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Abstract
Background maintenance is a frequent element of video

surveillance systems. We develop Wallflower, a three-
component system for background maintenance: the pixel-
level component performs Wiener filtering to make
probabilistic predictions of the expected background; the
region-level component fills in homogeneous regions of
foreground objects; and the frame-level component detects
sudden, global changes in the image and swaps in better
approximations of the background.

We compare our system with 8 other background
subtraction algorithms. Wallflower is shown to outperform
previous algorithms by handling a greater set of the
difficult situations that can occur.

Finally, we analyze the experimental results and
propose normative principles for background maintenance.

1. Introduction
Video surveillance systems seek to automatically

identify people, objects, or events of interest in different
kinds of environments. Typically, these systems consist of
stationary cameras directed at offices, parking lots, and so
on, together with computer systems that process the images
and notify human operators or other processing elements of
salient events.

A common element of such surveillance systems is a
module that performs background subtraction for
differentiating background pixels, which should be ignored,
from foreground pixels, which should be processed for
identification or tracking. The difficult part of background
subtraction is not the differencing itself, but the
maintenance of a background model – some representation
of the background and its associated statistics.  We call this
modeling process background maintenance. An ideal
background maintenance system would be able to avoid the
following problems:

Moved objects: A background object can be moved.
These objects should not be considered part of the
foreground forever after.
Time of day: Gradual illumination changes alter the
appearance of the background.
Light switch: Sudden changes in illumination and other
scene parameters alter the appearance of the background.
Waving trees: Backgrounds can vacillate, requiring
models which can represent disjoint sets of pixel values.
Camouflage: A foreground object’s pixel characteristics
may be subsumed by the modeled background.

Bootstrapping: A training period absent of foreground
objects is not available in some environments.
Foreground aperture: When a homogeneously colored
object moves, change in the interior pixels cannot be
detected. Thus, the entire object may not appear as
foreground.
Sleeping person: A foreground object that becomes
motionless cannot be distinguished from a background
object that moves and then becomes motionless.
Waking person: When an object initially in the
background moves, both it and the newly revealed parts
of the background appear to change.
Shadows: Foreground objects often cast shadows which
appear different from the modeled background.

No perfect system exists.  In this paper, we hope to
further understanding of background maintenance through a
threefold contribution: In the next section, we describe
Wallflower, a background maintenance algorithm that
attempts to address many of the problems enumerated.
Then in Section 3, we present a comparison of Wallflower
with several well-known algorithms on a common dataset
of image sequences that contain the above problems.
Finally, we analyze the results of our experiments and
propose several principles that should be taken into account
when considering background maintenance.

2. The Wallflower Algorithm
Wallflower was intended to solve as many of the

canonical problems as possible.
To handle problems that occur at various spatial scales,

it processes images at the pixel, region, and frame levels. At
the pixel level, Wallflower maintains models of the
background for each pixel. Pixel-level processing makes the
preliminary classifications of foreground versus
background and also handles adaptation to changing
backgrounds. The pixel-level avoids many of the common
problems immediately: moved objects, time of day, waving
trees, camouflage, and bootstrapping.  All pixel-level
processing happens at each pixel independently and ignores
information observed at other pixels. The region-level
considers inter-pixel relationships that might help to refine
the raw classification of the pixel level; doing so avoids the
foreground aperture problem. Finally, the frame level
addresses the light switch problem:  it watches for sudden
changes in large parts of the image and swaps in alternate
background models that explain as much of the new
background as possible.
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2.1. Pixel Level
Wallflower’s core consists of per-pixel models of the

background. The pixel-level algorithm makes probabilistic
predictions about what background pixel values are
expected in the next live image using a one-step Wiener
prediction filter.

The Wiener filter is a linear predictor based on a recent
history of values. Any pixel that deviates significantly from
its predicted value is declared foreground. For a given
pixel, the linear prediction of its next value in time is

st  =  -∑
=

p

k 1

ak  st-k  ,

where st is the predicted value of the pixel at frame t, the st-k

is a past value of the pixel, and the ak are the prediction
coefficients. The filter uses p past values to make its
prediction. The expected squared prediction error, E[et

2], is

E[et
2] = E[st
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=

p
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ak E[st st-k]

The ak are computed from the sample covariance values
of the sn. Details of the computations can be found in
textbooks and a tutorial article [6]. In our implementation,
we use the past 50  values of sn to compute p=30 prediction
coefficients. (All parameters in our system were chosen by
hand and tuned on a varied set of image sequences.)  If the
actual value of the next pixel differs by more than

][*0.4 2

teΕ  from its predicted value, the pixel is

considered to be foreground.
The linear predictor works well for periodically

changing pixels, and for random changes it produces a
larger value of E[et

2].
The main advantage of a predictive technique is that it

reduces our uncertainty in a pixel’s value by accounting for
how it varies with time. For instance, one of the test
sequences shows a CRT and the inevitable interference
“bars” rolling up the screen. While the expected deviation
from the mean pixel value on the CRT is 14.2 gray levels,
the expected deviation from the predicted value is only 6.7.
This allows a tighter threshold for background subtraction
and a greater chance of avoiding the camouflage problem.

One potential problem occurs when a foreground object
corrupts the history values. To solve this, we keep a history
of predicted values for each pixel as well as the history of
actual values. For each new pixel, we compute two
predictions based on the actual history and the predicted
history. If either prediction is within the tolerance, the pixel
is considered background.

To handle adaptation, the prediction coefficients are
recomputed for every new frame. We retain the new
coefficients for a pixel if the corresponding expected
prediction error is less than 1.1 times the previous error.
This is especially helpful for bootstrapping, where the
predictor locks onto to the most stationary history it has
seen. The error is allowed to increase slightly (10%), to
handle moved objects that might now be in a noisier range
of values for our particular camera.

2.2. Region Level
We would like to segment whole objects, rather than

isolated pixels, as foreground. When an object is
homogeneously colored, the problem is an instance of the
classic vision problem where a moving homogeneous
region exhibits no perceivable motion. We consider inter-
pixel relations to propel these regions into the foreground.

Moving homogeneous regions are necessarily bracketed
by pixels which occur on the frontier edges of object
movement, and which exhibit identical properties as those
inside the region (see Figure 1a, where a homogeneously-
valued disk translates to the right. Regions in black register
movement). So, we cast new foreground regions that have
been discovered by the pixel level as seed regions that are
grown by backprojecting the pixel values that occur in the
seeds. Our implementation runs as follows:

As each new pair of raw and foreground-marked
images, It and Ft, arrives,

1. Compute image differences (Figures 1a and b):

1,   if |It(x) – It-1(x)| > kmotion,
 Jt(x) = { 0,   otherwise.

2. Compute the subset of pixels which occur at the
intersection of adjacent pairs of differenced images [1]
and the previous foreground image (Figure 1c):

Kt(x) = Jt(x) ^ Jt-1(x) ^ Ft-1(x).

3. Find 4-connected regions, Ri, in Kt, discarding regions
consisting of less than kmin pixels [2].

4. Compute Hi, the normalized histogram of each Ri, as
projected onto the image It-1 (s is a pixel value):

| { x :  x  ε Ri  and  It-1(x) = s } |
Hi(s) =

| Ri  |
5. Backproject histograms in It: For each Ri, compute Ft-1

^ Ri, and from each point in the intersection, grow Li,
the 4-connected regions in the image,

1,   if Hi(It(x)) > ε,
Li(x) = { 0,   otherwise.

where we use kmotion = 16, kmin = 8, ε = 0.1.

Steps 1 and 2 determine those regions that can be
reliably considered foreground, and not just part of a newly
revealed background. Steps 3 and 4 compute the histogram
of foreground regions found. Finally, Step 5 backprojects
the histogram locally (via 4-connectivity) so that some
pixels considered background by the pixel-level are thrust
into the foreground.

We considered using region-level processing to avoid
the sleeping person and waking person problems.  For
example, we could collect a histogram of pixels
surrounding a foreground object and backproject them onto
neighboring pixels to suppress them from appearing as
foreground. Informal experiments showed, however, that
the harm from this suppression outweighed the marginal
benefit, so we left it out of the final implementation.
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Figure 1.  Finding the right foreground.

2.3. Frame Level
The frame level background maintenance mechanism

utilizes multiple background models (which are simply
collections of pixel-level models for each pixel in the
image) to enable rapid adaptation to previously observed
situations, as exemplified by the light switch problem. To
pixel-level models, this change appears to be no more than
the sudden appearance of foreground objects. Image
changes in this situation, however, affect a majority of
pixels in the scene simultaneously. Therefore, it makes
sense to use a frame-wide model.

Our approach to frame-level background maintenance is
to automatically retain a representative set of scene
background models and then to provide an automatic
mechanism for switching between them. The algorithm
chooses representative background models in a training
phase with a k-means clustering algorithm [2] applied to a
set of pixel-level background models. We compute the best
model by computing the number of foreground pixels that
result as each model attempts to explain the input image.
We then choose the model that produces the fewest number
of foreground pixels. For our tests, we anticipated only two
states (lights on and lights off), so we set k = 2.

We decide when to change models by monitoring the
fraction of foreground pixels in the image. If this fraction
exceeds 0.7, we trigger the consideration of a new model.
We select the model that minimizes the fraction of
foreground pixels in the current image.

Lastly, triggering of a frame-wide model substitution
suppresses application of the region-level algorithm
because during these events, too much of the image
becomes included in Kt (from Step 2 of that algorithm) for
region processing to be useful.

3. Experiments
We compare ten different background maintenance

algorithms in situations that typify the first seven canonical
problems mentioned in the introduction. (The other three
problems were not considered for reasons to be explained in

Section 4.)  Algorithms that make an attempt to adapt to
changing backgrounds are marked with an [A]:

Adjacent Frame Difference: Each image is subtracted
from the previous image in the sequence. Absolute
differences greater than a threshold are marked as
foreground.
Mean & Threshold [A]: Pixel-wise mean values are
computed during a training phase, and pixels within a fixed
threshold of the mean are considered background.
Mean & Covariance [A]: The mean and covariance of
pixel values are updated continuously [5, 10]. Foreground
pixels are determined using a threshold on the Mahalanobis
distance. This is similar to the background algorithm used
in [10].
Mixture of Gaussians [A]: A pixel-wise mixture of 3
Gaussians models the background. Each Gaussian is
weighted according to the frequency with which it explains
(±2σ) the observed background. The most heavily weighted
Gaussians that together explain over 50% of past data are
considered background [3].
Normalized Block Correlation: Images are split into
blocks. The pixels in each block are represented as their
respective medians over the training images. Each block is
represented as its median template and the standard
deviation of the block-wise normalized correlation from the
median over the training images. For each incoming block,
normalized correlation values that deviate too much from
the expected deviations cause the block to be considered
foreground ([7] – a yet more sophisticated algorithm that is
mentioned in this paper was not fully implemented).
Temporal Derivative: In the training phase, the minimum
and maximum values of each pixel are saved along with the
maximum inter-frame change in intensity at each pixel.
Any pixel that deviates from its minimum or maximum by
more than the maximum inter-frame change is considered
foreground [4]. We additionally enforced a minimum inter-
frame difference of 10 pixels after the regular training
phase.
Bayesian Decision [A]: Pixel value probability densities,
represented as normalized histograms, are accumulated
over time, and backgrounds are determined by a
straightforward maximum a posteriori criterion [8].
Eigenbackground: Images of motionless backgrounds are
collected. Principle component analysis is used to
determine means and variances over the entire sequence
(whole images as vectors). Incoming images are projected
onto the PCA subspace. Differences between the projection
and the current image greater than a threshold are
considered foreground [9].
Linear Prediction [A]: This is the algorithm described in
Section 2.1.
Wallflower [A]: This is a combination of the pixel, region
and frame level algorithms as described in Section 2.

All of the test sequences were taken with a 3-CCD
camera recording to digital tape. We stored the sequences at
a size of 160x120 pixels, sampled at 4Hz. For algorithms
that adapt, adaptation rates were set so that absorption into

(a)  A homogeneous disk
moves to the right.  Change is
visible in the black regions
only (Jt-1 in text).

(b)  The same thing happens
one frame later (Jt).

(c)  Only the intersection
(Jt-1 ^ Jt) is certain to be fore-
ground in the middle image.

0-7695-0164-8/99 $10.00 (c) 1999 IEEE



the background would be complete after 50 frames from the
moment that a background ceases to change. Some
algorithms were designed for intensity images only – for

these, we made the simplest generalization to RGB values
by concatenating all three images and using the L1 norm for
detecting differences. On every output image, we
performed speckle removal to eliminate islands of 4-
connected foreground pixels consisting of less than 8
pixels. For all other parameters, we experimented with
different settings of the adjustable parameters of each
algorithm until the results seemed optimal over the entire
dataset. We did not change parameters between sequences.

We took one sequence of images to represent each of
the first seven problems listed in the introduction. Each test
sequence begins with at least 200 background frames for
training the algorithms, except for the bootstrap sequence
(the first 200 frames of the bootstrap sequence were
nevertheless used for training algorithms that require a
training phase). Because tracking of people is a common
application of background maintenance, the goal in these

tests is to mark people, and only people, as foreground
objects. We have deliberately excluded objects such as cars,
which might be considered foreground in some
applications, from the sequences. The sequences are:

Moved Object: A person walks into a conference room,
makes a telephone call, and leaves with the phone and a
chair in a different position. We evaluate the background
image 50 frames after the person leaves the scene, giving
those algorithms that adapt time to do so.
Time of Day: The sequence shows a darkened room that
gradually becomes brighter over a period of several
minutes. A person walks in and sits on a couch.
Light Switch: First, there is a training period in which the
camera sees a room with the lights both on and off. Then,
during the test sequence, the room starts with the lights off.
After a few minutes a person walks in, turns on the light,
and moves a chair. We stop the algorithms shortly after the
light comes on, leaving the various pixel-level adaptation
mechanisms inadequate time to adapt. In addition to the
person, the recently moved chair is considered foreground.
Waving Trees: A person walks in front a swaying tree.
Camouflage: A monitor sits on a desk with rolling
interference bars. A person walks into the scene and
occludes the monitor.
Bootstrapping: The sequence consists of several minutes
of an overhead view of a cafeteria. There is constant
motion, and every frame contains people.
Foreground Aperture: A person is asleep at his desk,
viewed from the back. He wakes up and slowly begins to
move. His shirt is uniformly colored.

Partially in consideration of space constraints, we did
not consider three problems mentioned in the introduction.
We left out the sleeping person and waking person
problems because none of the algorithms handle them (the

Error moved time of light waving camou- bootstrap foreground Total
Algorithm Type object day switch trees flage aperture Errors

Frame false neg. 0 1165 2479 3509 9900 1881 3884
  difference false pos. 0 193 86 3280 170 294 470 22957
Mean + false neg. 0 873 1116 17 194 415 2210
   threshold false pos. 0 1720 15116 3268 1638 2821 608 27178
Mean + false neg. 0 949 1857 3110 4101 2215 3464
  covariance false pos. 0 535 15123 357 2040 92 1290 30379
Mixture of false neg. 0 1008 1633 1323 398 1874 2442
  Gaussians false pos. 0 20 14169 341 3098 217 530 24081
Block false neg. 0 1030 883 3323 6103 2638 1172
  correlation false pos. 1200 135 2919 448 567 35 1230 19281
Temporal false neg. 0 1151 752 2483 1965 2428 2049
  derivative false pos. 1563 11842 15331 259 3266 217 2861 41257
Bayesian false neg. 0 1018 2380 629 1538 2143 2511
  decision false pos. 0 562 13439 334 2130 2764 1974 26937
Eigen- false neg. 0 879 962 1027 350 304 2441
  background false pos. 1065 16 362 2057 1548 6129 537 14699
Linear false neg. 0 961 1585 931 1119 2025 2419
  prediction false pos. 0 25 13576 933 2439 365 649 23959
Wallflower false neg. 0 961 947 877 229 2025 320

false pos. 0 25 375 1999 2706 365 649 10509

Problem Type

Figure 1.  Performance of algorithms on test sequences.
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Figure 3.  Overall performance.
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following section discusses this point further); therefore, we
did not expect them to contribute any interesting
comparative information. Next, although shadows classified
as foreground are a problem on images based on brightness,
we felt the problem was not fundamental to background
maintenance itself, but rather to the pixel type. Shadows do
not cause as significant a problem for range images, for
example.

The results of the tests are shown in Figure 4. We
evaluated each result numerically in terms of the number of
false negatives (the number of foreground pixels that were
missed) and false positives (the number of background
pixels that were marked as foreground). “Ground truth”
foreground pixels were marked by hand. Tallies appear in
Figure 2 and are charted in Figure 3, but they should be
taken with a grain of salt: The absolute values of the
numbers in Figure 2 are meaningless on their own, and the
final count in Figure 3 is not intended to be a definitive
ranking of the algorithms.  Such a ranking is necessarily
task-, sequence-, and application dependent.

4. Analysis and Principles
Background maintenance seems simple at first. But it

turns out to be a problem rich with hard cases and subtle
tradeoffs. This section attempts to crystallize the issues by
proposing a set of principles to which background
maintenance modules should adhere.

Principle 1: No Semantics
On one hand, only Wallflower succeeds on the

foreground aperture test, where movement of the interior of
subject’s shirt is undetectable. The region-filling algorithm
fills most of the area that the other algorithms miss.

On the other hand, Wallflower outputs false positives in
the waving trees sequence, where part of the sky,
considered background by the pixel-level, becomes
foreground after region-level processing. The region-level
algorithm is therefore an unsound heuristic, the use of
which is not justified in general because it is an attempt to
extract object semantics from low-level vision:

Semantic differentiation of objects should not be
handled by the background maintenance module.

Background subtraction is never an end in itself. Larger
systems seeking a high-level understanding of image
sequences use it as a component. Put another way, a
background maintenance module handles the default model
for everything in a scene that is not modeled explicitly by
other processing modules. Thus, the module performing
background maintenance should not attempt to extract the
semantics of foreground objects on its own.

This restriction implies that there are some problems
that are inappropriate for background maintenance systems
to attempt to solve. In particular, attempts to solve the
sleeping person, waking person, and foreground aperture
problems are bound to be unsound, given the low-level
nature of background maintenance.

A corollary to this principle is that while background
maintenance might be useful in determining gross traffic
statistics of objects such as people and cars, which can
alternately be moving or motionless, attempts to use it alone
as a preprocessing step for continuous, accurate tracking
are bound to fail – some foreground objects will either be
incorrectly adapted into the background or moved
background objects will remain forever in the foreground.

We note that in some systems, the higher-level module
provides feedback to background maintenance about what
pixels should not be adapted into the background. In one
person-tracking system, a high-level module tracks a single
user and prevents pixels representing the user from
becoming background [10]. This is different from
attempting to segment whole people, as such, in the
background module itself; the background module merely
accepts additional information from above but does not
generate it on its own.

Principle 2: Proper Initial Segmentation
As long as there is to be a background maintenance

module, we must differentiate the task of finding
foreground objects from the task of understanding whether
or not they are of interest to the system.

Background subtraction should segment objects
of interest when they first appear (or reappear) in
a scene.

Instead of semantic understanding, a more realistic goal
for background subtraction is to pick out objects of interest
that can then be recognized, tracked, or ignored by higher-
level processing. In environments where adaptation is
necessary (see Principle 4), maintaining foreground objects
as foreground is not a reasonable task for background
modelers, since such accurate maintenance requires
semantic understanding of foreground. We can evaluate
background maintenance by how closely it comes to finding
all foreground pixels (as defined by the end task) when a
foreground object first appears in the scene, while
simultaneously ignoring all others. Object recognition and
tracking can be computationally expensive tasks – good
background subtraction eliminates the need to perform
these tasks for each frame, on every subregion.

Principle 3: Stationarity Criteria
The principle of proper initial segmentation depends on

the notion of object salience. How, in general, should one
determine what is of interest in video sequences? Objects
are salient when they deviate from some invariant property
of the background. The key question, then, is how this
invariance is modeled and what it means to deviate from it.

Backgrounds, for instance, are not necessarily defined
by absence of motion. Consider a fluttering leaf on a tree.
As the leaf moves on and off a pixel, that pixel’s value will
change radically. No unimodal distribution of pixel values
can adequately capture such a background, because these
models implicitly assume that the background, apart from
some minimal amount of noise, is static. Indeed, all
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unimodal models failed to capture the complexity in the
background required to handle the waving trees and
camouflage experiments.

Those background systems which can model
multimodal distributions of pixels, or which attempt to
make predictions about the expected background fared well,
however. These algorithms succeed because they are
founded on a stronger notion of when a pixel deviates from
the background.

An appropriate pixel-level stationarity criterion
should be defined. Pixels that satisfy this criterion
are declared background and ignored.

We define stationarity as that quality of the background
that a particular model assumes to be approximately
constant. (We note that this is different, and more
ambiguous, than the formal definition of stationarity from
random signal processing.) In order to understand the
strengths and weaknesses of a particular algorithm in a
specified environment, it is crucial that this stationarity
criterion be made explicit. Carelessness in defining the
stationarity criterion can lead to the waving trees and
camouflage problems.

Principle 4: Adaptation
Backgrounds often change, even with liberal definitions

of stationarity. For instance, all of the adaptive background
maintenance systems are able to handle the moved object
sequence by absorbing the chair into the background when
it regains stationarity. Ergo,

The background model must adapt to both sudden
and gradual changes in the background.

This is an obvious requirement, but it makes sense only
under Principles 1 and 2.

The line between gradual and non-gradual changes
should be chosen to maximize the distinction between
events that cause them. The surprisingly good
performance of frame differencing suggests that fast
adaptation works quite well if the foreground consists of
moving people. Ultimately, however, the choice of this
line is arbitrary. Some parts of a scene may remain in the
foreground unnecessarily long if adaptation is slow, but
other parts will disappear too rapidly into the background
if adaptation is fast. Neither approach is inherently better
than the other – a point that emphasizes the inadequacy of
background maintenance for all but the initialization of
tracking. This point is also consistent with Principle 2,
which does not distinguish between algorithms that adapt
quickly or slowly, as long as new foreground objects will
still appear in the foreground.

Principle 5: Multiple Spatial Levels
Sudden light changes were best handled by normalized

block correlation, eigenbackground, and Wallflower. On
the other hand, neither eigenbackgrounds nor block
correlation deals with the moved object problem or the

bootstrapping problem, because they lack adaptive pixel-
level models. So, our final principle is the following:

Background models should take into account
changes at differing spatial scales.

Most background maintenance algorithms maintain
either pixel-wise models or whole-frame models, but not
both. Pixel-level models are necessary to solve many of
the most common background maintenance problems,
while the light switch and time-of-day problems suggests
that frame-wide models are useful, as well.  A good
background maintenance system is likely to explicitly
model changes that happen at different spatial scales.
Much of Wallflower’s success is attributable to its
separate models for pixels and frames.

5. Conclusion
Background maintenance, though frequently used for

video surveillance applications, is often implemented ad
hoc with little thought given to the formulation of realistic,
yet useful goals. We presented Wallflower, a system that
attempts to solve many of the common problems with
background maintenance.  Comparison of Wallflower with
other algorithms establishes a case for five principles that
we proposed based on analysis of the experiments.
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Figure 4. Tests of ten background maintenance algorithms on the seven canonical background problems. Each row shows the
results of one algorithm, and each column represents one canonical problem. The top row shows the image in the sequence at
which the processing was stopped. The second row has hand-segmented images of the foreground used as “ground truth” for
our quantitative comparison.
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