MATLAB Function Reference | ![]() ![]() |
BiConjugate Gradients Stabilized method
Syntax
x = bicgstab(A,b) bicgstab(A,b,tol) bicgstab(A,b,tol,maxit) bicgstab(A,b,tol,maxit,M) bicgstab(A,b,tol,maxit,M1,M2) bicgstab(A,b,tol,maxit,M1,M2,x0) bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) [x,flag] = bicgstab(A,b,...) [x,flag,relres] = bicgstab(A,b,...) [x,flag,relres,iter] = bicgstab(A,b,...) [x,flag,relres,iter,resvec] = bicgstab(A,b,...)
Description
x = bicgstab(A,b)
attempts to solve the system of linear equations A*x=b
for x
. The n
-by-n
coefficient matrix A
must be square and should be large and sparse. The column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
.
If bicgstab
converges, a message to that effect is displayed. If bicgstab
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
bicgstab(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then bicgstab
uses the default, 1e-6
.
bicgstab(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then bicgstab
uses the default, min(n,20)
.
bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M
or M = M1*M2
and effectively solve the system inv(M)*A*x = inv(M)*b
for x
. If M
is []
then bicgstab
applies no preconditioner. M
can be a function that
returns M\x
.
bicgstab(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then bicgstab
uses the default, an all zero vector.
bicgstab(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
, m1fun(x,p1,p2,...)
, and m2fun(x,p1,p2,...)
.
[x,flag] = bicgstab(A,b,...)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = bicgstab(A,b,...)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = bicgstab(A,b,...)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
. iter
can be an integer +
0.5, indicating convergence half way through an iteration.
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)
also returns a vector of the residual norms at each half iteration, including norm(b-A*x0)
.
Example
Example 1. This example first solves Ax = b
by providing A
and the preconditioner M1
directly as arguments. It then solves the same system using functions that return A
and the preconditioner.
A = gallery('wilk',21); b = sum(A,2); tol = 1e-12; maxit = 15; M1 = diag([10:-1:1 1 1:10]); x = bicgstab(A,b,tol,maxit,M1,[],[]);
Alternatively, use this matrix-vector product function
and this preconditioner backsolve function
Note that both afun
and mfun
must accept bicgstab
's extra input n=21
.
Example 2. This examples demonstrates the use of a preconditioner. Start with A = west0479
, a real 479-by-479 sparse matrix, and define b
so that the true solution is a vector of all ones.
flag
is 1
because bicgstab
does not converge to the default tolerance 1e-6
within the default 20 iterations.
flag1
is 2
because the upper triangular U1
has a zero on its diagonal. This causes bicgstab
to fail in the first iteration when it tries to solve a system such as U1*y = r
using backslash.
flag2
is 0
because bicgstab
converges to the tolerance of 3.1757e-016
(the value of relres2
) at the sixth iteration (the value of iter2
) when preconditioned by the incomplete LU factorization with a drop tolerance of 1e-6
. resvec2(1) = norm(b)
and resvec2(13) = norm(b-A*x2)
. You can follow the progress of bicgstab
by plotting the relative residuals at the halfway point and end of each iteration starting from the initial estimate (iterate number 0).
See Also
bicg
, cgs
, gmres
, lsqr
, luinc
, minres
, pcg
, qmr
, symmlq
@
(function handle), \
(backslash)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
[2] van der Vorst, H. A., "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems", SIAM J. Sci. Stat. Comput., March 1992,Vol. 13, No. 2, pp. 631-644.
![]() | bicg | bin2dec | ![]() |