine signal at the time instances defined in array t
, where f0
is the instantaneous frequency at time 0, and f1
is the instantaneous frequency at time t1
. f0
and f1
are both in hertz. If unspecified, f0
is 0
, t1
is 1
, and f1
is 100
.
Y = CHIRP(T,F0,T1,F1,'
specifies alternative sweep method options, where method
')
method
can be:
Each of the above methods can be entered as 'li'
, 'q'
, and 'lo'
, respectively.
y = chirp(t,f0,t1,f1,'
allows an initial phase method
',phi)
phi
to be specified in degrees. If unspecified, phi
is 0
. Default values are substituted for empty or omitted trailing input arguments.
y
specifies the =
chirp(t,f0,t1,f1,'quadratic'
,phi,'shape'
)
shape
of the quadratic swept-frequency signal's spectrogram. shape
is either concave
or convex
, which describes the shape of the parabola in the positive frequency axis. If shape
is omitted, the default is convex for downsweep (f0 > f1) and is concave for upsweep (f0 < f1).
Example 1
Compute the spectrogram of a chirp with linear instantaneous frequency deviation:
t=
0:0.001:2; % 2 secs @ 1kHz sample rate y=
chirp(t,0,1,150); % Start @ DC, cross 150Hz at t=1 sec specgram(y,256,1e3,256,250) % Display the spectrogram
Example 2
Compute the spectrogram of a chirp with quadratic instantaneous frequency deviation:
t=
-2:0.001:2; % ±2 secs @ 1kHz sample rate y=
chirp(t,100,1,200,'quadratic'); % Start @ 100Hz, cross 200Hz % at t=1 sec specgram(y,128,1e3,128,120) % Display the spectrogram
Example 3
Compute the spectrogram of a convex quadratic chirp:
t= -1:0.001:1; % +/-1 second @ 1kHz sample ratefo=100; f1=400; % Start at 100Hz, go up to 400Hz
y=chirp(t,fo,1,f1,'q',[],'convex');
specgram(y,256,1000) % Display the spectrogram.
Example 4
Compute the spectrogram of a concave quadratic chirp:
t= 0:0.001:1; % 1 second @ 1kHz sample ratefo=100; f1=25; % Start at 100Hz, go down to 25Hz
y=chirp(t,fo,1,f1,'q',[],'concave');
specgram(y,256,1000) % Display the spectrogram.
See Also
cos
, diric
, gauspuls
, pulstran
, rectpuls
, sawtooth
, sin
, sinc
, square
, tripuls
cheby2 | cohere |