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1 Motion Fields and Optical Flow

1.1 Notes

Motion is one of the most important research topics in computer vision. It is the base for
many other problems such as visual tracking, structure from motion, 3D reconstruction,
video representation, and even video compression. There are several important issue to
investigate:

• 2D and 3D motion representations

• calculating 2D motion

• inferring 3D motion

• structure and motion

A major interests of motion analysis is to estimate 3D motion. The motion analysis tasks
could be roughly categorized into three different settings: 2D-2D, 2D-3D, and 3D-3D, de-
pending on the correspondences. The 3D-3D problem is to calculate 3D motion based on
a set of 3D correspondences. But generally, direct 3D data are difficult to obtain. To ease
the problem, we can assume 2D-3D correspondences. The 2D-3D problem is to determine
3D motion based on the correspondence between 3D model and 2D image projections. 3D
model-based analysis is one of such examples. Without using any 3D models, 2D-2D analysis
only assume the correspondences between 2D image projections but aim at calculating 3D
motion from such 2D correspondences.

A critical but difficult problem for motion analysis, obviously, is constructing correspon-
dences. Correspondences could be in totally different forms, e.g., point correspondences, line
correspondences, curve correspondences, even region correspondences. Sometimes, we can
easily get some geometrical primitives from images, but sometimes not.

According to my understanding, there are two major methodologies: “dense” approach,
and “sparse” or “feature-based” approach. The dense approach tries to build correspon-
dences pixel by pixel, while feature-based approach tries to associate different image fea-
tures. These two ideas result in totally different taste of motion and structure analysis. In
this lecture, let’s get some feelings about the “dense” approach.

1.2 2D Motion Fields

A velocity vector is associated to each image point, and a collection of such velocity vectors
is a 2D motion field. In Figure 1, p is a 3D point, i.e., p = [X,Y, Z]T , and m is its image
projection, i.e., m = [x, y]t. Then we have:

P = Zm̂

where m̂ is the homogeneous coordinate of m. Then we have:

dp

dt
=

dZ

dt





x
y
1



 + Z





dx/dt
dy/dt

0




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Figure 1: Motion Field

i.e.,
ṗ = Żm̂ + Z ˙̂m

i.e.,
Vp = (VT

p k)m̂ + Zvm

where k is the unit vector of the depth direction. So,

vm =
1

Z
(Vp − (VT

p k)m̂)

which means that the 2D motion field vm is a function of Vp/Z.

1.3 Optical Flow

Unfortunately, we can not observe such motion field directly, since we have no idea of how
the image projection of a 3D point moves. On the other hand, what we can observe are only
images, specifically, image points, i.e., under certain assumption, what we can say is that an
image point moves from here to there, which indicates optical flow. By definition, optical
flow is the apparent motion of the brightness pattern. Obviously,

motion field 6= optical flow

.
Consider a perfectly uniform sphere. There will be some shadows on the surface. When

the sphere rotates, such shading pattern won’t move at all. In this case, the optical is zero
but motion field is not. On the other hand, we keep the sphere still, but the lighting source
moves, which results in the changes in the shading patterns. In this case, the optical flow is
not zero but the motion filed is.

But since what we can observe is the optical flow, we expect in many cases that optical
flow is not too different from the motion field. This is our underline assumption!
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2 Calculating Optical Flow

2.1 Optical Flow Constraint Equation

We denote an image by I(x, y, t), and the velocity of an image pixel m = [x, y]T is

vm = ṁ = [vx, vy]
T =

[

dx/dt
dy/dt

]

Assuming the intensity of m keeps the same during dt, i.e.,

I(x + vxdt, y + vydt, t + dt) = I(x, y, t)

If the brightness changes smoothly with x,y and t, we expend the left-hand-side by Taylor
series:

I(x, y, t) +
∂I

∂x
vxdt +

∂I

∂y
vydt +

∂I

∂t
dt + O(dt2) = I(x, y, t)

So, we have
∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0 (1)

i.e.

∇I · vm +
∂I

∂t
= 0

where ∇I = [ ∂I
∂x

, ∂I
∂y

]T is image gradient at pixel m , which can be obtained from images.

Also ∂I
∂t

can also be obtained from images easily. We call this equation optical flow constraint

equation.
Apparently, for each pixel, we have only one constraint equation, but we need to solve

two unknowns, i.e., vx and vy, which means that we CAN’T determine optical flow uniquely
only from such optical flow constraint equation. Figure 2 gives a geometrical explanation of
the constraint equation.

normal
flow

optical constraint line
v

v

I∆

x

y

Figure 2: Geometrical explanation of the optical flow constraint equation. The optical flow
for a given image pixel can be any point on the constraint line in vx-vy plane.

Given this constrain equation, we can only determine the “normal flow”, i.e., the flow
along the direction of image gradient, but we can not determine those flow on the tangent
direction of isointensity contour, i.e., the direction perpendicular to the image gradient. This
is so called “aperture problem”.
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2.2 Aperture Problem

The aperture problem here means that we can not determine the flow perpendicular to
the image gradient, i.e., the tagent of isointensity contour. Two examples are given in
Figure 3. Suppose the contours are isointensity contours. Many points around p have the

p’

p
C

C’

t

t

Figure 3: The aperture problem in optical flow.

same intensity. So, it is impossible to determine which point p′ on C ′

t match point p on Ct.
In the other example, we can only determine the normal flow along the direction of ∇I.

As a result, to determine the optical flow uniquely, we need some other constraints.
Below, we describe two approaches: the first one introduces a global smoothness constraint,
and the second one employs a local constraint for each pixel.

2.3 A Global Method: Horn-Schunck’s Method

The assumption made in this method is that optical flow varies smoothly, i.e., the variation
of the optical flow field can not be too big. Apparently, this is a global requirement for the
whole image. Such smoothness constraint is indicated by the derivatives of optical flow, i.e.,
∇vx and ∇vy. The measure of departure from smoothness can be written by:

es =

∫ ∫

(||∇vx||
2 + ||∇vy||

2)dxdy (2)

=

∫ ∫

(
∂vx

∂x
)2 + (

∂vx

∂y
)2 + (

∂vy

∂x
)2 + (

∂vy

∂xy
)2dxdy (3)

The error of optical flow is:

ec =

∫ ∫

(∇I · vm +
∂I

∂t
)2dxdy (4)

So, we want to minimize:

e = ec + λes

=

∫ ∫

(∇I · vm +
∂I

∂t
)2 + λ(||∇vx||

2 + ||∇vy||
2)dxdy
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The 4-neighbor of an image pixel (i,j) is (i-1,j), (i+1,j), (i,j-1), (i,j+1). So, we can write
the discrete version of smoothness error for each pixel:

s(i, j) =
1

4
[(vx(i, j) − vx(i − 1, j))2 + (vx(i + 1, j) − vx(i, j))

2

+ (vx(i, j + 1) − vx(i, j))
2 + (vx(i, j) − vx(i, j − 1))2

+ (vy(i, j) − vy(i − 1, j))2 + (vy(i + 1, j) − vy(i, j))
2

+ (vy(i, j + 1) − vy(i, j))
2 + (vy(i, j) − vy(i, j − 1))2]

And

c(i, j) =

[

∂I

∂x
vx(i, j) +

∂I

∂y
vy(i, j) +

∂I

∂t

]2

So, we need to

min E =
∑

i

∑

j

[c(i, j) + λs(i, j)]

Calculating the derivatives, we have:

∂E

∂vx(i, j)
= 2

(

∂I

∂x
vx(i, j) +

∂I

∂y
vy(i, j) +

∂I

∂t

)

∂I

∂x
+ 2λ(vx(i, j) − v̄x(i, j)) = 0

∂E

∂vy(i, j)
= 2

(

∂I

∂x
vx(i, j) +

∂I

∂y
vy(i, j) +

∂I

∂t

)

∂I

∂y
+ 2λ(vy(i, j) − v̄y(i, j)) = 0

where v̄x and v̄y are local average of vx and vy. So, we can write:

[

λ +

(

∂I

∂x

)2
]

vx +
∂I

∂x

∂I

∂y
vy = λv̄x −

∂I

∂x

∂I

∂t

∂I

∂x

∂I

∂y
vx +

[

λ +

(

∂I

∂y

)2
]

vy = λv̄y −
∂I

∂y

∂I

∂t

which suggest an iterative scheme:

vk+1
x = v̄k

x −







(

∂I
∂x

)

v̄k
x +

(

∂I
∂y

)

v̄k
y + ∂I

∂t

λ +
(

∂I
∂x

)2
+

(

∂I
∂y

)2







∂I

∂x
(5)

vk+1
y = v̄k

y −







(

∂I
∂x

)

v̄k
x +

(

∂I
∂y

)

v̄k
y + ∂I

∂t

λ +
(

∂I
∂x

)2
+

(

∂I
∂y

)2







∂I

∂y
(6)

Concisely, it is:
vk+1 = v̄k − α(∇I) (7)

For each iteration, the new optical flow field is constrained by its local average and the
optical flow constraints.
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2.4 A Local Method: Locas-Kanade’s Method

Horn-Schunck’s method introduces a regularization term and it is a global method. Let’s
look at a local approach. Assume we can use a constant model to describe the optical flow
in a small window Ω. We define a window function W (m),m ∈ Ω. We let the weight of the
center bigger then others, i.e., the window function favors the center. The optical flow of
the center pixel can be calculated by

min
v

E =
∑

m∈Ω

W 2(m)

(

∇I · v +
∂I

∂x

)2

Writing out the derivatives, we have:

∂E

∂vx

=
∑

W 2(m)

(

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t

)

∂I

∂x
= 0

∂E

∂vy

=
∑

W 2(m)

(

∂I

∂x
vx +

∂E

∂y
vy +

∂I

∂t

)

∂I

∂y
= 0

To solve it, we let:

A =







∂I1
∂x1

∂I1
∂y1

...
...

∂IN

∂xN

∂IN

∂yN







N×2

W = diag(W (m1), . . . ,W (mN))N×N

v =

[

∂x

∂t
,
∂y

∂t

]T

= [vx, vy]
t

b = −







∂I1
∂t
...

∂IN

∂t







N×1

Using such notations, we have
ATW2Av = ATW2b

So, the flow for the image pixel m can be solved, i.e.,

v = (ATW2A)−1ATW2b (8)

We should note here that if ATW2A is not singular, we can uniquely determine the optical
flow for image pixel m. We should be aware that the reliability of the estimation of v is
revealed by the eigenvalues of ATW2A (assume λ1 ≤ λ2). If both eigenvalues are large, then
the flow can be uniquely determined; if λ1 is much larger than λ2, only the normal flow can
be determined; if λ2 = 0, the flow can not be determined at all.

Since Lucas-Kanade’s method use a local window to determine the flow of a particular
image point, this is the reason that it is called a local method. Intuitively, Lucas-Kanade’s
method calculate the flow of a point m by identifying an intersection of all the flow constraint
lines corresponding to the image pixels within the window of m. Those flow constraint lines
will have an intersection, since this method assumes that the flow within the window is
constant.
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2.5 Notes

Besides Horn-Schunck’s method and Lucas-Kanade’s method, the Bayesian approach based
on Markov random field (MRF) and Gibbs random field (GRF) was also proposed to calculate
optical flow. In this probabilistic frame, different techniques have been investigated, such as
iterated conditional mode (ICM), Metropolis sampling and Gibbs sampling, highest confident
first (HCF), and mean field methods. I am not going to discuss these methods, but if
interested please read some references.

3 Flow-based Motion Analysis

3.1 3D-2D Motion Models

3D velocity vector of a rigid object can be written as





Ẋ

Ẏ

Ż



 =





0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0









X
Y
Z



 +





Tx

Ty

Tx



 (9)

i.e.,
Ẋ = Ω × X + T

where Ω = [Ω1, Ω2, Ω3]
T is the angular velocity vector, and T = [Tx, Ty, Tz] is the translation

velocity vector.

3.1.1 Under Orthographic Projection

Under orthographic projection, we can write the optical flow by:

vx = ẋ = Ẋ = Tx + Ω2Z − Ω3Y

vy = ẏ = Ẏ = Ty + Ω3X − Ω1Z

3.1.2 Under Perspective Projection

vx = f
Ẋ

Z
− x

Ż

Z
= f(

Tx

Z
+ Ω2) −

Tz

Z
x − Ω3y −

Ω1

f
xy +

Ω2

f
x2

vy = f
Ẏ

Z
− y

Ż

Z
= f(

Ty

Z
− Ω1) − Ω3x −

Tz

Z
y +

Ω2

f
xy −

Ω1

f
y2

when let f = 1, we have

vx =
−Tx + xTz

Z
+ Ω1xy − Ω2(1 + x2) + Ω3y

vy =
−Ty + yTz

Z
+ Ω1(1 + y2) − Ω2xy − Ω3x
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Eliminating Z, we end up with a nonlinear equation:

−vye1 + vxe2 − x(Ω1 + Ω3e1) − y(Ω2 + Ω3e2) − xy(Ω2e1 + Ω1e2) +

(x2 + y2)Ω3 + (1 + y2)Ω1e1 + (1 + x2)Ω2e2 = yvx − xvy

where e1 = Tx/Tz and e2 = Ty/Tz. In these equations, e1,e2,Ω1,Ω2,Ω3 are unknowns. x and
y are image coordinates, and vx and vy are optical flow. Since this nonlinear equation has 5
unknowns, i.e., {e1, e2, Ω1, Ω2, Ω3}:

• there are at most 10 solutions with 5 optical flow vectors;

• optical flow at 6 or more points almost always determine 3D motion uniquely;

• if the motion is pure rotation, then it is uniquely determined by two optical flow values;

• in the case of 3D planar surface, optical flow at 4 points almost always gives two
solutions.

3.2 Optical Flow Models and Fitting

3.2.1 Affine Flow

Affine model is under two assumptions:

• planar surface

• orthographic projection

We can write a 3D plan by Z = AX + BY + C. Then we get 6-parameter affine flow model:

[

vx

vy

]

=

[

a1 a2

a3 a4

] [

x
y

]

+

[

a5

a6

]

(10)

where

a1 = AΩ2, a2 = BΩ2 − Ω3, a5 = Tx + CΩ2,

a3 = Ω2 − AΩ1, a4 = −BΩ1, a6 = Ty − CΩ1

In this case, flow can be determined by at least 3 points.

3.2.2 Quadratic Flow

Quadratic model is under two assumptions:

• planar surface

• perspective projection
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Under perspective projection, a plane can be written as

1

Z
=

1

C
−

A

C
X −

B

C
Y

So, we have

vx = a1 + a2x + a3y + a7x
2 + a8xy

vy = a4 + a5x + a6y + a7xy + a8y
2

where

a1 = f(
Tx

C
+ Ω2), a2 = −(f

TxA

C
+

Tz

C
), a3 = −(f

TxB

C
+ Ω3)

a4 = f(
Ty

C
− Ω1), a5 = −(f

TyA

C
− Ω3), a6 = −(f

TyB

C
+

Tz

C
)

a7 = (
TzA

C
+

Ω2

f
), a8 = (

TzB

C
−

Ω1

f
)

In this case, if we know at least 4 points on a planar object, we can also {a1, . . . , a8}.

3.3 Direct Methods

Direct method means that we can replace the optical flow vectors with their estimates in
terms of spatial-temporal image intensity gradient.

direct
method

flow-based
method

3D motion model

2D motion model

image sequences

optical flow

projection model

flow model

Figure 4: Illustration of the basic idea of direct method for motion analysis.

4 Flow-based Motion Segmentation

4.1 The Problem

Motion segmentation is to segment out different objects according to their motion coherence.
The basic problem is illustrated in Figure 5. Since optical flow provides a representation of
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background

ball

desk

people

Figure 5: What is motion segmentation?

motion, it is a very good clue for motion segmentation. Optical flow-based motion segmen-
tation has below setup:

• Given: optical flow calculated

• To solve: (a) grouping pixels belong to the same moving object; (b) the number of
moving objects

4.2 Ideas and Approaches

Compared to static image segmentation, what kind of ideas will we come up with?

4.2.1 Generalized Hough Transformation

It is straightforward to extend the basic idea of Hough transformation to flow-based motion
segmentation. For example, we can use the affine flow model, i.e., optical flow can be
parameterized by {a1, . . . , a6}. When quantizing such a R6 dimensional parametric space,
each image pixel will “vote” for a set of parameters which minimizing

e2(x) = e2
x(x) + e2

y(x)

where ex(x) = vx−a1−a2x−a3y, and ey(x) = vy −a4−a5x−a6y. Obviously, this approach
takes time.

4.2.2 Layer and K-Means

The K-means clustering idea can also be adapted to our problem:

1. dividing image into small m × m blocks;

2. fitting affine flow model to image black pairs B(t) and B(t+1);
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3. treating the 6 parameters of the affine model as a training data point;

4. performing K-means clustering on R6;

5. updating these k affine models;

6. re-labelling (segmentation);

7. fitting affine motion models for each segment;

8. loop between 6 and 7 until it converges.

4.2.3 Bayesian Segmentation

I do not want to say more about Bayesian segmentation, since we have done that before,
i.e., EM-based segmentation! But I still want to emphasize the very basic idea:

• Assumption: we know there are k motion model

• Missing data: which motion model does a pixel belong to?

• E-step: estimating the missing data, i.e., classifying each image pixel into different
motion models in a probabilistic way;

• M-step: fitting new motion models.
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