| MATLAB Function Reference | ![]() |
Syntax
x = symmlq(A,b) symmlq(A,b,tol) symmlq(A,b,tol,maxit) symmlq(A,b,tol,maxit,M) symmlq(A,b,tol,maxit,M1,M2) symmlq(A,b,tol,maxit,M1,M2,x0) symmlq(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) [x,flag] = symmlq(A,b,...) [x,flag,relres] = symmlq(A,b,...) [x,flag,relres,iter] = symmlq(A,b,...) [x,flag,relres,iter,resvec] = symmlq(A,b,...) [x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)
Description
x = symmlq(A,b)
attempts to solve the system of linear equations A*x=b for x. The n-by-n coefficient matrix A must be symmetric but need not be positive definite. It should also be large and sparse. The column vector b must have length n. A can be a function afun such that afun(x) returns A*x.
If symmlq converges, a message to that effect is displayed. If symmlq fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b) and the iteration number at which the method stopped or failed.
symmlq(A,b,tol)
specifies the tolerance of the method. If tol is [], then symmlq uses the default, 1e-6.
symmlq(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit is [], then symmlq uses the default, min(n,20).
symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2)
use the symmetric positive definite preconditioner M or M = M1*M2 and effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and then return x = inv(sqrt(M))*y. If M is [] then symmlq applies no preconditioner. M can be a function that returns M\x.
symmlq(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0 is [], then symmlq uses the default, an all-zero vector.
symmlq(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and m2fun(x,p1,p2,...).
[x,flag] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns a convergence flag.
Whenever flag is not 0, the solution x returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag output is specified.
[x,flag,relres] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns the relative residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.
[x,flag,relres,iter] = symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns the iteration number at which x was computed, where 0 <= iter <= maxit.
[x,flag,relres,iter,resvec] =
symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns a vector of estimates of the symmlq residual norms at each iteration, including norm(b-A*x0).
[x,flag,relres,iter,resvec,resveccg] =
symmlq(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
also returns a vector of estimates of the conjugate gradients residual norms at each iteration.
Examples
n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -2*on],-1:1,n,n); b = sum(A,2); tol = 1e-10; maxit = 50; M1 = spdiags(4*on,0,n,n); x = symmlq(A,b,tol,maxit,M1,[],[]); symmlq converged at iteration 49 to a solution with relative residual 4.3e-015
Alternatively, use this matrix-vector product function
Use a symmetric indefinite matrix that fails with pcg.
A = diag([20:-1:1,-1:-1:-20]); b = sum(A,2); % The true solution is the vector of all ones. x = pcg(A,b); % Errors out at the first iteration. pcg stopped at iteration 1 without converging to the desired tolerance 1e-006 because a scalar quantity became too small or too large to continue computing. The iterate returned (number 0) has relative residual 1
However, symmlq can handle the indefinite matrix A.
x = symmlq(A,b,1e-6,40); symmlq converged at iteration 39 to a solution with relative residual 1.3e-007
See Also
bicg, bicgstab, cgs, lsqr, gmres, minres, pcg, qmr
@ (function handle), / (slash)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite Systems of Linear Equations." SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.
| symbfact | symmmd | ![]() |