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Abstract

Efficient indexing is a key in content-based videdrieval

low dimensional feature space and metric. Firstl@bal
model is built to represent video sequence as grathen
different embedded subspaces are trained for indeand
retrieval to achieve better efficiency and accuracy

The paper is organized into the following sectioims,

solutions. In this paper we represent video seqeeens traces Section 2, we briefly review the low dimensionahtigre

via scaling and linear transformation of the fralum@inance
field. Then an appropriate lower dimensional subspé
identified for video trace indexing. We also deyel trace
geometry matching algorithm for retrieval basedawerage
projection distance with a locally embedded distanetric.
Simulation results demonstrated the high accuraad/ \sery
fast retrieval speed for the proposed solution.

1. Introduction

As video content grows exponentially, an efficiauntent
based video shot retrieval that can handle vergelasize
collections is becoming very important. In a typisaarch
engine application scenario, the system would beired to
identify the existence of the video shot in thelexilon and
return the shot locations within a very short tiregtremely
large size of video collections puts new challenges/ideo
indexing/retrieval algorithms.

space and metric developed for video retrievalSéation 3,
we develop indexing scheme based on kd-tree [RohBig,
and a fast retrieval algorithm with locally embeddeetrics,
in Section 4, simulation results in terms of botewracy and
speed are presented, in Section 5, we draw thdusioc and
outline the future directions of our work.

2. Global Luminance Field Trace Model

In search of a lower dimensional feature spacenaetic for
video shot indexing, instead of using the imagduies that
may have obvious interpretation, like colour, shaped
texture, we view video sequences as high dimenkioaees
spanned by the luminance field's variations overeti If a
lower dimension representation of video trace carfdund,
then a space partition type indexing scheme andaecet
geometry matching metric for retrieval can be deped.
We developed a global Iluminance field

In previous work, various image/video features Haseepresentation of the video sequence via scalird)y RGA

indexing and retrieval solutions are reported, eajpr based
in [Ferman02], and [Yuan05], color and motion based
[Mezaris04], [Ngo02], [Zeng02], object level sp&ti@mporal
feature based in [Chang98], and time interval stiaf based
in [Snoek05].

In video content indexing, a well-known problemthe
“curse of dimensionality”, when the feature spagwehsion
is high, which is typically the case for image feas like
color, shape and textures, the indexing efficiefadlg rapidly

[BohmO1]. To resolve this problem a lower dimension anoted asN. For global model,

feature space with an appropriate matching metedrio be
found. In [LiO4], [LiO5], we developed such a methased on
a trace representation of video sequence in lurcmdield’s

principal component space. However, the loss arimétion
from dimension reduction may degrade the retrievatric

performance, therefore the conflicting requiremefar

indexing efficiency and retrieval accuracy on swHrep
dimensionality need to be addressed.

[LiO4], [LiO5], such that a video frame luminanceeld f, is
mapped into ad-dimensional poink, as,

X = A (S(Fk)) (1)

where S is the scaling operator, which scales and staoks a

input luminance field ofW x H pixels into an image icon
vector inR™ with the desired icon size uf x h pixels. The
d-dimensional PCA [Turk91] transform basis functiofys =[
a', &', ..., a4'], are obtained from the eigen vectors of the
covariance matrix of video frames in a local neiginnood,
N consists of randomly
sampled frames from a large collecti@dy, identifies thed-
dimensional subspace iR which preserves maximum
amount of energy, that is,

A= argm/fle(xk -x)2, Ox ON )
K

The scaling and PCA transform reduce
dimensionality of the feature space, but inevitaibltyoduce

In this paper, motivated partly by various manifoltbss of energy/fidelity of the video trace. Theseaitrade off

learning algorithm, like principal component ani&yPCA)
[Turk91], local linear embedding [Saul03], we deyelan

between the retrieval metric accuracy and the imdeand

trace

the



computational efficiency obtained from dimensiotyali several leaf nodes, therefore improve the retriested
reduction. performance.
The covariance information obtained from global PCA
process is utilized in the indexing. The indexitarts with a
split of the whole collection along the maximum igace
250 ‘ basisa;, at the median value for all trace points profatton
‘ a;. Then for left and right child, the maximum vawga basis
a is identified and the median value split aloag is
performed. The process is repeated in a breadthféishion
and propagate down the tree structure until some pr
determined criteria for number of levels in theefrand/or,
number of frames in each leaf node is met. At azmie, a
minimum bounding box (MBB)Vimin Vmax O R is also
900 computed and stored with the split dimenskpmand medium
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Figure 1. Video Trace Example
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With a proper choice on scale ] and PCA dimension
d, a global model can be built to map afframe video 300
sequence into an-point trace in somel-dimensional PCA 200 .
space, preserving sufficient information in trae@metry for -

accurate retrieval. Example of a short 400 fram&sneideo
trace is plotted in an 3-d global space in FigAd.efficient
indexing and retrieval scheme is developed in tlextn -00p
section. 0ol

=300~

3. Indexing and Retrieval in Embedded
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The global video trace model may not be the mdatieft Figure 2. Indexing space partition examplel2,d=2
for indexing and retrieval. For a “good” indexingase, we An example of 200,000 frame video collection inahgxi

need the video traces to be evenly distributedrituah lower Space partition is illustrated in Fig. 2. The traspace
dimensional subspace, e.@iu=2 to 6. While for good dimension igi=2, and the depth of the kd-treelis12. There
retrieval performance, we need a subspace with ehigire total 2048 leaf node level MBBs, each contamsyhly
dimension,dy,, to more accurately represent video traces. $8 frames.

address this conflict, we identify separate subspafor With the kd-tree partition of the trace space, video

indexing and retrieval purposes, with local optatiisns. sequences are further segmented by the MBB bowsdafi
each leaf node, in addition to semantically medfing

3.1 kd-Tree Based Indexing boundaries obtained from shot boundary detectibis hot

surprising that a semantically meaningful shot barfurther
For indexing, we need video traces to be evenlyidiged in segmented by the leaf node MBB boundaries.
a low diyg-dimensional space, therefore a hierarchical data-
partition type indexing scheme like kd-tree [Rolbim81] can 3.2 Retrieval with L eaf Node Embedded Metric
be applied to partition the video trace space intm-
overlapping subspaces such that a binary treetsteucan be The retrieval consists of two steps. First, theaaie the
built. At retrieval time, query clip trace will opnlneed to indexing space traversed by the query clip, i.e.l&af node
match with a subset of video traces identified frtba tree MBBs intersected by the querying clip trace, needbé
structure, instead of the whole collection, therefinproving identified. Second, for all video traces in thenitiéed MBBs,
the retrieval efficiency. compute the average projection distance betweery qulip

The PCA space is indeed, a good subspace for imglexirace and video collection traces, if the minimurojgction

purpose, because it finds the dimensions with mamim distance is below certain threshold, then repamaich ahs
scatter of the data. For indexing purpose, we simige the been found and return the location of matchingeuwtise,
first d basis functions from global PCANpx =[a:', &', ..., report there is no match.
aq']- The objective here is to partition the videocces space ~ For a given pointx in the query clip, the leaf node it
into hierarchical, non-overlapping subspaces suwit @ belongs to is identified through the algorithm giveelow,
binary tree structure can be built and the actuadyching of FindLeafNode(x, node) {

video shot traces can be limited to video tracerie or IF IsLeafNode(node)
/IMBB check



IF node.vmin < x < node.Vmax argmind(k;Q,T°), if _min {d(Q,T;} <d

ELRSEETURN(nOde) k* = k T;ON(Q) (4)
RETURN(NULL) not found, else
Il check the cutting plane where T is the trace with the minimum projection distance
k = node.cutDim; v = node.cutValue; with Q.
IF Xk <v The accuracy of the distance metric, ||.||, useBagn(3)
ELgliEndLeafNOde(X. node.LeftChild); directly affect the retrieval accuracy. The gloliaiclidean

distance metric in the indexing space does notr affeugh
accuracy, especially for large collections, becahsevideo
traces are not well separated, as shown in the gram Fig.

4. We need to find a new subspace/metric that more
accurately captures the behaviour of the traces.

FindLeafNode(x, node.RightChild);
}
For querying clips not exist in the collection, itheace points
may or may not pass thru any leaf node MBBs. Tloeegfan
early rejection criteria is checked. As certaincpatage of
query trace points fall outside all leaf node MBHwn the aoor
query clip is rejected as non-exist.

Matching Space: qOffs=125190, qLen=40, Leaf Nodes=[3993 3994 4002]

Indexing Space: qOffs=125190, qLen=40, Leaf Nodes=[3993 3994 4002] 200
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1020 1020 1040 100 1000 1070 1080 Since a global model is not necessary for theendtj we

' can project video traces in each leaf notefo a new
i c subspaceB;, embedded in the global PCA model. For a given
An example 40-frame query clip and its traversedB4B

in the 2-d indexing space shown in Fig. 2 are ptbth Fig. 3. number of dlmen5|-ondrm,, By _Fbl’ _b2’ s by, ] is obtained
A total of 3 leaf nodes are traversed by this queipy which thru alocal PCA with frame poinisin nodel,

is plotted as a connected line, while database sideo 2

frames are plotted as dots. y=Bx OxON,, st. B = argmgxg()/k -9 (5)

Once the MBBs traversed by the query clip are ifled{ . - .
the query clip need to be matched with all trageshiose Therefore the distance for original PCA space goinandx,

MBBs to find out if there’s any match. in leaf nodd becomes,

The trace geometry matching is based on the averdba =Yz IF (X, =%2)" BB (X = Xy). (6)
projection distance metric. Let amframe query clip trace beBy allow more dimensions in each leaf node than the
Q=[as, O, .-, Om], and ann-frame video collection trace inindexing space, the metric in Eq. (6) is more accurate. The
traversed leaf nodes BE=[t, tp, ..., §], then the average example embedded subspace for retrieval is shown in Fig. 4,
projection distanced(Q,T), as a function of locatiok, is with the same 40 frame query example in Fig. 3. Notice that
found by, in Fig. 4, the traces are better separated than in Fig. 3.
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Figure 3. Leaf nodes traversed space example

d(Q, T)_Ek m'” ZHQJ ~t |l 3.3 Computational Efficiency Analysis

1027
_ @) Let the indexing efficiency of a kd-tree for a particuhar
=d(k;Q,T)= E”}(‘“ZHQJ ~trjea |l frame query cIi;Q be,
j=1

Since this is a temporal sequence matching, therood nQ)= N(Q) (7)

projection location indices need to be enforcedt th, ki, wheremis the length of the query clip, af{Q) is the total
ko, ..., km must be consecutive. Therefore the minimizer Almber of frames in leaf nodes traversedQuyA perfect

Eq. | (321 cag be t’k?'quewt'de”t'f'?d:kl i all esdn th efficiency is 1.0. The time complexity comprises of twaga
n deciding the existence of a query clip, all &mdn the _ _ P
traversed leaf nodes must be checked to compare (e L7) =Gy + G, =40(mb) +_t20(m ) (.8 )
minimum average projection distance with a threskig),, The leaf nodes search part is rougBlywheremis the query
clip length andL is the leaf node depth in the kd-tree, and
reflects time spent on a scalar value comparison. The trace



matching part i€,, which is a product of query clip length 5. Conclusion & Future work
and number of leaf node trace points compared . t, is the

time to evaluate vector distance metric in Eq. (6). Ndtiee 'n this paper, we developed an efficient video indexing and
as video collection size doubles, to maintain roughgyséime retrieval scheme based on video traces. Locally embedded

indexing efficiency, we need to double the number of |gQetrics are trained for better retrieval performance. The
nodes. Thereforel grows atO(logn), but C, shall stay overall performance of the proposed solution is extreffiaesty

relatively constant if indexing efficiency does not degradd Very accurate. _ o
drastically. In the future, we will try larger video data size, in rang

of 100 hours, and add noise and corruption in quepy tdi

. . test the robustness of the solution.
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