Sampling-Based Methods for Stochastic Optimization

Tito Homem-de-Mello

Department of Industrial Engineering and Management Sciences

Northwestern University
The model

Objective is to solve

$$\min_{x \in X} \{ g(x) := \mathbb{E}G(x, \xi) \}$$

where ξ is a random vector representing the “uncertainty” in the model (e.g. future demand). Denote by F the (joint) distribution of ξ.

We are interested in the case where ξ either has a continuous distribution or a huge number of scenarios, so sampling is required.
Two approaches

1. **External Sampling:**

 Let $\xi^1, ..., \xi^N$ be an iid random sample drawn from F.

 Solve

 $$\min_{x \in X} \left\{ \hat{g}_N(x) := N^{-1} \sum_{j=1}^{N} G(x, \xi^j) \right\}.$$

 Let

 $x^* = \text{optimal solution of original problem}$

 $\nu^* = \text{optimal value of original problem}$

 $\hat{x}_N = \text{optimal solution of approximating problem}$

 $\hat{\nu}_N = \text{optimal value of approximating problem}$

 Many convergence properties exist: under proper assumptions,

 - $\hat{x}_N \rightarrow x^*$ w.p.1, $\hat{\nu}_N \rightarrow \nu^*$ w.p.1

 • For any given $\varepsilon > 0$, $P(\|\hat{x}_N - x^*\| \geq \varepsilon)$ approaches zero exponentially fast as $N \rightarrow \infty$.

 • etc.

 ISSUES: How to choose N, quality of solution for given N.
Two approaches (cont.)

2. *Internal Sampling:*

 Idea is to *incorporate* sampling into an optimization algorithm.

 In our context, this means the following:

 (i) Let ξ^1, \ldots, ξ^N be an iid random sample drawn from F.

 (ii) Compute $\hat{g}_N(x) := N^{-1} \sum_{j=1}^N G(x, \xi^j)$.

 (iii) Do some optimization steps with $\hat{g}_N(x)$.

 (iv) Repeat (i)-(iii) above.

ISSUES:

- Convergence
- Choice of sample sizes
- New samples vs. cumulative samples
- Testing optimality conditions
- etc.

Statistical tests are often used as auxiliary tools.
My interests

- Development of efficient sampling-based methods, especially for *non-smooth* stochastic optimization
 - A stochastic bundle method?

- Use of variance-reduction techniques from simulation literature
 - Guarantees of efficiency, practical performance

- Applications
 - Manufacturing, logistics, *revenue management*