Solutions to Homework 3

Debasish Das
EECS Department, Northwestern University
ddas@northwestern.edu

1 Problem 2.4

Recurrence for Algorithm A

\[T(n) = 5T\left(\frac{n}{2}\right) + O(n) \] (1)

Using Master’s theorem we get a bound of \(O(n^{\log_5 5})\).

Recurrence for Algorithm B

\[T(n) = 2T(n - 1) + O(1) \] (2)

The idea to solve such recurrence is to use a recursion tree and combine the constant time operation at each level of recursion tree. Alternatively you can use substitution.

\[T(n) = 2T(n - 1) + O(1) \]
\[T(n - 1) = 2T(n - 2) + O(1) \]

...
\[T(2) = 2T(1) + O(1) \]

Substituting the values of \(T(i-1)\) into the equation of \(T(i)\), we get the following sum

\[T(n) = \sum_{i=0}^{n-1} 2^i \cdot O(1) \] (3)

Thus we obtain \(T(n)\) as \(O(2^n)\).

Recurrence for Algorithm C

\[T(n) = 9T\left(\frac{n}{3}\right) + O(n^2) \] (4)

Using Master’s theorem we get \(O(n^2 \log n)\).

If we do an order analysis, it turns out that Algorithm C is most efficient, since \(\log n\) grows slower than \(n^{\log_5 5 - 2}\).
2 Problem 2.12

In this problem we have to give an recurrence for the number of lines printed by the algorithm. The recurrence is given as follows

\[
L(n) = \begin{cases}
1 + 2L\left(\frac{n}{2}\right) & \text{if } n > 1 \\
0 & \text{if } n = 1
\end{cases}
\] (5)

Theorem 1 \(L(n) = \Theta(n) \)

Proof: Base Case: \(L(1) = 0 \) which is \(\Theta(1) \)

Hypothesis: \(c_1 \cdot k \leq L(k) \leq c_2 \cdot (k-1) \), \(k < n \)

Induction: \(L(n) = 1 + 2L\left(\frac{n}{2}\right) \geq 1 + 2(c_1 \cdot \frac{n}{2}) = 1 + c_1 n = k_1 n \) where \(k_1 \) is a constant equal to \(c_1 + \frac{1}{n} \)

Similarly for the other bound, \(L(n) = 1 + 2L\left(\frac{n}{2}\right) \leq 1 + 2(c_2 \cdot \left(\frac{n}{2} - 1\right)) = 1 + c_2 n - 2c_2 = k_2 (n-1) \) where \(k_2 = c_2 - \frac{(c_2 - 1) \cdot (n-1)}{(n-1)} \)

Using above result we can say that \(L(n) \) is \(\Theta(n) \). We can do a more accurate analysis using recursion tree and establish that the line will be printed \(n-1 \) times, which is still \(\Theta(n) \).

3 Problem 2.14

Given an array of \(n \) elements, we need to remove the duplicate elements from the array in \(O(n \log n) \) time. Idea is to maintain the order of elements in the array after the duplicates are removed. The following example explains the idea.

Let the array \(A \) has following numbers: 2 3 1 3 1 4.

Once the duplicate numbers are removed the output array should be 2 3 1 4. Note that the order of elements in the final output array is maintained. In other words the final array is not sorted.

function remove-duplicate(a[1...n])
Input: An array of numbers a[1...n]
Output: Array A with duplicates removed

Construct an array temp[1..n]:
- \(\text{temp}[i] \) has two fields key and value

for \(i = 1 \) to \(n \)
- \(\text{temp}[i].value = a[i] \)
- \(\text{temp}[i].key = i \)

sort temp based on value
remove duplicates from temp based on value:
- keep the entry with minimum key

sort temp based on key
construct array A from temp:
- \(A[i] = \text{temp}[i].value \)
return A
The field key helps in keeping the order of elements in output array. Two sort takes $O(n \log n)$. Duplicate removal considering key is $O(n)$. Therefore the algorithm is $O(n \log n)$. If we don’t consider maintaining the order of the original array in the output array the algorithm can be simply given as

function remove-duplicate(a[1...n])
Input: An array of numbers a[1...n]
Output: Array A with duplicates removed
sort a
construct array A from a:
 by removing duplicate entries from a
return A

4 Problem 3.5

Given a graph $G = (V,E)$ we have th find another graph $G^R = (V,E^R)$ where $E^R = (v,u) : (u,v) \in E$. We assume that each edge e has a source vertex u and a sink vertex v associated with it.

function find-reverse(G)
Input: Graph $G = (V,E)$ in adjacency list representation
Output: Graph G^R
Generate all edges $e \in E$ using any traversal
Construct adjacency list G^R:
 vertex set = V
For each generated edge e
 temp = e.source
 e.source = e.sink
 e.sink = temp
 insert e into G^R
return G^R

Complexity Analysis: All edges can be generated in $O(V + E)$. Edges can be modified and new adjacency list can be populated in $O(E)$. Therefore the algorithm is linear.

5 Problem 3.7

A bipartite graph $G = (V,E)$ is a graph whose vertices can be partitioned into two sets ($V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$) such that there are no edges between vertices in the same set. Formally

\[u, v \in V_1 \Rightarrow (u, v) \notin E \]
\[u, v \in V_2 \Rightarrow (u, v) \notin E \]
We use the property given in (b) to get a linear time algorithm to determine whether a graph is bipartite. The property says that an undirected graph is bipartite if it can be colored by two colors. The algorithm we present is a modified DFS that colors the graph using 2 colors. Whenever an back-edge, forward-edge or cross-edge is encountered, the algorithm checks whether 2-coloring still holds.

function graph-coloring(G)
Input: Graph G Output: returns true if the graph is bipartite
false otherwise
for all v ∈ V:
visited(v) = false
color(v) = GREY
while ∃ s ∈ V : visited(s) = false
visited(s) = true
color(s) = WHITE
S = [s] (stack containing v)
while S is not empty
u = pop(S)
for all edges (u,v) ∈ E:
if visited(v) = false:
visited[v] = true
push(S,v)
if color(v) = GREY
if color(u) = BLACK:
color(v) = WHITE
if color(u) = WHITE:
color(v) = BLACK
else if color(v) = WHITE:
if color(u) ≠ BLACK:
return false
else if color(v) = BLACK:
if color(u) ≠ WHITE:
return false
return true
(b)

Lemma 1 An undirected graph is bipartite if and only if it contains no cycles of odd length

Proof: ⇒Consider a path P whose start vertex is s, end vertex is t and it passes through vertices u₁, u₂, ..., uₙ and the associated edges are (s, u₁), (u₁, u₂), ..., (uₙ, t). Now if P is a cycle, then s and t are the same vertices. Without loss of generality assume s is in V₁. Each edge (uᵢ, uᵢ₊₁) goes from one vertex set to other. Therefore a path must have 2i edges to come back into the same vertex set where i ∈ N. Since s and t are in same vertex set, so the length of the cycle formed must be 2i which is even.
⇐Suppose the graph has a cycle of odd length. Let the cycle be C and it
passes through vertices \(u_1, u_2, ..., u_n \) where \(u_1 = u_n \). The associated edges are \((u_1, u_2), ..., (u_{n-1}, u_n)\). We start coloring edges of using two colors WHITE and BLACK. Without any loss of generality \(u_1 \) is colored WHITE while \(u_{n-1} \) is colored BLACK since \(n \) is odd and therefore \(n - 1 \) is even. Choosing color of \(u_n \) as WHITE conflicts with the color of \(u_{n-1} \) while choosing color as BLACK conflicts with the color of \(u_1 \). Therefore it is not possible to color an odd cycle with 2 colors which implies that the graph is not bipartite (using the property mentioned in (b)) \(\square \)

(c) 3. It follows from the \(\iff \) proof of part (b).

6 Problem 3.13

(a)

Lemma 2 In any connected undirected graph \(G=(V,E) \) there is a vertex \(v \in V \) whose removal leaves \(G \) connected

Proof: Consider a graph \(G=(V,E) \) and a Depth-first-search tree \(T \) constructed from the graph using DFS. Given any connected graph, generation of \(T \) is linear time \(O(V+E) \) and there exist one unique tree \(T \). Denote the leaves of the tree \(T \) by \(L(T) \). If we choose any vertex \(v \in L(T) \), removal of that vertex and the edges associated with it will keep \(T \) connected (by the definition of tree). Thus \(\hat{T} = T - \{v\} \) is connected which implies that the graph \(\hat{G}=(V-\{v\},E-\{(i,j): i = v \lor j = v\}) \) is connected since \(\hat{T} \) and \(\hat{G} \) are isomorphic. \(\square \)

(b) See Figure 1(a)

(c) See Figure 1(b)

![Figure 1: Examples for 3.13(b) and 3.13(c)](image-url)