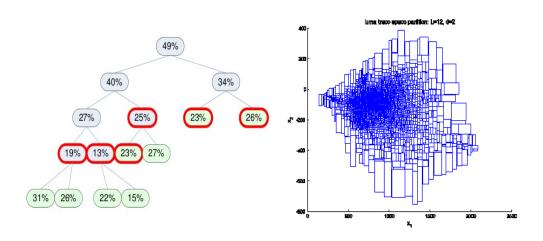
Subspace Indexing on Grassmannian Manifold for Large Scale Visual Analytics

Zhu Li Media Networking Lab FutureWei (Huawei) Technology, USA Bridgewater, NJ



Outline

· Short Self-Intro

- Large Scale Visual Analytics
 - Applications
 - Key Technical Challenges
 - Query-Driven Local Subspaces
 - Indexed Subspaces on Grassmannian Manifold
 - Simulation
 - Conclusion & Future Work

About Me: http://users.eecs.northwestern.edu/~zli

Bio:

- Media Analytics Group Lead, Core Networks R&D, *Huawei Tech* USA, 2010.10~ to date
- Asst Prof, HK Polytechnic Univ, 2008.04~2010.09
- Senior, Senior Staff, and then Principal Staff Researcher, Multimedia Research Lab, *Motorola Labs*, USA, 2000-08.
- Software Engineer, CDMA Network Software Group, Motorola CIG, USA, 1998-2000.
- PhD in Electrical & Computer Engineering, Northwestern University, USA, 2004.

Research Interests:

- Large scale audio/visual data analysis, storage and indexing, search and mining.
- Video Adaptation, Image/Video QoE Modelling, Very Low Bit Rate Video
- Optimization and distributed computing for Content Delivery Networks (CDN).

The Large Scale Visual Analytics Problems

Face Recognition

- Identify face from 7 million HK ID face data set

Image Search

- Find out the category of given images

The Problem

Identification

- Given a set of training image data and label $\{f_k, I_k\}$, and a probe p, identify the unique label associated with p.

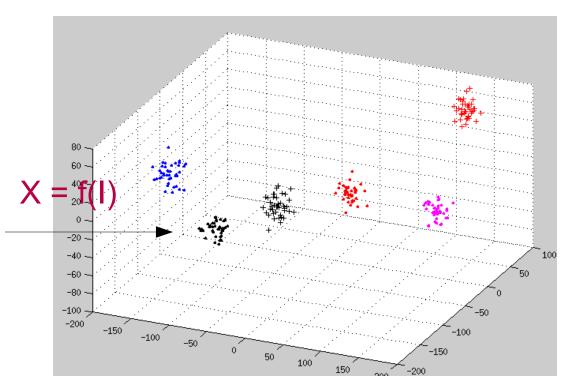
Why is it difficult ?

- When the number of unique labels, m, and training data n are large... X = f(1) $X = \frac{1}{2.85} = \frac{1}{2.95} = \frac{1}{3} = \frac{1$

Appearance Modeling

Find a "good" f()

 Such that after projecting the appearance onto the subspace, the data points belong to different classes are easily separable



Global Linear LPP Models: f(X) = AX

LPP (Xiaofei He, et.al):

- Minimizing weighted distance (a graph) after projection

$$\min_{A} \sum_{j,k} w_{j,k} ||Ax_j - Ax_k||^2$$

-Solve by:

$$XLX^TA = \lambda XDX^TA, s.t.L = D - W, D_{k,k} = \sum_j w_{j,k}$$

- Embed a graph with pruned edges

$$\begin{cases} w_{j,k} = e^{-\alpha||x_j - x_k||}, & \text{if } ||x_j - x_k|| \le \epsilon \\ 0, & else \end{cases}$$

Global Linear LDA Models: f(X)=AX

· LDA:

- Maximizing inter-class scatter over intra

$$A = \arg \max_{A} |A^{T} S_{B} A|, s.t. |A^{T} S_{W} A| = 1$$

$$s_{B} = \sum_{k=1}^{n} n_{k} (\overline{X}_{k} - \overline{X}) (\overline{X}_{k} - \overline{X})^{T}$$

$$s_{W} = \sum_{k=1}^{n} \sum_{P(X_{j}) = k} (X_{j} - \overline{X}_{k}) (X_{j} - \overline{X}_{k})^{T}$$

-Solve by:

$$S_B A = \lambda S_W A$$

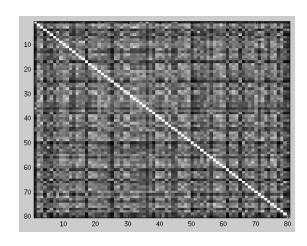
- Embedding a graph with no edges among inter-class points

$$\begin{cases} w_{j,k} = \frac{1}{m_i}, & \text{if } x_j, x_k \in \text{class i} \\ 0, & else \end{cases}$$

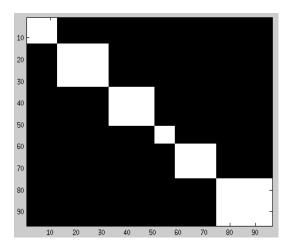
Graph Embedding Interpretation

· Find the best embedding

- LDA:
 - » preserve the affinity matrix that has zero affinity for data points pairs that are not belonging to the same class
- LPP:
 - » Have more flexibility in modeling affinity w_{ik} .



LPP Affinity



LDA Affinity

Non-Linear Models

Appearance manifolds are non-linear in nature

- Global linear models will suffer

Non-Linear Solutions:

- Kernel method: e.g K-PCA, K-LDA, K-LPP, SVM
 - » Evaluate inner product $\langle x_j, x_k \rangle$ with a kernel function $k(x_j, x_k)$, which if satisfy the conditions in Mercer's Theorem, implicitly maps data via a non-linear function.
 - » Typically involves a QP problem with a Hessian of size $n \times n$, when n is large, not solvable.
- LLE /Graph Laplacian:
 - » An algorithm that maps input data $\{x_k\}$ to $\{y_k\}$ that tries to preserve an embedded graph structure among data points.
 - » The mapping is data dependent and has difficulty handling new data outside the training set, e.g., a new query point

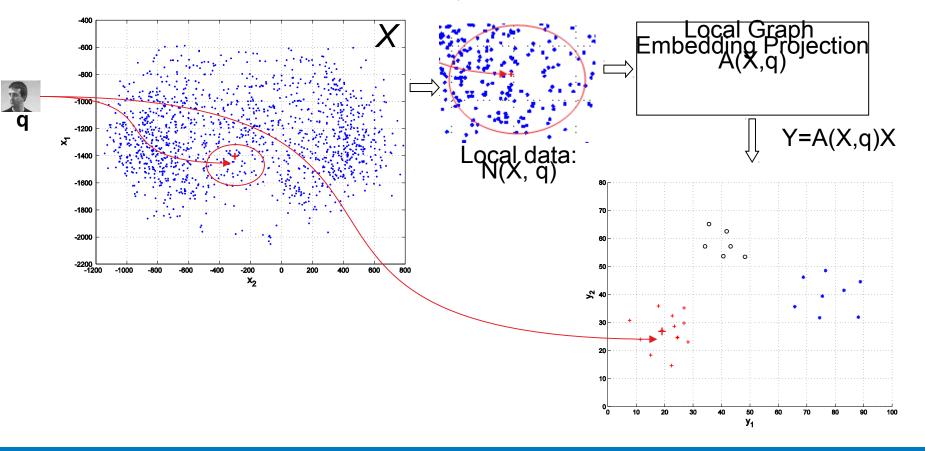
How to compromise ?

Piece-wise Linear Approximation

Piece-wise Linear: Query Driven

Query-Driven Piece-wise Linear Model

- No pre-determined structure on the training data
- Local neighborhood data patch identified from query point q,
- Local model built with local data, A(X, q)



Local Model Discriminating Power Criteria

- What is a good N(X, q)?
- Model power:
 - A: Dxd, D=wxh
- · Data Complexity: Graph Embedding Interpretation:
 - -PCA: a fully connected graph
 - -LDA: a graph weth endiges pruned for intra-class points
 - -LPP/LEA; k-nn/ pruned graph
 - -as number of edges/relationship among data points

$$|E(X)| = \begin{cases} \binom{n}{2}, & PCA \\ \sum_{j=1}^{m} \binom{n_{j}}{2}, & s.t. \sum_{j=1}^{m} n_{j} = n, & LDA \\ nK, & LPP/LEA \end{cases}$$

What is a good compromise of data complexity and model power?

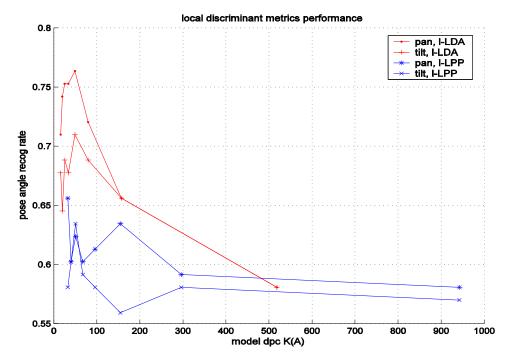
Discriminant Power Co-efficient (DPC)

- Given the model power constraint:
 - w, h, appearance model luminance field size
 - -d, dimensionality of A(x, q)
- How to identify a neighborhood to achieve a good balance of data complexity and model power?

- DPC,
$$K(A(X,q)) =$$

$$\frac{w \times h \times d}{|E(X_{(q)})|}$$

 Need to balance DPC with info loss in node/edge pruning



Head Pose Recognition Performance

Recognition rate is improved:

- W=18, h=18, K=30

Table 1. Pose estimation error rates

	Pan	Tilt	Pan	Tilt
	(d=16)	(d=16)	(d=32)	(d=32)
PCA	33.5	44.3	26.9	35.1
LDA	30.1	33.3	25.8	26.9
LPP ⁽¹⁾	30.1	31.2	24.7	<u>22.6</u>
LPP ⁽²⁾	67.7	76.3	63.4	61.3
l-PCA	25.2	37.8	24.5	37.6
l-LPP	33.9	44.5	29.2	40.2
l-LDA	20.4	<u>30.7</u>	<u>19.1</u>	30.7

And the cost in computation is rather modest

- Matlab code, online local model A(X,q) learning and NN classification:

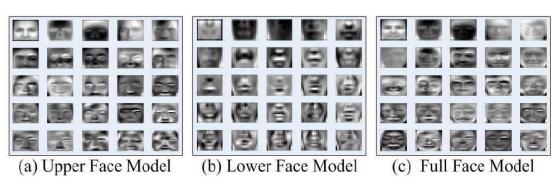
Table 2. Computational complexity (sec) per recognition

	K=30	K=60	K=90
l-LDA, d=16	0.105	0.132	0.121
<i>l</i> -LDA, <i>d</i> =32	0.145	0.146	0.176
<i>l</i> -LPP, <i>d</i> =16	0.094	0.122	0.104
<i>l</i> -LPP, <i>d</i> =32	0.132	0.116	0.144

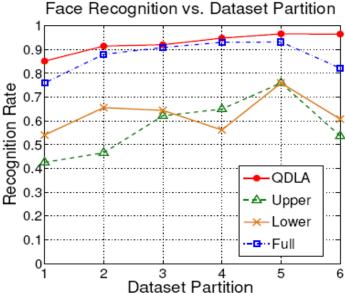
Face Recognition Performance

Local model combination in face recognition

- Query point drives 3 local models, $A_1(X, q)$, $A_2(X, q)$, $A_3(X, q)$
- Local model classification error estimation,
- Combining the results weighted voting



Multiple face models with different area and scale:
(a) Upper face model (18 × 16).
(b) Lower face model (14 × 18).
(c) Full face model (21 × 28).



ORL data set test: leave 1,2,3 out:

Query Driven Solution Problems

Optimality of the Local Model is not established

- Parameters $\epsilon-NN$ k-NN, and heat kernel size determines the number of non-zero affinity edges in local graph
- The choice is based on DPC, which is still heuristic

Computational Complexity

- Need to compute a nearest neighbor set and its affinity, as well as the local embedding model at run time.
- Need extra storage to store all training data, because the local NN data patch is generated at run time, as function of the query point.
- Indexing/Hashing scheme to support efficient access of training data.

Stiefel and Grassmannian Manifolds

· Stiefel manifolds

– All possible p-dimensional subspaces in d-dimensional space, A_{pxd} , spans Stiefel Manifold, S(p, d) in R^{dxp} , d > p.

$$\mathcal{S}(p,d) = \left\{ A \in R^{d \times p}, s.t.A'A = I_d \right\}$$

- The DoF is not pxd, rather: pd - (1/2)d(d+1)

· Grassmannian manifolds

- -G(p, d) identifies p-dimensional subspaces in d-dimensional space
- It is stiefel manifolds but with an equivalence constraint:
 - \rightarrow A1 = A2, if span(A1) = span(A2), or
 - » Exist othonormal dxd matrix R_d , $A1=A2R_d$.
- The DoF: $pd-d^2$. G(p, d) is the quotient space of S(p, d)/O(d)

Subspaces on Grassmannian Manifold

The BEST subspace for identification?

- All possible p-dimensional subspaces in d-dimensional space, A_{pxd} , spans Grassmannian Manifold, G(p, d) in R^{dxp} , d > p.
 - » eg., G(2, 3), biz card example
- The DoF of A is not pxd, as for,

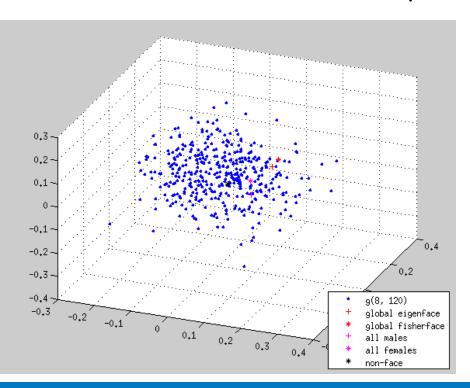
$$< a_j, a_k > = 0, < a_j, a_j > = 1, \text{ for } A^T = [a_1, a_2, ..., a_p],$$

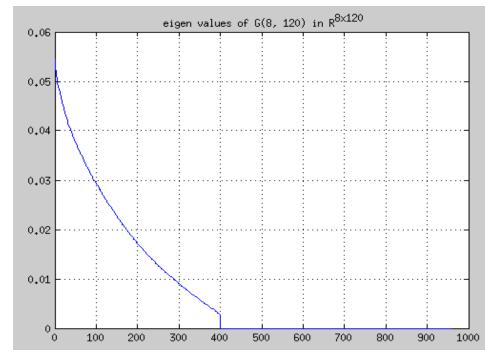
- Face Appearance model, typically, d=400~500, p=10~30.
- The BEST subspace A^* is somewhere on G(p, d), therefore it is important to figure out a way to characterize the similarity between subspaces in G(p, d), and give a structure of all subspace w.r.t the task of identification.

Grassmannian Manifold Visualization

· Consider a typical appearance modeling

- Image size 12x10 pel, appearance space dimension d=120, model dimension p=8.
- 3D visualization of all S(8, 120) and their covariance eigenvalues"
- Grassmann Manifolds are quotient space S(8, 120)/O(8)





Principle Angles

The principle angles between two subspaces:

- For Y_1 , and Y_2 in G(p, d), their principle angles are defined as

$$cos(\theta_k) = \max_{u_k \in span(A_1), v_k \in span(A_2)} u'_k v_k \quad span(A_1) \quad span(A_2)$$

$$s.t. \begin{cases} u'_k u_k = 1, v'_k v_k = 1 \\ u'_k u_i = 0, v'_k v_i = 0 \end{cases}$$

- Where, $\{u_k\}$ and $\{v_k\}$ are called principle dimensions for span (A_1) and span (A_2) .

Principle Angles Computing

The principle angles between two subspaces:

- For A_1 , and A_2 in G(p, d), their principle dimensions and angles are computed by SVD:

$$[U, S, V] = SVD(A_1^T A_2)$$

- Where, $U=[u_1, u_2, ..., u_p]$, and $V=[v_1, v_2, ..., v_p]$ are the principle angles.
- The diagonal of S, $[s_1, s_2, ..., s_p]$ are the cosine of principle angles,

$$s_k = cos(\theta_k)$$

Subspace Distance on Grassmannian Manifold

Subspace distances [J. Hamm's Phd thesis]

- Projection Distance

Def:

$$d_{prj}(A_1, A_2) = (\sum_{i=1}^{p} \sin^2 \theta_i)^{1/2}$$

Computing:

$$d_{prj}^{2}(A_{1}, A_{2}) = p - \sum_{i=1}^{p} \cos^{2}\theta_{i} = m - ||A'_{1}A_{2}||_{F}^{2}$$

- Binet-Cauchy Distance

Def:

$$d_{bc}(A_1, A_2) = (1 - \prod_i \cos^2 \theta_i)^{1/2}$$

Computing:

$$d_{bc}^{2}(A_{1}, A_{2}) = 1 - \prod_{i} \cos^{2}\theta_{i} = 1 - \det^{2}(A'_{1}A_{2})$$

Subspace Distance on Grassmannian Manifold

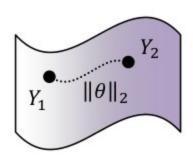
Subspace distances

- Arc Distance

Def:

$$d_{arc}(A_1, A_2) = (\sum_i \theta_i^2)^{1/2}$$

Also known as geodesic distance. It traverse the Grassmannian surface, and two subspace collapse into one, when all principle angles becomes zero.



Weighted Merging of two subspaces

· What if we need merge two subspaces?

- Motivation:
 - » say if subspace A_1 is best for data set S_1 , and subspace A_2 is best for data set S_2 , can we find a subspace A_3 that is good for both?
- When two subspaces are sufficiently close on Grassmannian manifold, we can approximate this by, $A_3 = [t_1, t_2,]$

$$t_k = \frac{n_1}{n_1 + n_2} u_k + \frac{n_2}{n_1 + n_2} v_k$$

 Y_1 $\|\theta\|_2$

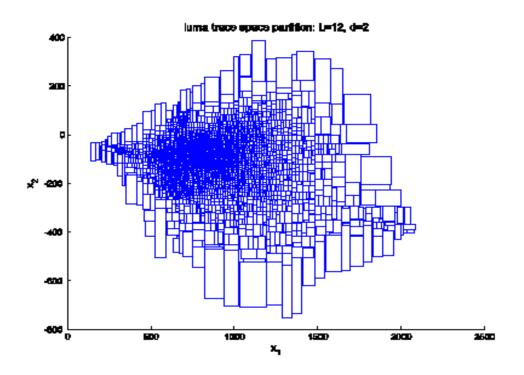
Where $n_{1,2}$ are the size of data set $S_{1,2}$

 The new sets of basis may not be orthogonal. Can be corrected by Gram-Schmidt orthogonalization.

Judicious Local Models

Data Space Partition

- Partition the training data set by kd-tree
- For the kd-tree height of h, we have 2h local data patch as leaf node
- For each leaf node data patch $_k$, build a local LDA/LPP/PCA model A_k :



Subspace Index

Organizing the Subspace Models

- For data index of height of h, we have 2^h local models A_k : $k=1...2^h$.
- For a given probe data point, find its leaf node and associated local model, do identification. Is this good?
- No, because
 - » Could be over-fitting, not sure what is the right size local data patch.
 - » Improper neighborhood, probe data points falling on the boundary of leaf node:
- Build local models at each subtree?
 - » No, the data partition does not reflect the smooth change of the local models.

Model Hierarchical Tree (MHT)

Indexing Subspaces on Grassmannian manifold

- It is a VQ like process.
- Start with a data partition kd-tree, their leaf nodes and associated subspaces $\{A_k\}$, k=1..2^h

- Repeat

- » Find A_i and A_j , if $d_{arc}(A_i, A_j)$ is the smallest among all, and the associated data patch are adjacent in the data space.
- » Delete A_i and A_j , replace with merged new subspace, and update associated data patch leaf nodes set.
- » Compute the empirical identification accuracy for the merged subspace
- » Add parent pointer to the merged new subspace for A_i and A_j .
- » Stop if only 1 subspace left.

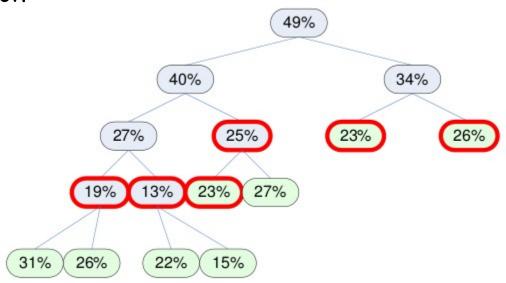
- Benefit:

» avoid forced merging of subspace models at data patches that are very different, though adjacent.

MHT Based Identification

MHT operation

- Organize the leaf nodes models into a new hierarchy, with new models and associated accuracy (error rate) estimation
- When a probe point comes, first identify its leaf nodes from the data partition tree.
- Then traverse the MHT from leaf nodes up, until it hits the root, which is the global model, and choose the best model along the path for identification

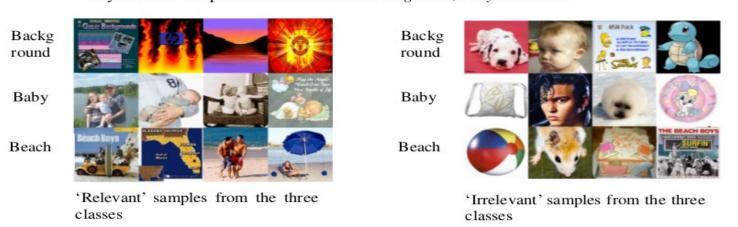


Simulation

The data set

 MSRA Multimedia data set, 65k images with class and relevance labels:

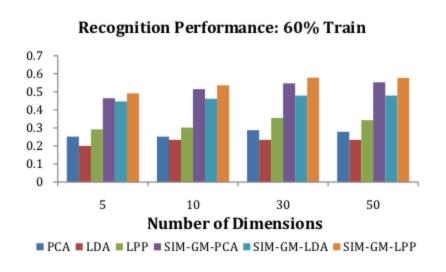
'Very relevant' samples from three classes: background, baby and beach

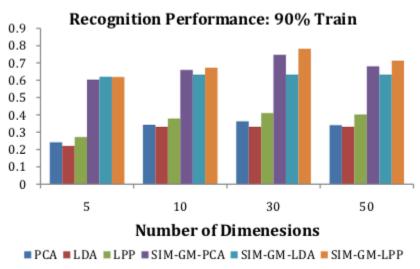


Simulation

Data selection and features

- Selected 12 classes with 11k images and use the original combined 889d features from color, shape and texture
- Performance compared with PCA, LDA and LPP modeling

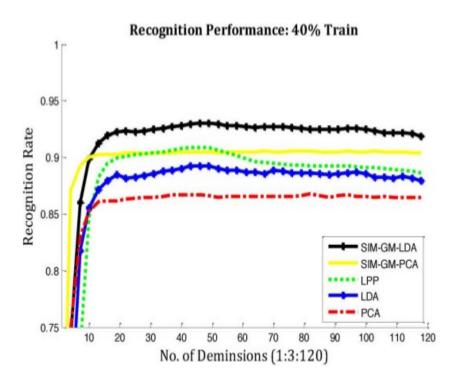


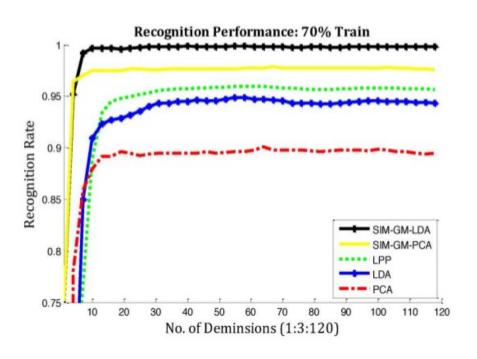


Simulation

Face data set

- Mixed data set of 242 individuals, and 4840 face images
- Performance compared with PCA, LDA and LPP modeling





Summary

Contributions

- The work is a piece-wise linear approximation of non-linear appearance manifold
- Query driven provide suboptimal performance but still better than a global model.
- It offers best local models for identification by deriving the subspace structure/index with metrics on Grassmannian manifold
- Guaranteed performance gains, and the root model degenerates into the global linear model

Limitations

- Do not have a continuous characterization of Identification error function on the Grassmann manifold.
- Still heavy on storage cost
- Need to get more large scale data set to test it.

Summary

Future work

- Grassmann Hashing Penalize projection selection with Grassmannian metric, offers performance gains over LSH and spectral hashing.
- Gradient and Newtonian optimization on Grassmannian manifold.

Related papers

- X. Wang, Z. Li, and D. Tao, "Subspace Indexing on Grassmann Manifold for Image Search", IEEE Trans. on Image Processing, vol. 20(9), 2011.
- X. Wang, Z. Li, L. Zhang, and J. Yuan, "Grassmann Hashing for Approx Nearest Neighbour Search in High Dimensional Space", Proc. of IEEE Int'l Conf on Multimedia & Expo (ICME), Barcelona, Spain, 2011.
- H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, "Complementary Hashing for Approximate Nearest Neighbor Search", IEEE Int'l Conference on Computer Vision (ICCV), Barcelona, Spain, 2011.
- Yun Fu, Z. Li, J. Yuan, Ying Wu, and Thomas S. Huang, "Locality vs. Globality: Query-Driven Localized Linear Models for Facial Image Computing," IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT), vol. 18(12), pp. 1741-1752, December, 2008.

Acknowledgement

Grants:

- The work is partially supported by;
 - » a Hong Kong RGC Grant, and
 - » Microsoft Research Asia faculty grant.

Collaborators:

» Xinchao Wang, valedictorian of Dept of COMP, HK Polytechnic University, class 2010, now PhD at EPFL

» Dacheng Tao, Professor at Univ of Technology of Sydney.

• Questions please.....

Thanks!