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Abstract—The need for video summarization originates pri-
marily from a viewing time constraint. A shorter version of the
original video sequence is desirable in a number of applications.
Clearly, a shorter version is also necessary in applications where
storage, communication bandwidth, and/or power are limited.
The summarization process inevitably introduces distortion. The
amount of summarization distortion is related to its “conciseness,”
or the number of frames available in the summary. If there are

frames in the original sequence and frames in the summary,
we define the summarization rate as , to characterize this
“conciseness.” We also develop a new summarization distortion
metric and formulate the summarization problem as a rate-distor-
tion optimization problem. Optimal algorithms based on dynamic
programming are presented and compared experimentally with
heuristic algorithms. Practical constraints, like the maximum
number of frames that can be skipped, are also considered in the
formulation and solution of the problem.

Index Terms—Dynamic programming (DP), rate-distortion op-
timization, video analysis, video summarization.

I. INTRODUCTION

THE DEMAND for video summarization originates from
viewing time constraints as well as communication and

storage limitations, in security, military, and entertainment ap-
plications. For example, in an entertainment application, a user
may want to browse summaries of his/her personal video taken
during several trips. In a security application, a supervisor might
want to see a 2-min summary of what happened at airport gate
B20, in the last 10 min. In a military situation, a soldier may
need to communicate tactical information utilizing video over a
bandwidth-limited wireless channel, with a battery energy lim-
ited transmitter. Instead of sending all frames with severe frame
SNR distortion, a better option is to transmit a subset of the
frames with higher SNR quality. A video summary generator
that can “optimally” select frames based on an optimality crite-
rion is essential for these applications.

The solution to this problem is typically based on a two step
approach: first identifying video shots from the video sequence
[7], [12], [15], [17] and then selecting “key frames” according
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to some criterion from each video shot. A comprehensive re-
view of past video summarization results can be found in the
introduction sections of [6] and [24], and specific examples can
be found in [1]–[5], [7], [21], and [25]. Some of the main ideas
and results among the previously published results are briefly
discussed next.

Zhuang et al. [25] proposed an unsupervised clustering
method. A video sequence is segmented into video shots by
clustering based on color histogram features in the HSV color
space. For each video shot, the frame closest to the cluster
centroid is chosen as the key frame for the video shot. Notice
that only one frame per shot is selected into the video summary,
regardless of the duration or activity of the video shot.

Hanjalic et al. [6] developed a similar approach by dividing
the sequence into a number of clusters, and finding the optimal
clustering by cluster-validity analysis. Each cluster is then rep-
resented in the video summary by a key frame. The key idea in
this paper is to remove the visual redundancy among frames.

DeMenthon et al. [1] proposed an interesting alternative
based on curve simplification. A video sequence is viewed as
a curve in a high-dimensional space, and a video summary is
represented by the set of control points on that curve that meets
certain constraints and best represent the curve.

Doulamis et al. [2] also developed a two-step approach ac-
cording to which the sequence is first segmented into shots, or
scenes, and within each shot, frames are selected to minimize
the cross correlation among frames’ features.

Sundaram and Chang [21] use Kolmogorov complexity as
a measure of video shot complexity, and compute the video
summary according to both video shot complexity and addi-
tional semantic information under a constrained optimization
formulation.

For the approaches mentioned above, various visual features
and their statistics have to be computed to identify video shot
boundaries and determine key frames by thresholding and
clustering. In general, such techniques require two passes and
are rather computationally involved. They do not have smooth
distortion degradation within a video shot and are heuristic in
nature.

Since a video summary inevitably introduces distortions at
the play back time and the amount of distortion is related to the
“conciseness” of the summary, we formulate the summarization
problem as a temporal rate-distortion optimization problem. The
temporal rate is the ratio of the number of frames selected in the
video summary versus that in the original sequence. It character-
izes the “conciseness” of the video summary. The summariza-
tion distortion is introduced by missing frames. Clearly, if all
frames are included into the summary, there will be no summa-
rization distortion, and the amount of summarization distortion
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is determined by the number of missing frames and their loca-
tions in the original sequence. We introduce a new frame dis-
tortion metric between different frames, and the summarization
temporal distortion is then modeled as the average, or equiva-
lently the total frame distortion between the original and recon-
structed sequences. Clearly, if we can afford more frames in the
summary, the summarization temporal rate will be higher and
the summarization distortion will be lower.

For a given temporal rate constraint, we formulate the optimal
video summary problem as finding a predetermined number
of frames that minimize the temporal distortion. On the other
hand, for a given temporal distortion constraint, we formulate
the problem as finding the smallest number of frames that sat-
isfy the distortion constraint.

The paper is organized as follows. In Section II, we present
the formal definitions and the rate-distortion optimization for-
mulations of the optimal video summary generation problem. In
Section III, we present our optimal video summary solution to
the temporal distortion minimization formulation. In Section IV,
we discuss the optimal video summary solution for the temporal
rate minimization formulation. In Section V, we present and dis-
cuss some of our experimental results for various algorithms. In
Section VI, we draw conclusions and discuss future research
directions.

II. RATE-DISTORTION OPTIMIZATION: DEFINITIONS

AND FORMULATIONS

A video summary is a shorter version of the original video
sequence. Video summary frames are selected from the orig-
inal video sequence and form a subset of it. The reconstructed
video sequence is generated from the video summary by sub-
stituting the missing frames by the previous frames in the sum-
mary (zero-order hold). Clearly, if we can afford more frames
in the video summary, the distortion introduced by the missing
frames will be less severe. On the other hand, more frames in the
summary take longer time to view, require more bandwidth to
communicate and more memory to store them. To express this
trade off between the quality of the reconstructed sequences and
the number of frames in the summary, we introduce certain def-
initions and assumptions for our formulations.

A. Temporal Rate and Distortion

Let a video sequence of frames be denoted by
. Let its video summary of frames

be , in which denotes the th frame
selected into the summary . The summary is completely
determined by the frame selection process ,
which has an implicit constraint that .

The reconstructed sequence from
the summary is obtained by substituting missing frames with
the most recent frame that belongs to the summary , that is

(1)

Let the distortion between two frames and be denoted by
. Clearly, there are various ways to define the frame

distortion metric (an example will be presented in

Section V). The optimal solutions developed in this paper are
independent from the definition of this frame metric. To charac-
terize the sequence level summarization distortion, we use the
average frame distortion between the original sequence and the
reconstruction, given by the temporal distortion as

(2)

The temporal rate of the summarization process is defined as
the ratio of the number of frames selected into the video sum-
mary , over the total number of frames, in the original se-
quence , that is

(3)

Notice that the temporal rate is in range (0, 1]. In
our formulation, we also assume that the first frame of the
sequence is always selected into the summary, i.e., .
Thus, the rate can only take values from the discrete set

.
For example, for the video sequence

and its video summary , the reconstructed se-
quence is given by , the temporal rate
is equal to , and the temporal distortion com-
puted from (2) is equal to

.

B. Rate-Distortion Optimization Formulations

Video summarization can be viewed as a lossy temporal com-
pression process and a rate-distortion framework [18]–[20] is
well suited for solving this problem. Using the definitions intro-
duced in the previous section, we now formulate the video sum-
marization problem as a temporal rate-distortion optimization
problem. If a temporal rate constraint is given, resulting
from viewing time, or bandwidth and storage considerations, the
optimal video summary is the one that minimizes the sequence
temporal distortion. Thus, we have the following.

Formulation I: Minimum distortion optimal summarization
(MDOS)

(4)

where and are defined by (2) and (3), respec-
tively. The optimization is over all possible video summary
frame selections , that contain no more than

frames. We call this an ( ) summarization
problem.

In addition to the rate constraint, we may also impose a con-
straint on the maximum number of frames, , that can be
skipped between successive frames in the summary . Such a
constraint imposes a form of temporal smoothness and can be a
useful feature in various applications, such as surveillance. We
call this the ( ) summarization problem, and its
MDOS formulation can be written as

(5)
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Alternatively, we can formulate the optimal summarization
problem as a rate-minimization problem. For a given constraint
on the maximum distortion , the optimal summary is the
one that satisfies this distortion constraint and contains the min-
imum number of frames. Thus, we have the following.

Formulation II: Minimum rate optimal summarization
(MROS)

(6)

The optimization is over all possible frame selections
and the summary length . We may also

impose a skip constraint on the MROS formulation, as
given by

(7)

The solutions to the MDOS and MROS formulations will be
given in Sections III and IV, respectively.

III. RATE-DISTORTION OPTIMIZATION: DEFINITIONS

AND FORMULATIONS

For the MDOS formulation in (4), if there are frames in
the original sequence, and can only have frames in the sum-
mary, there are feasible
solutions, assuming the first frame is always in the summary.
When and are large, the computational cost in exhaustively
evaluating all these solutions becomes prohibitive. To have an
intuitive understanding of the problem, we discuss a heuristic
greedy algorithm first before presenting the optimal solution.

A. Greedy Algorithm

Let us first consider a rather intuitive greedy algorithm. For
the given rate constraint of allowable frames , the algorithm
selects the first frame into the summary and computes the frame
distortions. It then identifies the current maximum frame distor-
tion index as and selects frame into
the summary. The process is repeated until the number of frames
in the summary reaches . The resulting solution is suboptimal.
The frames selected into the summary tend to cluster around
the high-activity regions where the frame-by-frame distortion

is high. The video summary generated is “choppy”
when viewed. Clearly, we need to better understand the struc-
ture of the problem and search for an optimal solution.

B. Distortion State Definition and Recursion

We observe that the MDOS problem has a certain built-in
structure and can be solved in stages. For a given current state
of the problem, future solutions are independent from past so-
lution. Exploiting this structure, a dynamic programming (DP)
solution [19], [20] is developed next. An initial version is re-
ported in [14].

Let the distortion state be the minimum total distortion
incurred by a summary that has frames and ended with frame

( ), that is

(8)
Notice that and , and they are, therefore,

removed from the optimization. Since
, and , (8) can be rewritten as

(9)

in which the second part of the distortion depends on the last
summary frame only, and it is removed from the minimiza-
tion operation. By adding and subtracting the same term in (9),
we have (10), shown at the bottom of the page.

We now observe that since , we have

(11)

Therefore, the distortion state can be broken into two parts
as in (12), shown at the bottom of the next page, where the first
part represents the problem of minimizing the distortion for the
summaries with frames and ending with frame , and
the second part represents the “edge cost” of the distortion re-
duction, if frame is selected into the summary of frames
ending with frame . Therefore, we have (13), shown at the
bottom of the next page.

The relation in (13) establishes the distortion state recursion
we need for a DP solution. The back pointer saves the optimal

(10)
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incoming node information from the previous stage. For state
, it is saved as

(14)

Since we assume that the first (0th) frame is always selected
into the summary, is set to 0, and the initial state is given
as

(15)

Now, we can compute the minimum distortion for any
video summary of frames and ending with frame by the
recursion in (13) with the initial state given by (15). This leads
to the optimal DP solution of the MDOS problem.

C. DP Solution for the Summarization Problem

Considering the summarization problem case where
the rate constraint is given as exactly frames allowed for the
summary out of frames in the original sequence, the optimal
solution has the minimum distortion of

(16)

where is chosen from all feasible frames for the th summary
frame. The optimal summary frame selection
is, therefore, found by backtracking via the back pointers ,
similar to the Viterbi algorithm [23]

(17)

As an illustrative example, the distortion state trellis for
and is shown in Fig. 1. Each node represents a distortion
state , and each edge represents the distortion reduction
if frame is selected into the summary which ended with frame

. Note that the trellis topology is completely determined by
and . According to Fig. 1, node is not included, since

; therefore, (the last frame in the sequence) cannot be
the second frame in the summary.

Once the distortion state trellis and back pointers are com-
puted recursively according to (13)–(15), the optimal frame se-
lection can be found by (16) and (17). The number of nodes at
every epoch , or the depth of the trellis, is , and
we, therefore, have a total of nodes in
the trellis that need to be evaluated.

D. Skip Constraint

The frame skip constraint in summarization is a desirable
feature. It limits the maximum number of frames that can be
skipped between any two summary frames and can be used
to ensure certain degree of temporal smoothness in the video
summary playback. When the maximum frame skip constraint

is imposed in the summary as in (5), the DP trellis
topology is affected. As is becoming smaller, the number
of nodes and edges is also decreasing, which results in lower
computational complexity. The resulting solution is optimal
subject to the skip constraint, but, clearly, the resulting distor-
tion is larger (at best equal) to the distortion resulting from the
MDOS formulation without the skip constraint in (4).

The new DP trellis with the skip constraint is denoted as an
( ) trellis and is completely determined by these
three parameters. From each node, the feasible out-going edges
are limited by in addition to the trellis constraint.
The values of are in the range [1, ]. Example
trellises for , are shown in Fig. 2.

(12)

(13)
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Fig. 1. DP trellis example for n = 5,m = 3.

When the maximum skip constraint is not active, or equiva-
lently when , there are edges
from stage 0 to stage 1, and edges
for the remaining stages. The resulting total number of edges is,
therefore, given by

(18)
or, equivalently, with rate , we have

(19)

For a given , the computational complexity for the evalua-
tion of edges grows with the problem size as .
is shown in Fig. 3(a) for various values of and . The effect
of the skip constraint on the number of edge evaluation for the
MDOS problems for a fixed rate and variable size
is shown in Fig. 3(b). Notice that for large and small values
of the maximum skip constraint, the reduction in the computa-
tional complexity becomes significant.

For a given rate , the implicit maximum skip constraint is
, which is imposed by the topology of a full

DP trellis. On the other hand, if is smaller than
, the DP trellis will not be able to consider all frames

into the optimization. Therefore, for to be meaningful,
it should belong to the range [ , ]. This can be a
rather wide range depending on the values of and . Although
no specific guidelines are provided for the choice of , its
value in general should be closer to rather than ,
in order to address both benefits of reduced computational load
and smoothness in the resulting summary.

IV. SOLUTION OF THE MROS FORMULATION

For the MROS formulation (6), we minimize the temporal
rate of the video summary, or select the smallest number of

Fig. 2. Example DP trellises with various skip constraints.

Fig. 3. Computation complexity of the DP solution as a function of the number
of frames n and (a) rate R; (b) the maximum skip constraint.

frames possible that satisfy the distortion constraint. There are
two approaches to obtain the optimal solution. According to the
first one, the optimal solution results from the modification of
the DP algorithm for the MDOS problem. The DP “trellis” is not
bounded by the , (length or number of epochs), and its depth
equal to ( ), anymore; it is actually a tree with root at

and expanding in the grid. The only constraints for
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the frame selection process are the “no look back” and “no re-
peat” constraints. The algorithm performs a breadth rirst search
(BFS) on this tree and stops at the first node that satisfies the
distortion constraint, which, therefore, has the minimum depth,
or the minimum temporal rate. The computational complexity
of this algorithm grows exponentially and it is not practical for
large size problems.

To address the computational complexity issue of the first
algorithm, we propose a second algorithm that is based on the
DP algorithm for the solution of the MDOS formulation. Since
we have the optimal solution to the MDOS problem, and we
observe that feasible rates are discrete and
finite, we can solve the MROS problem by searching through
all feasible rates, and for each feasible rate , solve the
MDOS problem to obtain the minimum distortion . The
operational rate-distortion function resulting from the
MDOS optimization is given by

(20)

that is, it represents the minimum distortion corresponding to
the rate . An example of this function is shown in Fig. 4.

If the resulting distortion satisfies the MROS distor-
tion constraint, the rate is labeled as “admissible.” The op-
timal solution to the MROS problem is, therefore, the minimum
rate among all admissible rates. Therefore, the MROS problem
with distortion constraint is solved by

(21)

The minimization process is over all feasible rates. The so-
lution to (21) can be found in a more efficient way, since that
the rate-distortion function is a nonincreasing function of , as
follows.

Lemma1: , if , for
.

Proof: If we prove that , then,
since we have that ,
Lemma 1 is true. Let be the minimum distor-
tion introduced by the optimal -frame summary solution

, for some . Since
, there exists an such that the previous frame to

frame , i.e., (clearly, between frames and )
does not belong to the summary solution . If frame
were to be included in the summary, a new summary with
frame selection would be generated
with resulting distortion .
Since , we have .
Since the resulting frame summary (with the inclu-
sion of frame ) is not necessarily optimal, we have that

.
Lemma 1 is quite intuitive, since adding a frame to the sum-

mary always reduces, or at least keeps the resulting distortion
the same. Also, because the operational distortion-rate function

Fig. 4. Example of the operational rate-distortion function.

is a discrete and nonincreasing function as estab-
lished in Lemma 1, the MROS problem in (21) can be solved
efficiently by a bi-section search [3] on the .

The algorithm starts with an initial rate bracket of
and , and computes its associated initial distor-
tion bracket of , and . If the
MROS distortion constraint , then the optimal
rate is . Otherwise, we select a middle rate point

, compute its associated distortion ,
and find the new rate and distortion bracket by replacing either
the or the point with , such that the distortion con-
straint is within the new distortion bracket. The process
is repeated until the rate bracket converges, i.e, ,

, for some . At this point the optimal rate
is found as , and the optimal solution to the MROS
problem is the solution of the summarization problem as
discussed in Section III-C. The computational complexity of the
bi-section search algorithm is times the complexity
of the DP summarization algorithm.

V. EXPERIMENTAL RESULTS

A. Frame Distortion Metric

The rate-distortion optimal summarization formulation we
developed does not depend on a specific frame distortion
metric. This offers additional flexibility in summarization
solutions. However, an effective and computationally efficient
frame distortion metric is also essential to the success of the
summarization algorithm.

There are a number of ways to compute the frame distortion
. The mean-squared error (MSE) has been widely used

in image processing. However, it is well known that the MSE
type metric does not represent well the visual quality of the re-
sults. For example, a simple one-pixel translation of a frame
with complex texture will result in a large MSE, although the
perceptual distortion is negligible. There is work in the litera-
ture addressing the perceptual quality issues (for example, [9]
and others); however, such works are addressing primarily the
distortion between an image and its quantized versions.

The color histogram-based distance is also a popular choice
[25], but it may not perform well either, since it does not reflect
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changes in the layout and orientation of images. For example, if
a large red ball is moving in a green background, even though
there are a lot of “changes,” the color histogram will stay rela-
tively constant.

In our previous work on heuristic summarization [13], we
adopted a frame distortion metric that is based on the weighted
sum of color change and motion activity. The color change is
computed from the MPEG-7 color layout feature [26], which
not only account for color distribution in YCbCr color space,
but also the layout, or the spatial distribution of color. This
addresses a problem of histogram-based color features. The
motion activity [10] is computed from the variance of the
magnitude of the motion vectors between frames. The results
are satisfactory in general, but the computation of motion
activity is quite expensive.

For a summarization frame distortion metric that reflects the
human perception well while can be computed efficiently, we
developed a metric that is based on the scale and user preference.
The scale is the spatial resolution at which we want to
differentiate frames. Video frames are first scaled into smaller
sizes of , e.g., 8 6, 12 9 or 16 12. The benefit of
this scaling process is to reduce noises and local variances. In
our simulation, we use both the 8 6 and 11 9 scales. The
latter can be obtained in a very fast way from the compressed
QCIF size sequences by extracting the dc components.

After scaling, video frames are projected through principal
component analysis (PCA) to a linear subspace that preserves
most information while further reduces the feature dimension
for easier manipulation. The PCA transform is found by
diagonalizing the covariance matrix of the frames [11], [16],
and selecting the desired number of dimensions with the largest
eigenvalues. The frame distortion is, therefore, computed as the
weighted Euclidean distance between two frames in the PCA
subspace, where weight reflects user preference, and is given
by

(22)

In (22), denotes the scaling operation, is the PCA
transform. The weight is obtained from user preference,
which can also expressed as another linear projection . When
large amount of labeled video frames are available, a supervised
learning process like Fisher discriminant analysis (FDA) can
be applied to learn the projection .

In our experiment, we collected 3200 frames from various
video clips for the PCA. The resulting eigenvalues of the PCA
for the 8 6 scale are plotted in Fig. 5. Notice that most of
the energy is captured by the bases corresponding to the eight
largest eigenvalues. Therefore, our adopted PCA transform ma-
trix has the dimensions 8 48. Since we do not have any pref-
erence at this time, so the weights are uniform.

Experimental results with this frame distortion metric are
shown as a frame-by-frame distance plot in the
upper plot in Fig. 6 for the “foreman” sequence. It seems
to reflect well the perceptual change of the sequence, since

Fig. 5. Eigenvalues resulting from scaling and PCA.

Fig. 6. Frame-by-frame distortion d(f ; f ) plot for the sample sequences.

for the “foreman” sequence, frames 1–200 contain a talking
head with little visual changes; therefore, the frame-by-frame
distortion remains low for this period. There is a hand waving
occluding the face around frames 253–259; thus, we have
spikes corresponding to these frames. There is the camera
panning motion around frames 274–320; thus, we have high
values in for this time period. In the lower plot
of Fig. 6, the frame-by-frame distortion is plotted for the
“mother-daughter” sequence, which is a lower-activity se-
quence compared with the “foreman” sequence. This is well
reflected by the overall lower values in the frame-by-frame
plot. Similar interpretation of events can also be found in this
example; for example, there is a spike around frames 58–72,
which corresponds to the mother touching her daughter’s hair.
The PCA space Euclidean distance metric has performed better
than any other metric we tried and similarly to the color change
and motion activity-based metric developed in [13], at a lower
computational cost.

From this experiment, it is clear that the metric function in
(22) is fairly accurate in depicting the distortion or the dis-
similarity of different frames. The computation of this metric
does not involve motion estimation. For compressed sequences,
the scaling can be down efficiently from extracting dc values.
Overall, the computation is moderate.
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Fig. 7. Summaries generated for the “foreman” sequence segment (frames
150–269).

B. Simulation Results

We tested the proposed DP algorithm with and without
skip constraints, as well as the Greedy algorithm described in
Section III-A, and the content blind equal sampling solution

TABLE I
DISTORTION PERFORMANCE FOR THE “FOREMAN” SEQUENCE:

n = 120,m = 24, AND max skip = 8

TABLE II
DISTORTION PERFORMANCE FOR THE “FLOWER” SEQUENCE:

n = 120,m = 24, AND max skip = 8

on the “foreman” sequence. For the segment with
frames (frames 150–269), the MDOS optimal video summary
frame selections and resulting sequence distortions are plotted
in Fig. 7. The rate constraint is , with the number
of summary frames given as .

In Fig. 7(a), the results from the equal sampling solution are
shown. The upper plot is the summary frame selection plotted
as vertical lines against the dotted curve of the frame-by-frame
distortion , which gives an indication of the activity
within the sequence. Notice that the distortion is high in the
high-activity region around frame number 100, since the selec-
tion is content-blind. The bottom plot shows the per frame dis-
tortion, , between the original sequence and the recon-
structed sequence from the video summary. The corresponding
two plots obtained by the application of the Greedy algorithm
are plotted in Fig. 7(b). The summary frames are concentrated
around the high-activity region, in this case. This solution does
adapt to the content, but it is obviously suboptimal.

The results from the application of the optimal DP algorithm
without the skip constraint are plotted in Fig. 7(c). For the given
frame budget of , this solution offers the minimum
distortion. Notice that the summary frames are rather evenly
distributed but more frames are selected from the high-activity
region. Fig. 7(d) shows the optimal solution with a maximum
frame skip constraint equal to 8. The solution is very sim-
ilar to the solution in Fig. 7(c), but the distortion incurred is
slightly larger than that of the optimal solution without the skip
constraint.

It is clear that the optimal algorithm performs better than the
heuristic solutions for the same temporal rate constraint. We
tested the proposed algorithms with a number of sequences. The
distortion performances for the “foreman” sequence, frames
150–269, and the “flower” sequence frames 20–139, both for
a matched rate of , are summarized in Tables I and II,
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Fig. 8. Summarization results at different rate levels for a segment of the “foreman” sequence.

respectively. In addition to the average distortion, the maximum
frame distortion is shown, as well as the standard deviation of
the frame distortions. Besides minimizing the average distor-
tion, the DP-based solutions also result in smaller maximum
distortion and standard deviation of the distortion.

We also obtained summarization results for the same se-
quence at different rates. The summarization results for the
200-frame “foreman” sequence segment between frames
100–299 at summarization rates equal to 0.05, 0.1, 0.2, and 0.4
are plotted in Fig. 8(a)–(d), respectively. As expected, as the
summarization rate goes up, the summarization distortion goes
down.

The resulting distortion statistics are shown in Table III. The
above summaries clips compressed with a H.263 [22] video
coder are also available upon request from interested readers.

Overall, the DP-based algorithms produce reconstructed se-
quences that degrade gracefully as the temporal rate decreases.
Imposing a skip constraint makes the video summary smoother
and at the same time reduces the computational complexity.
The computational complexity involved is moderate and can
be optimized for both off-line summarization and online video
transcoding into summaries.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a rate-distortion optimization
framework for the optimal video summary generation problem.
We introduced a new frame distortion metric that is well suited

TABLE III
DISTORTION PERFORMANCE FOR THE “FOREMAN”

SEQUENCE: n = 200, AT DIFFERENT RATES

for video summarization. A recursive distortion state transition
is found based on which a DP solution is developed to solve
the MDOS formulation. A bi-section search solution is devel-
oped to solve the MROS formulation. The effectiveness of the
developed framework is demonstrated via simulations.

We are currently investigating the optimal coding problem
in conjunction with the optimal summarization problem. A
strategy is being developed for the optimal coding of a video
sequence with control of both the temporal and spatial (PSNR)
distortion tradeoff.
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