(e) The carrier power is, assuming a sufficiently high carrier frequency,

\[
P = \frac{1}{2} A_c^2 = \frac{1}{2} (100)^2 = 5000 \text{ Watts}
\]

Problem 3.33
The frequency deviation in Hertz is the plot shown in Fig. 3.76 with the ordinate values multiplied by 25. The phase deviation in radians is given

\[
\phi(t) = 2\pi F_d \int^t m(\alpha) d\alpha = 50\pi \int^t m(\alpha) d\alpha
\]

For \(0 \leq t \leq 1\), we have

\[
\phi(t) = 50\pi \int^t 2\alpha d\alpha = 50\pi t^2
\]

For \(1 \leq t \leq 2\)

\[
\phi(t) = \phi(1) + 50\pi \int^t_1 (5 - \alpha) d\alpha = 50\pi + 250\pi (t - 1) - 25\pi (t^2 - 1)
\]

\[
= -175\pi + 250\pi t - 25\pi t^2
\]

For \(2 \leq t \leq 3\)

\[
\phi(t) = \phi(2) + 50\pi \int^t_2 3d\alpha = 225\pi + 150\pi (t - 2)
\]

For \(3 \leq t \leq 4\)

\[
\phi(t) = \phi(3) + 50\pi \int^t_3 2d\alpha = 375\pi + 100\pi (t - 3)
\]

Finally, for \(t > 4\) we recognize that \(\phi(t) = \phi(4) = 475\pi\). The required figure results by plotting these curves.

Problem 3.34
The frequency deviation in Hertz is the plot shown in Fig. 3.77 with the ordinate values multiplied by 10. The phase deviation is given by

\[
\phi(t) = 2\pi F_d \int^t m(\alpha) d\alpha = 20\pi \int^t m(\alpha) d\alpha
\]

For \(0 \leq t \leq 1\), we have

\[
\phi(t) = 20\pi \int^t_0 \alpha d\alpha = 10\pi t^2
\]
3.1. PROBLEMS

For $3 \leq t \leq 4$

$$\phi(t) = \phi(3) + 10\pi \int_{3}^{t} (2\alpha - 8) \, d\alpha = 5\pi + 10\pi(t^2 - 9) - 10\pi(8)(t - 3)$$

$$= 10\pi(t^2 - 8t + 15.5)$$

Finally, for $t > 4$ we recognize that $\phi(t) = \phi(4) = -5\pi$. The required figure follows by plotting these expressions.

Problem 3.36
(a) The peak deviation is $(12.5)(4) = 50$ and $f_m = 10$. Thus, the modulation index is $\frac{50}{10} = 5$.
(b) The magnitude spectrum is a Fourier-Bessel spectrum with $\beta = 5$. The $n = 0$ term falls at 1000 Hz and the spacing between components is 10 Hz. The sketch is that of Figure 3.24 in the text.
(c) Since β is not $\ll 1$, this is not narrowband FM. The bandwidth exceeds $2f_m$.
(d) For phase modulation, $k_p(4) = 5$ or $k_p = 1.25$.

Problem 3.37
The results are given in the following table:

<table>
<thead>
<tr>
<th>Part</th>
<th>f_d</th>
<th>$D = 5f_d/W$</th>
<th>$B = 2(D + 1)W$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>20</td>
<td>0.004</td>
<td>50.2 kHz</td>
</tr>
<tr>
<td>b</td>
<td>200</td>
<td>0.04</td>
<td>52 kHz</td>
</tr>
<tr>
<td>c</td>
<td>2000</td>
<td>0.4</td>
<td>70 kHz</td>
</tr>
<tr>
<td>d</td>
<td>20000</td>
<td>4</td>
<td>250 kHz</td>
</tr>
</tbody>
</table>

Problem 3.38
From

$$x_c(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos(\omega_c + \omega_m) t$$

we obtain

$$\langle x_c^2(t) \rangle = \frac{1}{2} A_c^2 \sum_{n=-\infty}^{\infty} J_n^2(\beta)$$

We also know that (assuming that $x_c(t)$ does not have a significant dc component - see Problem 3.24)

$$\langle x_c^2(t) \rangle = \langle A_c^2 \cos^2[\omega_c t + \phi(t)] \rangle$$
which, assuming that $\omega_c \gg 1$ so that $x_c(t)$ has no dc component, is

$$\langle x_c^2(t) \rangle = \frac{1}{2} A_c^2$$

This gives

$$\frac{1}{2} A_c^2 = \frac{1}{2} A_c^2 \sum_{n=-\infty}^{\infty} J_n^2(\beta)$$

from which

$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1$$

Problem 3.39

Since

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jn(\beta \sin x)} \, dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} \, dx$$

we can write

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos (\beta \sin x - nx) \, dx + j \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin (\beta \sin x - nx) \, dx$$

The imaginary part of $J_n(\beta)$ is zero, since the integrand is an odd function of x and the limits $(-\pi, \pi)$ are even. Thus

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos (\beta \sin x - nx) \, dx$$

Since the integrand is even

$$J_n(\beta) = \frac{1}{\pi} \int_{0}^{\pi} \cos (\beta \sin x - nx) \, dx$$

which is the first required result. With the change of variables $\lambda = \pi - x$, we have

$$J_n(\beta) = \frac{1}{\pi} \int_{0}^{\pi} \cos [\beta \sin (x) - nx + \pi] \, (-1) \, d\lambda$$

$$J_n(\beta) = \frac{1}{\pi} \int_{0}^{\pi} \cos [\beta \sin (\pi - \lambda) - n(\pi - \lambda)] \, d\lambda$$

Since $\sin (\pi - \lambda) = \sin \lambda$, we can write

$$J_n(\beta) = \frac{1}{\pi} \int_{0}^{\pi} \cos [\beta \sin \lambda + n\lambda - n\pi] \, d\lambda$$
3.1. PROBLEMS

Problem 3.41
The required spectra are given in Figure 3.10. The modulation indices are, from top to bottom, $\beta = 0.5$, $\beta = 1$, $\beta = 2$, $\beta = 5$, and $\beta = 10$.

Problem 3.42
We wish to find k such that

$$P_r = J_0^2(10) + 2 \sum_{n=1}^{k} J_n^2(10) \geq 0.80$$

This gives $k = 9$, yielding a power ratio of $P_r = 0.8747$. The bandwidth is therefore

$$B = 2k f_m = 2 \times (9) \times (150) = 2700 \text{ Hz}$$

For $P_r \geq 0.9$, we have $k = 10$ for a power ratio of 0.9603. This gives

$$B = 2k f_m = 2 \times (10) \times (150) = 3000 \text{ Hz}$$

Problem 3.43
From the given data, we have

$$f_{c1} = 110 \text{ kHz} \quad f_{d1} = 0.05 \quad f_{d2} = n(0.05) = 20$$

This gives

$$n = \frac{20}{0.05} = 400$$

and

$$f_{c1} = n(100) \text{ kHz} = 44 \text{ MHz}$$

The two permissible local oscillator frequencies are

$$f_{0.1} = 100 - 44 = 56 \text{ MHz}$$
$$f_{0.2} = 100 + 44 = 144 \text{ MHz}$$

The center frequency of the bandpass filter must be $f_c = 100$ MHz and the bandwidth is

$$B = 2(D+1)W = 2(20+1)(10^3)$$

or

$$B = 420 \text{ kHz}$$
Problem 3.44
For the circuit shown
\[H(f) = \frac{E(f)}{X(f)} = \frac{R}{R + j2\pi f L + \frac{1}{j2\pi f C}} \]
or
\[H(f) = \frac{1}{1 + j \left(2\pi f \tau_L - \frac{1}{2\pi f \tau_C} \right)} \]
where
\[\tau_L = \frac{L}{R} = \frac{10^{-3}}{10^3} = 10^{-6}, \]
\[\tau_C = RC = (10^3)(10^{-9}) = 10^{-6} \]
A plot of the amplitude response shows that the linear region extends from approximately 54 kHz to 118 kHz. Thus an appropriate carrier frequency is
\[f_c = \frac{118 + 54}{2} = 86 \, \text{kHz} \]
The slope of the operating characteristic at the operating point is measured from the amplitude response. The result is
\[K_D \cong 8 \left(10^{-6} \right) \]

Problem 3.45
We can solve this problem by determining the peak of the amplitude response characteristic. This peak falls at
\[f_p = \frac{1}{2\pi \sqrt{LC}} \]
It is clear that \(f_p > 100 \, \text{MHz} \). Let \(f_p = 150 \, \text{MHz} \) and let \(C = 0.001 \left(10^{-12} \right) \). This gives
\[L = \frac{1}{(2\pi)^2 f_p^2 C} = 1.126 \left(10^{-3} \right) \]
We find the value of \(R \) by trial and error using plots of the amplitude response. An appropriate value for \(R \) is found to be 1 \(\text{M}\Omega \). With these values, the discriminator constant is approximately
\[K_D \approx 8.5 \left(10^{-9} \right) \]

Problem 3.46