Performance and Cost - Roadmap

- Performance metrics
- Benchmarks and benchmarking
- Averaging
- Iron law of performance
- Amdahl’s law
- Balance and bursty behavior
- Cost
A is Faster than B means:

- Machine A is **n times faster** than machine B iff:

\[
\frac{\text{Perf}(A)}{\text{Perf}(B)} = \frac{1}{\text{Time}(A)} = \frac{\text{Time}(B)}{\text{Time}(A)} = n
\]

- Machine A is **X\% faster** than machine B iff:

\[
\frac{\text{Perf}(A)}{\text{Perf}(B)} = \frac{\text{Time}(B)}{\text{Time}(A)} = 1 + \frac{X}{100}
\]

- Example: A 10 sec, B 15sec
 - \(\frac{15}{10} = 1.5 \implies A \text{ is } 1.5 \text{ times (50\%) faster than B} \)
A is Faster than B cont.

- BUT: There are two parameters TIME and TASK:
- What is Time?
- What is the TASK we measure?
- How do we define these?
Performance Metrics: Latency vs. Bandwidth

“Computer A is FASTER than Computer B?”

- **Time** or **Latency**: How long it takes to do something
 - Elapsed time: real time
 - Processor time: computation component

- **Rate** or **Bandwidth**: How much work done per time

 Rate = Work per time

 - Your goals dictate which one is the appropriate one for you.
 - Example: User vs. Data processing center
 - This class: Processor Time or Elapsed Time
A is Faster Than B? On What?

- Cars: Car A goes from 0 to 100 mph in 10 secs.
 - Task is important

- How do we define meaningful tasks for comparing Computers?

- Let’s look at some unsuccessful attempts:
 - MIPS
 - MFLOPS
MIPS and what’s wrong with them

- **Million Instructions Per Second**

\[
\text{MIPS} = \frac{\text{InstructionCount}}{\text{ExecutionTime} \times 10^6} = \frac{\text{ClockRate}}{\text{ClocksPerInstruction} \times 10^6}
\]

- **Intention: if MIPS}_A > \text{MIPS}_B \text{ then A faster/better than B!}
 - Instruction sets are not equivalent: add [bx+10], ax
 - Different programs use different instruction mix
 - Instruction count is not a reliable indicator of work
 - some optimizations add/remove instructions
 - instructions may have varying work: rep movs
MFLOPS

\[MFLOPS = \frac{Floating\text{PoinOps}}{Time \times 10^6} \]

- Program must be floating-point intensive
- Ignores other instructions (e.g., loads and stores)
- In the extreme, some programs have no FP ops
- Peak MFLOPS: manufacturer guarantees not to exceed!
Normalized MFLOPS

- Normalized FP: assign a canonical # FP ops to a HLL program
- Normalized MFLOPS = \{\# canonical FP ops / time\} \times 10^{-6}
- Not all machines implement the same FP ops
 - Cray does not implement divide
 - Motorola has SQRT, SIN, and COS
- Not all FP ops are same work
 - Adds usually faster than divide
Relative MIPS

- relative MIPS = \(\frac{\text{time}_{\text{ref}}}{\text{time}_{\text{new}}} \times \text{MIPS}_{\text{ref}} \)
 - e.g., VAX MIPS
 - Somewhat better than absolute MIPS
 - Sensitive to reference machine
 - amplifies programs where the ref. machine is weak
 - makes other programs less important
 - same applies to machine features

- Compiler, ISA, OS have an impact
- Still, maybe useful for same ISA, compiler, OS and workload
Benchmarks and Benchmarking

- In lack of a universal task pick some programs that represent common tasks
- Use these programs to compare performance of systems:
 - Compilers
 - 3D games
 - Weather Simulation
- CAUTIONS:
 - Comparisons are as good as the benchmarks are in representing your real workload.
 - Many parameters affect measured performance
Benchmark Types

- **Real programs**
 - representative of real workload
 - best way to characterize performance
 - requires considerable work

- **Kernels**
 - “representative” program fragments
 - good for focusing on individual features - not big picture

- **Mixes**
 - instruction frequency of occurrence; calculate
Benchmark Types

- **Toy benchmarks**
 - e.g., fibonacci, prime number, towers of Hanoi
 - little value

- **Synthetic benchmarks**
 - programs intended to give specific mix
 - may be OK for non-pipelined, non-cached, non-optimizing compilers
SPEC95 CPU Benchmark Integer

- go plays a game of go
- m88ksim Motorola 88000 CPU simulator
- gcc compiler
- compress data compress/decompress
- li lisp interpreter
- jpeg graphics jpeg compression/decompression
- perl perl language interpreter
- vortex object-oriented database system
SPEC95 Benchmark - Floating point

- tomcatv vectorized mesh generation
- swim shallow water model - finite differences
- su2cor quantum physics
- hydro2d galactic jets - navier stokes
- mgrid multigrid solver for 3d field
- applu partial differential equations
- turb3d simulation of turbulence in a cube
- apsi temperature and wind velocity
- fppp quantum chemistry
- wave5 n-body Maxwell’s
SPEC CPU2000 Benchmark

- **SpecCPU Int**

<table>
<thead>
<tr>
<th>NAME</th>
<th>REF</th>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>164.gzip</td>
<td>1400</td>
<td>1400</td>
<td>Data compression utility</td>
</tr>
<tr>
<td>175.vpr</td>
<td>1400</td>
<td>1400</td>
<td>FPGA circuit placement and routing</td>
</tr>
<tr>
<td>176.gcc</td>
<td>1100</td>
<td></td>
<td>C compiler</td>
</tr>
<tr>
<td>181.mcf</td>
<td>1800</td>
<td></td>
<td>Minimum cost network flow solver</td>
</tr>
<tr>
<td>186.crafty</td>
<td>1000</td>
<td></td>
<td>Chess program</td>
</tr>
<tr>
<td>197.parser</td>
<td>1800</td>
<td></td>
<td>Natural language processing</td>
</tr>
<tr>
<td>252.eon</td>
<td>1300</td>
<td></td>
<td>Ray tracing</td>
</tr>
<tr>
<td>253.perlbmk</td>
<td>1800</td>
<td></td>
<td>Perl</td>
</tr>
<tr>
<td>254.gap</td>
<td>1100</td>
<td></td>
<td>Computational group theory</td>
</tr>
<tr>
<td>255.vortex</td>
<td>1900</td>
<td></td>
<td>Object Oriented Database</td>
</tr>
<tr>
<td>256.bzip2</td>
<td>1500</td>
<td></td>
<td>Data compression utility</td>
</tr>
<tr>
<td>300.twolf</td>
<td>3000</td>
<td></td>
<td>Place and route simulator</td>
</tr>
</tbody>
</table>
SPEC CPU2000 Benchmark

- SpecCPU FP
- 168.wupwise 1600 Quantum chromodynamics
- 171.swim 3100 Shallow water modeling
- 172.mgrid 1800 Multi-grid solver in 3D potential field
- 173.applu 2100 Parabolic/elliptic partial differential equations
- 177.mesa 1400 3D Graphics library
- 178.galgel 2900 Fluid dynamics: analysis of oscillatory instability
- 179.art 2600 Neural network simulation; adaptive resonance theory
- 183.equake 1300 Finite element simulation; earthquake modeling
- 187.facerec 1900 Computer vision: recognizes faces
- 188.ammp 2200 Computational chemistry
- 189.lucas 2000 Number theory: primality testing
- 191.fma3d 2100 Finite element crash simulation
- 200.sixtrack 1100 Particle accelerator model
- 301.apsi 2600 Solves problems regarding temperature, wind, velocity and distribution of pollutants

CHECK WWW.SPECBENCH.ORG for more info
Why A New Version?

- Programs evolve
- Benchmarks become obsolete
 - New Applications Appear
 - Existing Applications may Scale
 - Compilers/Architectures are tuned to existing ones
MediaBench

- Developed at UCLA (my advisor :)
- Collection of Media-Oriented Applications
 - IJPEG Image Compression/Decompression
 - MPEG Movie Compression/Decompression
 - GSM Audio Encoding/Decoding 8Khz 13-bit samples
 - ADPCM Speech Encoding/Decoding
 - G.721 Guess....
 - PGP Public Key-based Cryptography
 - PEGWIT Ditto
 - Ghostscript Postscript Interpreter
 - Mesa 3D Graphics Library (API)
 - SPEECH Speech Processing Library
 - RASTA Speech Recognition Components
 - EPIC Image Compression
Kernel Example

- inner product

\[
\begin{align*}
\text{Do 3} & \quad L = 1, \ LP \\
Q & = 0.0 \\
\text{DO 3} & \quad K = 1, N \\
Q & = Q + Z(K) \times X(K)
\end{align*}
\]
Synthetic Benchmark Example

- Dhrystone, Whetstone

```
X = 1.0
Y = 1.0
Z = 1.0
DO 88 I = 1, N8, 1
   CALL P3(X,Y,Z)
```

```
SUBROUTINE P3(X,Y,Z)
   COMMON T, T2
   X1 = X
   Y1 = Y
   X1 = T * (X1 - Y1)
   Y1 = T * (X1 + Y1)
   Z = (X1 + Y1)/T2
RETURN
```
Mix Example

- Gibson Mix - developed in 1950’s at IBM
 - load/store 31%
 - branches 17%
 - fixed add/sub 6%
 - compare 4%
 - float add/sub 7%
 - float mult 4%
 - float div 2%
 - fixed mul 1%
 - fixed div <1%
 - shifts 4%
 - logical 2%

- Generally speaking, these numbers are still valid today
Summarizing Performance

Consider:

<table>
<thead>
<tr>
<th>Program</th>
<th>Computer A</th>
<th>Computer B</th>
<th>Computer C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program P1</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Program P2</td>
<td>1000</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Program P3</td>
<td>1001</td>
<td>110</td>
<td>40</td>
</tr>
</tbody>
</table>

Can answer: X is faster than Y for program Z
But which is faster overall?

Need a way of summarizing performance
Total Execution Time

- Given Time(X)\textsubscript{i} the time it takes to run program i on computer X, measure:

\[
\frac{\text{Perf}(A)}{\text{Perf}(B)} = \frac{\sum \text{Time}(B)\textsubscript{i}}{\sum \text{Time}(A)\textsubscript{i}}
\]

- In our previous example: B is 9.1 times faster than A

- Consistent Summary Metric
 - if this your exact workload!

- Longer running programs dominate
 - Over-emphasizes their importance
Arithmetic Mean

- Use (n is the number of benchmarks):

\[
Time(A) = \frac{1}{n} \sum Time(A)_i
\]

- In our previous example:
 - Time(A) = \((1 + 1000 + 1001) / 3 = 677.33\)
 - Time(B) = \((10 + 100 + 110) / 3 = 73.33\)

- B is 9.1 times faster than A
Weighted Arithmetic Mean

- Assign Weight to each benchmark that better represents an unequal mix:

\[Time(A) = \sum Weight_i \times Time(A)_i \]

- Could be used to give equal importance to each benchmark
- But really we are playing with numbers
How about Rates?

- What if we are given performance as a rate, e.g., IPC
- Can we use AM? Let’s see. Consider speed:
 - 30 mph for first 10 miles
 - 90 mph for next 10 miles. average speed?
- Average speed = (30+90)/2 **WRONG**
- Average speed = total distance / total time
 - (20 / (10/30+10/90)) = 45 mph
- This is the HARMONIC MEAN...
Harmonic Mean

- Harmonic mean of rates = \(\frac{n}{\sum_{i=1}^{n} \frac{1}{rate(i)}} \)

- Use HM if forced to start and end with rates
Dealing with ratios

- Performance is often reported normalized to a reference machine
- This is what SPEC does!
- Can we use AM? NO!!! Example:

<table>
<thead>
<tr>
<th></th>
<th>Machine A</th>
<th></th>
<th>Machine B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Program 2</td>
<td>1000</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>AM</td>
<td>500.5</td>
<td>1</td>
<td>5.5</td>
</tr>
<tr>
<td>Total Time</td>
<td>1001</td>
<td>2</td>
<td>10.1</td>
</tr>
</tbody>
</table>
Spec Uses Geometric Mean

- Geometric Mean:
 \[n \sqrt[n]{\prod_i \text{Execution Time Ratio}_i} \]

- Independent of the particular running times
- All benchmarks are equal!
- But does not predict execution time!
 - In our Example GM says A = B
- And it over-emphasizes the easy cases!
- Generally, GM will mispredict for three or more machines
Summary of Summarizing Performance

- Absolute time: Use AM
- Ratios, e.g., IPC: Use HM
- Speedups/relative performance: Use GM
Iron Law: CPU Performance Equation

\[\text{CPUtime} = \text{IC} \times \text{CPI} \times \text{ClockCycleTime} \]

- **IC = Instruction Count**
 - Instructions executed NOT static code
 - Mostly determined by program, compiler, ISA

- **CPI = Clocks Per Instruction**
 - Mostly determined by ISA and CPU organization
 - Overlap among instructions makes this smaller

- **ClockCycleTime**
 - Mostly determined by technology and CPU organization
Example

<table>
<thead>
<tr>
<th>Op</th>
<th>Frequency</th>
<th>Cycle Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU ops</td>
<td>43%</td>
<td>1</td>
</tr>
<tr>
<td>Loads</td>
<td>21%</td>
<td>1</td>
</tr>
<tr>
<td>Stores</td>
<td>12%</td>
<td>2</td>
</tr>
<tr>
<td>Branches</td>
<td>24%</td>
<td>2</td>
</tr>
</tbody>
</table>

- Assume stores can execute in 1 cycle by slowing clock 15%
- Should this be implemented?
Simple Example

- Old CPI = 0.43 + 0.21 + 0.12 x 2 + 0.24 x 2 = 1.36
- New CPI = 0.43 + 0.21 + 0.12 + 0.24 x 2 = 1.24
- Speedup = old time/new time
 - = \(\frac{P \times \text{old CPI} \times T}{P \times \text{new CPI} \times 1.15 T} \)
 - = \(\frac{1.36}{(1.24 \times 1.15)} = 0.95 \)
- Answer: Don’t make the change
SPEC Benchmarking Process

- **steps:**
 - For each benchmark i, look up $T_{base,i}$
 - For each benchmark i, run target machine to get $T_{new,i}$
 - Compute geometric mean:

$$\sqrt[n]{\prod_{i=1}^{n} \frac{T_{base,i}}{T_{new,i}}}$$
SPEC Benchmarking Process

Steps:
- extract benchmarks from applications
- choose performance metric
- execute benchmarks on candidate machines
- project performance in new machine
Pitfalls

- Choosing benchmarks from the wrong application space
 - e.g., for 3d gaming, choosing Microsoft Word

- Choosing benchmarks from no application space
 - e.g., synthetic workloads

- Using toy benchmarks
 - e.g., used to prove the value of RISC in early 80’s

- Mismatch of benchmark properties with scale of features studied
 - e.g., using SPEC for large cache studies
Pitfalls

- Carelessly scaling benchmarks
 - truncating benchmarks
 - using only first few million instructions
 - reducing program data size

- Carelessly extracting or constructing benchmarks
 - Ghostscript in Mediabench
 - Output is written in a file in ASCII (one char per bit)

- Too many easy cases
 - may not show value of a feature

- Too few easy cases
 - may exaggerate importance of a feature
Amdahl’s Law

- Performance impact of optimizing part of a program:

\[
\text{Speedup} = \frac{\text{OldTime}}{\text{NewTime}} = \frac{\text{NewRate}}{\text{OldRate}}
\]

- Let an optimization speed \(f \) fraction of time by a factor of \(s \):

- New Time = \(\text{OldTime} \times [(1-f) \times 1 + f \times (1/S)] \)

- \(\text{Speedup} = \frac{\text{OldTime}}{\text{OldTime} \times [(1 - f) + \frac{f}{s}]} = \frac{1}{1 - f + \frac{f}{s}} \)

- \(s > 1.0 \) for speedup, \(f \leq 1.0 \) as it is a fraction
Amdahl’s Law

Old Time

New Time

= s
Amdahl’s Law – Example

- **f = 95% and s = 1.10** - speedup common case
 - SPEEDUP = $1/((1-0.95) + (0.95/1.10)) = 1.094$, or 9.4%

- **f = 5% and s = 10.00** - speedup uncommon case
 - SPEEDUP = $1/((1-0.05) + (0.05/10)) = 1.047$, or 4.7%

- **f = 5% and s → inf** Limit of speeding up uncommon case
 - SPEEDUP = $1/((1-0.05) + (0.05/\infty)) = 1.052$, or 5.2%

- **f = 95% and s → inf** Limit of speeding up common case
 - SPEEDUP = $1/((1-0.95) + (0.95/\infty)) = 20$, or 2000%

What should we go after? **Common** or **Uncommon** case?
Amdahl’s Law

\[\lim_{s \to \infty} \left(\frac{1}{1 - f + \frac{f}{s}} \right) = \frac{1}{1 - f} \Rightarrow \text{Make common case fast} \]
Amdahl’s Law

- Recall “COMMON” is relative!
- After you optimize what’s common may change

Speedup by 10
Example - Parallel Processing

- Amdahl was talking about a parallel processor with large speedup.
- At some point you have to pay attention to the serial part

Another example: Vector processing
Example Cont.

- Assume $f = 90\%$

<table>
<thead>
<tr>
<th>S</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>5.3</td>
</tr>
<tr>
<td>100</td>
<td>9.2</td>
</tr>
<tr>
<td>1000</td>
<td>9.9</td>
</tr>
<tr>
<td>10000</td>
<td>9.99</td>
</tr>
</tbody>
</table>

- Instead of using the last 9000 processors we should have speedup the serial part
Making Common Case Fast

- uniprocessor example: memory hierarchy
 - keep recently referenced data/insts onchip (fast)
 - exploit locality
- Recall “must pay attention to technology”:
 - on-chip faster than off-chip today
 - SRAM faster than DRAM faster than disk
- solution: memory hierarchy
Memory Hierarchy Specs

<table>
<thead>
<tr>
<th>type</th>
<th>size</th>
<th>speed</th>
<th>bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>reg</td>
<td>< 3k</td>
<td>500ps</td>
<td>64GB/s</td>
</tr>
<tr>
<td>L1</td>
<td>8k-64k</td>
<td>1ns</td>
<td>32GB/s</td>
</tr>
<tr>
<td>L2</td>
<td>128k-8M</td>
<td>18ns</td>
<td>48GB/s</td>
</tr>
<tr>
<td>main mem</td>
<td>4G</td>
<td>80ns</td>
<td>3.2GB/s</td>
</tr>
<tr>
<td>disk</td>
<td>120G</td>
<td>14ms</td>
<td>48MB/s-23MB/s</td>
</tr>
</tbody>
</table>

- Data for reg/L1 ignores multiporting in the register file and assumes single port for L1.
- L1 may have 2 ports and a register file may have 12
Balance

- At a system level, bandwidths and capacities should be balanced
- Each level capable of demanding/supplying bandwidths
- Refer to memory hierarchy figure

\[\text{CPU} \quad \longleftrightarrow \quad \text{Memory} \]

- Memory Should be able to provide data in the rate req. by the CPU
- CPU should be able to consume as much data as Memory can provide
Balance: Example

- **IPC = 1.5 (1/CPI)**
 - 30% loads and stores
 - 90% data cache hit rate
 - 95% icache hit rate

- All cache misses require 32 bytes

- So, processor memory demand is:

 \[1.5 \times 1.0 \times 0.05 \times 32 + 1.5 \times 0.3 \times 0.10 \times 32 = 3.8\text{ bytes/clock}\]

- **To keep the processor busy memory needs to supply this bandwidth**
Balance

- Given a resource: If demand bandwidth = supply bandwidth then the computation is that resource-bound
- e.g., if memory bandwidth = processor demand for program P then P is said to be memory-bound
- same for CPU-bound, disk-bound or I/O bound

GOAL: to be bound everywhere.
Memory Bandwidth

- copy: \(a[i] = b[i] \)
- scale: \(a[i] = q \times b[i] \)
- sum: \(a[i] = b[i] + c[i] \)
- triad: \(a[i] = b[i] + q \times c[i] \) (saxyp)

![Graph showing observed bandwidth vs. problem size](graph.png)
Memory Bandwidth (uniprocessor)

Memory bandwidth of real systems (MB/s)

<table>
<thead>
<tr>
<th>System</th>
<th>copy</th>
<th>scale</th>
<th>sum</th>
<th>triad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha ES45/1000</td>
<td>1946</td>
<td>1940</td>
<td>1978</td>
<td>1978</td>
</tr>
<tr>
<td>Cray T932</td>
<td>11341</td>
<td>10221</td>
<td>13014</td>
<td>13682</td>
</tr>
<tr>
<td>SUN UE 10k/400</td>
<td>364</td>
<td>215</td>
<td>287</td>
<td>296</td>
</tr>
<tr>
<td>Athlon 1333</td>
<td>941</td>
<td>592</td>
<td>727</td>
<td>685</td>
</tr>
<tr>
<td>PwrMac G4/867</td>
<td>629</td>
<td>615</td>
<td>609</td>
<td>680</td>
</tr>
<tr>
<td>PentiumIII/800</td>
<td>424</td>
<td>424</td>
<td>569</td>
<td>554</td>
</tr>
<tr>
<td>SparcClassic</td>
<td>57</td>
<td>48</td>
<td>48</td>
<td>43</td>
</tr>
<tr>
<td>AMD 386</td>
<td>7.4</td>
<td>5.7</td>
<td>7.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Pentium4</td>
<td>1437</td>
<td>1431</td>
<td>1587</td>
<td>1575</td>
</tr>
</tbody>
</table>

(www.streambench.org)
Balance (again)

- Storage capacity and bandwidth requirements
 - e.g., large cache \(\Rightarrow\) higher hit rate \(\Rightarrow\) lower demand
 - Or large memory \(\Rightarrow\) less paging \(\Rightarrow\) lower I/O demand

- Amdahl’s rule:
 - 1 MIPS \(\Leftrightarrow\) 1 MB memory \(\Leftrightarrow\) 1 Mbits/s I/O
 - if corrected to 1 Mbytes/s of I/O, the rule is still good!
Bursty Behavior

To get 2 IPC how many instructions should you –
- fetch per cycle?
- issue per cycle?
- complete per cycle?
- Is the answer 2?

Instructions are not like sand where peaks and valleys are leveled
An Example

- $A = B + C$
- $D = E + F$

2-way issue:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>load B</th>
<th>1</th>
<th>load E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>load E</td>
<td>2</td>
<td>add B, C</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>add B, C</td>
<td>3</td>
<td>add E, F</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>store A</td>
<td>4</td>
<td>store D</td>
</tr>
</tbody>
</table>

4-way issue:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>load B</th>
<th>1</th>
<th>load E</th>
<th>4</th>
<th>load F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>load E</td>
<td>2</td>
<td>add B, C</td>
<td></td>
<td>add E, F</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>add B, C</td>
<td>3</td>
<td>store A</td>
<td>4</td>
<td>store B</td>
</tr>
</tbody>
</table>

- **It takes a 4-way processor to get 2 IPC!**
- **Design for higher PEAK rate to achieve a desired AVERAGE level of performance**
Bursty Behavior

- Dependences will cause pipeline stalls (or bubbles or wait times)
- So sometimes pipeline will be full and at other only partially full

a higher PEAK level is need for a desired AVERAGE level performance
Cost

- Cost is very important to most real designs
 - Cost changes over time
- Learning curve lowers manufacturing costs
- Technology improvements lower costs e.g., DRAM
IC Cost

\[
\text{cost (IC)} = \frac{\chi_{\text{ost}}(\text{die}) + \chi_{\text{ost}}(\text{testing}) + \chi_{\text{ost}}(\text{packaging})}{\text{Final Test Yield}}
\]

\[
\text{cost (die)} = \frac{\chi_{\text{ost}}(\text{wafer})}{(\text{die/ wafer}) \times \text{yield(die)}}
\]

\[
\text{yield (die)} = \text{yield(Wafer)} \times \left[1 + \frac{\text{defects/cm}^2 \times \text{area}}{\alpha} \right]^{-\alpha}
\]

- Often \(\alpha \) is 0.30
- \(\text{cost (die)} = f (\text{die area}^4) \)
Cost Breakdown

- Component cost
 - microprocessor, SRAM, DRAM + disk
 - power supplies, packaging

- Direct costs
 - manufacturing (labor, scrap) + warranty

- Indirect costs
 - R&D + marketing
 - Administrative
 - profits + taxes
Price

- Only loosely related to cost!
 - start with component cost
 - add 25-40% for direct cost
 - add 45-65% gross margin
 - = average selling price
 - add 60-75% to correct discounts and allow dealer profits
 - = list price

- Note
 - component cost - 15-30%, R&D - 8-15% of list price
Classic paper
- most observations are still true
- most historians credit Eckert and Mauchly for this idea

“it is evident that the machine must be capable of storing in some manner not only the data but also the instructions which govern the actual machine.”

“conceptually we have discussed above two different forms of memory: storage of numbers and storage of orders. The memory organ can be used to store both numbers and orders.”

BGvN46: Arithmetic

- Binary arithmetic
- Two’s complement
- Iterative carry
- Iterative multiply (carry-save adders)
- Rounding vs. jamming
- Non-restoring division
- No floating-point. why?
BGvN46: Control

- 40-bit data
- 20-bit instructions
 - 8-bit opcode
 - 12-bit addresses
- Basic instructions
 - conditional and unconditional branches
 - data transfer
 - ALU and shift
 - store into orders - why?