MATLAB Function Reference | ![]() ![]() |
Syntax
x = qmr(A,b) qmr(A,b,tol) qmr(A,b,tol,maxit) qmr(A,b,tol,maxit,M) qmr(A,b,tol,maxit,M1,M2) qmr(A,b,tol,maxit,M1,M2,x0) qmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) [x,flag] = qmr(A,b,...) [x,flag,relres] = qmr(A,b,...) [x,flag,relres,iter] = qmr(A,b,...) [x,flag,relres,iter,resvec] = qmr(A,b,...)
Description
x = qmr(A,b)
attempts to solve the system of linear equations A*x=b
for x
. The n
-by-n
coefficient matrix A
must be square and should be large and sparse. The column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
and afun(x,'transp')
returns A'*x
.
If qmr
converges, a message to that effect is displayed. If qmr
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
qmr(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then qmr
uses the default, 1e-6
.
qmr(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then qmr
uses the default, min(n,20)
.
qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2)
use preconditioners M
or M = M1*M2
and effectively solve the system inv(M)*A*x = inv(M)*b
for x
. If M
is []
then qmr
applies no preconditioner. M
can be a function mfun
such that mfun(x)
returns M\x
and mfun(x,'transp')
returns M'\x
.
qmr(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then qmr
uses the default, an all zero vector.
qmr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
and afun(x,p1,p2,...,'transp')
and similarly to the preconditioner functions m1fun
and m2fun
.
[x,flag] = qmr(A,b,...)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = qmr(A,b,...)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = qmr(A,b,...)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
.
[x,flag,relres,iter,resvec] = qmr(A,b,...)
also returns a vector of the residual norms at each iteration, including norm(b-A*x0)
.
Examples
n = 100; on = ones(n,1); A = spdiags([-2*on 4*on -on],-1:1,n,n); b = sum(A,2); tol = 1e-8; maxit = 15; M1 = spdiags([on/(-2) on],-1:0,n,n); M2 = spdiags([4*on -on],0:1,n,n); x = qmr(A,b,tol,maxit,M1,M2,[]);
Alternatively, use this matrix-vector product function
function y = afun(x,n,transp_flag) if (nargin > 2) & strcmp(transp_flag,'transp') y = 4 * x; y(1:n-1) = y(1:n-1) - 2 * x(2:n); y(2:n) = y(2:n) - x(1:n-1); else y = 4 * x; y(2:n) = y(2:n) - 2 * x(1:n-1); y(1:n-1) = y(1:n-1) - x(2:n); end
flag
is 1
because qmr
does not converge to the default tolerance 1e-6
within the default 20 iterations.
flag1
is 2
because the upper triangular U1
has a zero on its diagonal, and qmr
fails in the first iteration when it tries to solve a system such as U1*y = r
for y
using backslash.
flag2
is 0
because qmr
converges to the tolerance of 1.6571e-016
(the value of relres2
) at the eighth iteration (the value of iter2
) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6
. resvec2(1) = norm(b)
and resvec2(9) = norm(b-A*x2)
. You can follow the progress of qmr
by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0
).
See Also
bicg
, bicgstab
, cgs
, gmres
, lsqr
, luinc
, minres
, pcg
, symmlq
@
(function handle), \
(backslash)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] Freund, Roland W. and Nöel M. Nachtigal, "QMR: A quasi-minimal residual method for non-Hermitian linear systems", SIAM Journal: Numer. Math. 60, 1991, pp. 315-339.
![]() | pwd | qr | ![]() |