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ABSTRACT 
 
Content-based video retrieval technology holds the key to 
the efficient management and sharing of video content 
from different sources, in different scales, across different 
platforms, and shared over different communication 
channels. In this work we present a fast retrieval algorithm 
based on matching the geometry of video sequence traces 
in the principal component space. Techniques to address 
scale (spatial and temporal) issues, as well as, noise and 
other possible distortions, such as frame dropping, are 
discussed.  Experimental results demonstrate the 
effectiveness of the proposed approach.   

 

1. INTRODUCTION 
 

With the proliferation of digital video capturing, 
storage and communication devices, the amount of 
information in video form is growing rapidly in personal 
entertainment, security, and military applications. To 
effectively share and manage video content presents a 
technical challenge to the existing information 
management systems. Semantic features based 
management systems require substantial amount of 
manual labeling of the content and are therefore in general 
not practical.  

Consider the following example representing an 
application addressed by this work.  A mobile phone user 
has just watched a low visual quality (e.g., QCIF size, 
10fps), short (e.g., 5 sec) segment of a soccer game from 
some unknown source.  S/he wants to now watch the 
complete game in SDTV format from her personal soccer 
game video collection, or some content provider’s 
collections. The system will therefore need to search a 
database based on this 5-sec segment and return the 
locations of the full size program, if it exists. The 
semantic information is clearly not present in the querying 
segment. The matching has thus to be “content-based”. In 
addition, the variance in temporal and spatial scale, as 
well as, the noise and distortion incurred during the 
communication must also be addressed.  

Content-based retrieval approaches have been 
investigated extensively by many researchers [1]-[4], [7], 
[9]-[12].  Such approaches are typically based on the 
visual features of video frames and a similarity metric 
defined on these features. Visual features are typically 
high dimensional and the commonly used are color, shape, 
texture, and motion. Drawbacks of such approaches are 
the computational expense associated with the extraction 
and matching of visual features, and the fact that the video 
sequence is treated as a collection of images and the 
collective temporal behavior of the sequence is typically 
not addressed. The retrieval performance can also be 
negatively affected by the scale variance, noise, and 
quantization distortion of the video content. 

In the proposed approach video sequences are viewed 
as temporal traces in some high dimensional space.  Each 
video frame is reduced to a point in its Principal 
Component (PC) space [5][8] of much lower dimension.  
The trace over time of a video sequence in this space 
should provide sufficient information to differentiate it 
from other sequences. In the PC space, the matching of 
sequences becomes a problem of matching the geometry 
of the traces; when the dimensionality of the PC space is 
small, this matching as well as indexing can be done 
efficiently. Implementation details are described to further 
speed up the retrieval and also address spatial and 
temporal resolution differences between the query and the 
database video.     

The paper is organized into the following sections. In 
section 2 we present the method for computing the trace 
of a video sequence in its PC space and the matching 
method. In section 3 we discuss implementation issues, in 
section 4 we present simulation results, and in section 5 
we draw conclusions and outline our future work.  
 
2. PRINCIPAL COMPONENT SPACE TRACE AND 

MATCHING METRICS 
 
2.1. Scaling and Principal Component Space 
Projection 
 
    Let n denote the dimensionality of a frame, i.e., a video 
frame fj belongs to Rn.  Principal Component Analysis 
(PCA) [8] finds an nxd transformation Vd, with d 



orthogonal unit nx1 vectors, that maps the frames of the 
video sequence fj to a low d-dimensional (d<n) Principal 
Component space, that is,  
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where f0 is the average of the frames observed.  Notice 
that V is sample dependent and its accurate computation 
requires correct modeling of the covariance of the sample 
frames with a large number of samples.  
For a sequences with frame width W and height H, the 
original data dimension n=W*H, can be quite high, and 
the amount of available data is typically not adequate in 
accurately performing PCA. Therefore we would like to 
reduce the frame size to a desirable scale w and h first, 
with minimum information loss possible, before the PCA.  
This is typically done via the wavelet scaling.  

For w=8, h=6 and d=2, the PCA basis vectors and 
eigen-values are shown in Fig. 1. Notice that the first 4 
components captured most energy of the sample frames.  
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Figure 1. Principal component basis vectors and eigen-

values 
With d=2, frames are reduced to feature points in the 2D 
PC space and the trace of video sequences can be 
visualized. Examples of such trace for the “foreman” and 
a certain  “mixed” sequences are illustrated in Fig. 2. The 
“mixed” sequence consists of 50 various video clips of 60 
frames each. This is a very compact representation 
compared with other image features like color, shape and 
texture features.  
 
2.2. Matching Metrics 
 

The traces of different video clips occupy different 
areas in the 2D space, and have different trace geometry, 
as shown in Fig.2. 
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Figure 2. Sequence traces in the 1st-2nd principal component 

space 
For a q-frame querying video clip with PC feature 
representation Q={x1, x2,…, xq}, and a p-frame video 
collection with feature representation D={y1, y2,…, yp}, 
with p>q,  let the distance between Q and sub segment of 
D starting at k be,  
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Let the minimum distance between Q and D be 
k
Q
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= . If the video collection contains the 

query clip, then d*=0. However due to different frame 
sizes, quantization scales when dealing with compression, 
and errors/noise in a communication application, we 
declare the query clip exists if the minimum distance is 
below certain threshold d0, and the location is determined 
by, 
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Alternatively, a scalar feature of a trace, the differential 
trace step, can be used in matching.  It is defined by 
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Let L = { l1, l2,…,lm,} denote the differential trace of an m-
frame sequence. As an example, the differential trace for 
the “foreman” sequence is shown in Fig.3, for d=2 and 
d=4 cases. Based on Fig. 3 and additional data, it appears 
that the differential trace is relatively invariant with 
respect to the dimensionality of PCA for d > 2.  This is 
because most energy is captured by the first 2 dimensions. 

Let us denote by ( , )a bd L L  the distance between two 

differential traces La and Lb of length m.  For example, if 
the L2 norm is used, is computed as,  
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Figure 3. “foreman” seq trace step length plots 

The differential trace can now be used as a matching 
metric for retrieval.  That is, for an m-frame querying 
video clip, with differential trace Lq, its best match is 
found in a database according to  
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trace of a database sequence of length m starting at time 
instance k. Compared with the retrieval method in (3), this 
differential trace based method places more emphasis on 
the temporal behavior of the sequence, than the location 
and geometry. It seems to be more appropriate to use this 
method when the query clips are long.    

The search performance can be further improved by 
efficient indexing. Because of the relatively low 
dimensionality of the feature space, an R* tree [13] like 
indexing structure can be employed to store the features 
for each video shot.  

 
3. IMPLEMENTATION CONSIDERATIONS  

 
As mentioned in section 1, the querying video clip very 
often is of different spatial and temporal resolution than 
the clips in the database.  To address the spatial resolution 
incompatibility (plus additive noise and quantization error 
issues) we scale the frames to a common spatial resolution 
by low-pass filtering and down-sampling both the 
querying and the database sequences. Typical common 
resolutions used are 8x6, 12x9 and 16x12. This scaling 
process can also improve the accuracy of the PCA process 
(2) with limited samples, since it reduced the data space 
dimension.  

The differences in temporal resolution between 
querying and database sequences can be addressed by pre-
computing or computing on the fly the traces and 
differential traces of the sequences in the database at 
different frame rates, like for example, 10fps, 15fps, 
20fps, 25fps and 30fps. For a given frame rate in the 
query clip, we just match the database features that have 
the same timestamp offset with the querying clips.  

A related issue to the differences in temporal resolution 
is when there are random frame drops, due, for example, 
to transmission errors. Assuming the frame timestamp is 
present, then for the matching method in (3), we simply 

ignore the frames that are missing. The distance is now 
defined as 
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where hj is zero if frame j is missing in the query clip, 
otherwise hj=1.    
   For the differential trace based matching, the missing 
frames need to be interpolated. We perform linear 
interpolation in the PC space. Although more 
sophisticated interpolation methods could be employed, 
we experimentally found out that linear interpolation is 
adequate for retrieval purposes.  

 
4. SIMULATION RESULTS 

 
In our simulations the PCA is done based on 3200 

randomly selected video clips from various collections. 
We experimented with scales 4x3, 8x6, 16x12, 32x24, 
and found out that the scale of 8x6 offers the best 
compromise between energy compaction and amount of 
information loss.  

To demonstrate the effectiveness of the proposed 
method, we set up a video collection of 3000 frames from 
50 different clips. We then set up 2500 positive queries 
with different clip length and locations from the 
collections. We also set up 500 negative queries from 
clips that do not exist in collections.  

When there is no noise and no random frame drops, the 
retrieval achieves 100% accuracy for all 2500 positive 
queries and 500 negative queries, with query lengths of 8, 
12, 16 and 20 frames for both geometry matching and 
differential trace matching methods. 

Selected noise free retrieval results are illustrated in 
Fig. 5a. We have four 20-frame queries created from 
“tennis”, “flower”, “susie” and “foreman” sequences. 
Among them only the “foreman” query does not exist in 
the collections.  
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(a) Noise-free queries 
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(b) Noisy queries 

Figure 4. Retrieval results 
The upper plot is the distance dQ

k in (3) for all four 
cases. From this we compute the relevance values, i.e., the 
distance values in (3) normalized to [0,1] by an 
exponential function exp(-adQ

k) as shown in the lower 
plot, with a=0.05. A threshold of 0.9 is applied to the 
relevance values to determine if the query clip exists in 
the collections. In this case, we correctly determined that 
queries “tennis”, “flower”, and “susie” exist and found 
their correct locations. The threshold of 0.9 eliminated 
several false detections including the “foreman” query .  

When the spatial noise is present, the retrieval 
performance is degraded, as expected. The retrieval error 
rates in percentile are summarized in Table 1. The 
columns are the different query lengths, while the rows are 
the different levels of noise added in PSNR. Notice that 
the retrieval accuracy holds well for queries with number 
of frames >15 and  PSNR  >24dB.  

% 10 15 20 25 30 35 40 
36dB 0 0 0 0 0 0 0 
32dB 4 2 2 2 2 2 0 
28dB 6 2 4 0 0 0 0 
24dB 10 4 4 2 2 2 2 
20dB 14 14 10 8 8 4 4 

Table 1. Noisy retrieval error rates    
The effect of random frame drops on the retrieval 
performance is negligible for query clips with length 
greater than 30 and drop rate below 30%. This is the 
expected operating range for clip retrieval.  

Sequence PSNR Drop Rate     Relevance 
“tennis” 36 dB 12.5% 0.994 
“flower” 28 dB 25% 0.987 
“susie” 20 dB 50% 0.958 
“foreman” 36 dB 0% 0.068 

Table 2. Noisy retrieval results  
Selected retrieval results with noise and frame drops 

are shown in Fig 5.b. The amount of noise and frame 
drops are summarized in Table 2.   
 

5. CONCLUSION AND FUTURE WORKS 
 

In this paper we presented a new content-based video 
shot retrieval solution. The video frames are reduced to 
points in low (2~4) dimensional space and the retrieval is 
based on matching the location and geometry of the 
sequence trace.  Our solution is fast and robust to noise, 
distortions and differences in spatial and temporal 
resolutions between querying and database sequences.  
The low dimensionality of the proposed feature also 
makes efficient indexing possible. The proposed solution 
can be useful in a wide range of practical applications that 
require real time response to video queries.  
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