Do the following problems:

1. Problem 8.1 in C&T.
2. Problem 8.4 in C&T.
3. Problem 8.6 in C&T.
4. Problem 8.9 in C&T.
5. Problem 8.12 in C&T.

6. **Random Source Coding:** This problem develops the idea of using a random coding approach to prove a coding theorem for lossless fixed-to-fixed length source codes. Let \(X_1, X_2, \ldots \) be an i.i.d. source with p.m.f. \(p(x) \). For any \(\varepsilon > 0 \), let \(A^{(n)}_\varepsilon \) be the set of typical sequences of length \(n \). Let \(x^n \in A^{(n)}_\varepsilon \) be a particular typical sequence.

 a. Let \(Y^n \) be a length \(n \) i.i.d. sequence with p.m.f. \(p(x) \). Find a good lower bound on the probability \(q \) that \(x^n = Y^n \).

 b. Let \(C \) be a random codebook containing \(M \) i.i.d. sequences drawn according to \(p(x) \). Find an exact expression for the probability that \(x^n \notin C \). Convert this to an upper bound using (a).

 c. Find the least rate \(R^* \) such that for a random codebook \(C^{(n)} \) with \(M = 2^nR^* \) codewords, the probability that \(x^n \notin C \) approaches 0 as \(n \to \infty \).

 d. Argue that for sufficiently large \(n \) there exists a codebook with \(M = 2^nR^* \) codewords that noiselessly encodes the i.i.d. source with arbitrarily low probability of failure.