Face Recognition

Ying Wu
yingwu@ece.northwestern.edu

Electrical Engineering \& Computer Science
Northwestern University, Evanston, IL
http://www.ece.northwestern.edu/~yingwu

Outline

\checkmark Bayesian Classification
\checkmark Principal Component Analysis (PCA)
\checkmark Fisher Linear Discriminant Analysis (LDA)
\checkmark Independent Component Analysis (ICA)

Bayesian Classification

\checkmark Classifier \& Discriminant Function
\checkmark Discriminant Function for Gaussian
\checkmark Bayesian Learning and Estimation

Classifier \& Discriminant Function

- Discriminant function $\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \mathrm{i}=1, \ldots, \mathrm{C}$
- Classifier

$$
x \rightarrow \omega_{i} \quad \text { if } \quad g_{i}(x)>g_{j}(x) \quad \forall \mathrm{j} \neq \mathrm{i}
$$

- Example

$$
\begin{aligned}
& g_{i}(x)=p\left(\omega_{i} \mid x\right) \\
& g_{i}(x)=p\left(x\left|\omega_{i}\right|\right) p\left(\omega_{i}\right) \\
& g_{i}(x)=\ln p\left(x \mid \omega_{i}\right)+\ln p\left(\omega_{i}\right)
\end{aligned}
$$

The choice of D-function is not unique

- Decision boundary

Multivariate Gaussian

[^0]
Mahalanobis Distance

$$
\begin{aligned}
& \left\|x_{1}-\mu\right\|_{2}>\left\|x_{2}-\mu\right\|_{2} \\
& \left\|x_{1}-\mu\right\|_{M}=\left\|x_{2}-\mu\right\|_{M}
\end{aligned}
$$

Mahalanobis distance is a normalized distance

$$
\|x-c\|_{M}=\sqrt{(x-\mu)^{T} \sum^{-1}(x-\mu)}
$$

Whitening

- Whitening:
- Find a linear transformation (rotation and scaling) such that the covariance becomes an identity matrix (i.e., the uncertainty for each component is the same)

$$
\mathrm{X}_{2}
$$

solution : $A=U^{T} \Lambda^{-\frac{1}{2}} \quad$ where $\quad \Sigma=U^{T} \Lambda U$

Disc. Func. for Gaussian

■ Minimum-error-rate classifier

$$
\begin{gathered}
g_{i}(x)=\ln p\left(x \mid \omega_{i}\right)+\ln p\left(\omega_{i}\right) \\
g_{i}(x)=-\frac{1}{2}\left(x-\mu_{i}\right)^{T} \Sigma_{i}^{-1}\left(x-\mu_{i}\right)-\frac{d}{2} \ln 2 \pi-\frac{1}{2} \ln \left|\Sigma_{i}\right|+\ln p\left(\omega_{i}\right)
\end{gathered}
$$

Case I: $\sum_{i}=\sigma^{2} I$

$$
\begin{aligned}
& \left.g_{i}(x)=-\frac{\left\|x-\mu_{i}\right\|^{2}}{2 \sigma^{2}}+\ln p\left(\omega_{i}\right)=-\frac{1}{2 \sigma^{2}} x^{T} x+\mu_{i}^{T} x+\mu_{i}^{T} \mu\right]+\ln p\left(\omega_{i}\right) \\
& g_{i}(x)=-\left(\frac{1}{\sigma^{2}} \mu_{i}\right)^{T} x+\left(-\frac{1}{2 \sigma^{2}} \mu_{i}^{T} \mu+\ln p\left(\omega_{i}\right)\right) \\
& =W_{i}^{T} x+W_{i 0} \quad \text { Liner discriminant function }
\end{aligned}
$$

Boundary: $\quad g_{i}(x)=g_{j} \Rightarrow W^{T}\left(x-x_{0}\right)=0 \quad$ where

$$
\begin{aligned}
& W=\mu_{i}-\mu_{j} \\
& x_{0}=\frac{1}{2}\left(\mu_{i}+\mu_{j}\right)-\frac{\sigma^{2}}{\left\|\mu_{i}-\mu_{j}\right\|^{2}} \ln \frac{p\left(\omega_{i}\right)}{p\left(\omega_{j}\right)}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

Example

- Assume $\mathrm{p}\left(\omega_{\mathrm{i}}\right)=\mathrm{p}\left(\omega_{\mathrm{i}}\right)$

Let's derive the decision boundary:

$$
\left(\mu_{i}-\mu_{j}\right)^{T}\left[x-\frac{\mu_{i}+\mu_{j}}{2}\right]=0
$$

Case II: $\sum_{\mathrm{i}}=\sum$

$$
\begin{aligned}
g_{i}(x) & =-\frac{1}{2}\left(x-\mu_{i}\right)^{T} \Sigma^{-1}\left(x-\mu_{i}\right)+\ln p\left(\omega_{i}\right) \\
\Longleftrightarrow g_{i}(x) & =\left(\Sigma^{-1} \mu_{i}\right)^{T} x+\left(-\frac{1}{2} \mu_{i}^{T} \Sigma^{-1} \mu_{i}+\ln p\left(\omega_{i}\right)\right) \\
& =W_{i}^{T} x+W_{i 0}
\end{aligned}
$$

The decision boundary is still linear:

$$
\begin{aligned}
& W^{T}\left(x-x_{0}\right)=0 \quad \text { where } \\
& W=\Sigma^{-1}\left(\mu_{i}-\mu_{j}\right) \\
& x_{0}=\frac{1}{2}\left(\mu_{i}+\mu_{j}\right)-\frac{\ln p\left(\omega_{i}\right)-\ln p\left(\omega_{j}\right)}{\left.\left(\mu_{i}-\mu_{j}\right)^{T} \Sigma^{-1} \mu_{i}-\mu_{j}\right)}\left(\mu_{i}-\mu_{j}\right)
\end{aligned}
$$

Case III: $\sum_{\mathrm{i}}=$ arbitrary

$$
\begin{aligned}
g_{i}(x) & =x^{T} A_{i} x+W_{i}^{T} x+W_{i 0} \quad \text { where } \\
A_{i} & =-\frac{1}{2} \Sigma_{i}^{-1} \\
W_{i} & =\Sigma_{i}^{-1} \mu_{i} \\
W_{i 0} & =-\frac{1}{2} \mu_{i}^{T} \Sigma_{i}^{-1} \mu_{i}-\frac{1}{2} \ln \left|\Sigma_{i}\right|+\ln p\left(\omega_{i}\right)
\end{aligned}
$$

The decision boundary is no longer linear, but hyperquadrics!

Bayesian Learning

■ Learning means "training"
■ i.e., estimating some unknowns from
"training data"
■ WHY?

- It is very difficult to specify these unknowns
- Hopefully, these unknowns can be recovered from examples collected.

Maximum Likelihood Estimation

■ Collected examples $\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$

- Estimate unknown parameters θ in the sense that the data likelihood is maximized
■ Likelihood $\quad p(D \mid \theta)=\prod_{k=1}^{n} p\left(x_{k} \mid \theta\right)$
- Log Likelihood

$$
L(\theta)=\ln p(D \mid \theta)=\sum_{k=1}^{n} \ln p\left(x_{k} \mid \theta\right)
$$

- ML estimation

$$
\theta^{*}=\underset{\theta}{\arg \max } p(D \mid \theta)=\underset{\theta}{\arg \max } L(D \mid \theta)
$$

Case I: unknown μ

$$
\begin{gathered}
\ln p\left(x_{k} \mid \mu\right)=-\frac{1}{2} \ln \left[(2 \pi)^{d}|\Sigma|\right]-\frac{1}{2}\left(x_{k}-\mu\right)^{T} \Sigma^{-1}\left(x_{k}-\mu\right) \\
\frac{\partial \ln p\left(\left(x_{k} \mid \mu\right)\right.}{\partial \mu}=\Sigma^{-1}\left(x_{k}-\mu\right) \\
\sum_{k=1}^{n} \Sigma^{-1}\left(x_{k}-\hat{\mu}\right)=0 \quad \Leftrightarrow \hat{\mu}=\frac{1}{n} \sum_{k=1}^{n} x_{k}
\end{gathered}
$$

Case II: unknown μ and Σ

$\ln p\left(x_{k} \mid \mu, \Delta\right)=-\frac{1}{2} \ln 2 \pi \Delta-\frac{1}{2 \Delta}\left(x_{k}-\mu\right)^{2} \quad$ let $\Delta=\sigma^{2}$
$\frac{\partial \ln p\left(x_{k} \mid \mu, \Delta\right)}{\partial \mu}=\frac{1}{\sigma}\left(x_{k}-\mu\right)$
$\frac{\partial \ln p\left(x_{k} \mid \mu, \Delta\right)}{\partial \Delta}=-\frac{1}{2 \Delta}+\frac{\left(x_{k}-\mu\right)^{2}}{2 \Delta^{2}} \quad \square-\sum_{k=1}^{n} \frac{1}{\hat{\Delta}}+\sum_{k=1}^{n} \frac{\left(x_{k}-\hat{\mu}\right)^{2}}{\hat{\Delta}^{2}}=0$
$\square \begin{aligned} & \hat{\mu}=\frac{1}{n} \sum_{k=1}^{n} x_{k} \\ & \hat{\sigma}^{2}=\hat{\Delta}^{2}=\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-\hat{\mu}\right)^{2}\end{aligned}$
generalize $\hat{\mu}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$
$\hat{\Sigma}=\frac{1}{n} \sum_{k=1}^{n}\left(x_{k}-\hat{\mu}\right)\left(x_{k}-\hat{\mu}\right)^{T}$

Bayesian Estimation

- Collected examples $\mathrm{D}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$, drawn independently from a fixed but unknown distribution $\mathrm{p}(\mathrm{x})$
- Bayesian learning is to use D to determine $\mathrm{p}(\mathrm{x} \mid \mathrm{D})$, i.e., to learn a p.d.f.
- $\mathrm{p}(\mathrm{x})$ is unknown, but has a parametric form with parameters $\boldsymbol{\theta} \sim \mathrm{p}(\boldsymbol{\theta})$
- Difference from ML: in Bayesian learning, θ is not a value, but a random variable and we need to recover the distribution of θ, rather than a single value.

Bayesian Estimation

$p(x \mid D)=\int p(x, \theta \mid D) d \theta=\int p(x \mid \theta) p(\theta \mid D) d \theta$

- This is obvious from the total probability rule, i.e., $\mathrm{p}(\mathrm{x} \mid \mathrm{D})$ is a weighted average over all θ
- If $\mathrm{p}(\theta \mid \mathrm{D})$ peaks very sharply about some value $\boldsymbol{\theta}^{*}$, then $p(x \mid D) \sim p\left(x \mid \theta^{*}\right)$

The Univariate Case

- assume μ is the only unknown, $\mathrm{p}(\mathrm{x} \mid \mu) \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- μ is a r.v., assuming a prior $\mathrm{p}(\mu) \sim N\left(\mu_{0}, \sigma_{0}^{2}\right)$, i.e., μ_{0} is the best guess of μ, and σ_{0} is the uncertainty of it.

$$
\begin{gathered}
p(\mu \mid D) \propto p(D \mid \mu) p(\mu)=\prod_{k=1}^{n} p\left(x_{k} \mid \mu\right) p(\mu) \\
\text { where } \quad p\left(x_{k} \mid \mu\right) \sim N\left(\mu, \sigma^{2}\right), \quad p(\mu) \sim N\left(\mu_{o}, \sigma_{0}^{2}\right) \\
p(\mu \mid D) \propto \exp \left[-\frac{1}{2}\left(\left(\frac{n}{\sigma^{2}}+\frac{1}{\sigma_{0}^{2}}\right) \mu^{2}-2\left(\frac{1}{\sigma^{2}} \sum_{k} x_{k}+\frac{\mu_{0}}{\sigma_{0}^{2}}\right) \mu\right]\right.
\end{gathered}
$$

$\mathrm{P}(\mu \mid \mathrm{D})$ is also a Gaussian for any \# of training examples

The Univariate Case

if we let $p(\mu \mid D) \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)$
we have
$\mu_{\mathrm{n}}=\left(\frac{n \sigma_{0}{ }^{2}}{n \sigma_{0}{ }^{2}+\sigma^{2}}\right) \hat{\mu}_{n}+\left(\frac{\sigma^{2}}{n \sigma_{0}{ }^{2}+\sigma^{2}}\right) \mu_{0} \begin{aligned} & \text { The best guess for } \mu \text { after } \\ & \text { observing } n \text { examples }\end{aligned}$ $\sigma_{n}^{2}=\frac{\sigma_{0}{ }^{2} \sigma^{2}}{n \sigma_{0}{ }^{2}+\sigma^{2}} \quad \begin{aligned} & \sigma_{n} \text { measures the uncertainty of this guess } \\ & \text { after observing n examples }\end{aligned}$ $\xrightarrow{\quad} \begin{aligned} & \mathrm{p}(\mu \mid \mathrm{D}) \text { becomes more and } \\ & \text { more sharply peaked wh } \\ & \text { observing more and mo } \\ & \text { examples, i.e., the uncer } \\ & \text { decreases. }\end{aligned}$

The Multivariate Case

$$
p(x \mid \mu) \sim N(\mu, \Sigma) \quad p(\mu) \sim N\left(\mu_{0}, \Sigma_{0}\right)
$$

let $p(\mu \mid D) \sim N\left(\mu_{n}, \Sigma_{n}\right)$, we have

$$
\begin{aligned}
& \mu_{n}=\Sigma_{0}\left(\Sigma_{0}+\frac{1}{n} \Sigma\right)^{-1} \hat{\mu}_{n}+\frac{1}{n} \Sigma\left(\Sigma_{0}+\frac{1}{n} \Sigma\right)^{-1} \hat{\mu}_{0} \\
& \Sigma_{n}=\Sigma_{0}\left(\Sigma_{0}+\frac{1}{n} \Sigma\right)^{-1} \frac{1}{n} \Sigma
\end{aligned}
$$

where $\hat{\mu}_{n}=\frac{1}{n} \sum_{k=1}^{n} x_{k}$
and $\quad p(x \mid D)=\int p(x \mid \mu) p(\mu \mid D) d \mu \sim N\left(\mu_{n}, \Sigma+\Sigma_{n}\right)$
\checkmark Principal Component Analysis (PCA)
\checkmark Eigenface for Face Recognition

PCA: motivation

- Pattern vectors are generally confined within some low-dimensional subspaces
- Recall the basic idea of the Fourier transform
- A signal is (de)composed of a linear combination of a set of basis signal with different frequencies.

$$
\begin{gathered}
\text { PCA: idea } \\
\vec{x}=\vec{m}+\alpha \vec{e} \\
\begin{aligned}
J\left(\alpha_{1}, \ldots, \alpha_{n}, e\right) & =\sum_{k=1}^{n}\left\|\left(m+\alpha_{k} e\right)-x_{k}\right\|^{2} \\
& =\sum \alpha_{k}^{2}\|e\|^{2}-2 \sum \alpha_{k} e^{T}\left(x_{k}-m\right)+\sum\left\|x_{k}-m\right\|^{2}
\end{aligned} \\
\frac{\partial J}{\partial \alpha_{k}}=2 \alpha_{k}-2 e^{T}\left(x_{k}-m\right)=0 \Rightarrow \alpha_{k}=e^{T}\left(x_{k}-m\right)
\end{gathered}
$$

PCA

$$
\begin{aligned}
J(e) & =\sum \alpha_{k}^{2}-2 \sum \alpha_{k}^{2}+\sum\left\|x_{k}-m\right\|^{2} \\
& =-e^{T} \sum\left(x_{k}-m\right)\left(x_{k}-m\right)^{T} e+\sum\left\|x_{k}-m\right\|^{2} \\
& =-e S e+\sum\left\|x_{k}-m\right\|^{2}
\end{aligned}
$$

$\arg \min J(e)=\arg \max e^{T} S e \quad$ s.t. $\quad\|e\|=1$
e

$$
e^{*}=\arg \max e^{T} S e+\lambda\left(e^{T} e-1\right)
$$

$$
S e-\lambda e=0, \quad \text { i.e., } \quad e^{T} S e=1
$$

To maximize $\mathrm{e}^{\mathrm{T}} \mathrm{Se}$, we need to select $\lambda_{\text {max }}$

Algorithm

- Learning the principal components from $\left\{\mathrm{x}_{1}\right.$, $\left.\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
(1) $m=\frac{1}{n} \sum_{k=1}^{n} x_{k}, \quad A=\left[x_{1}-m, \ldots, x_{n}-m\right]$
(2) $S=\sum_{k=1}^{n}\left(x_{k}-m\right)\left(x_{k}-m\right)^{T}=A A^{T}$
(3) eigenvalue decomposition $S=U^{T} \Sigma U$
(4) sorting λ_{i} and u_{i}
(5) $P^{T}=\left[u_{1}{ }^{T}, u_{2}^{T}, \ldots, u_{m}^{T}\right]$

PCA for Face Recognition

- Training data $\mathrm{D}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{M}}\right\}$
- Dimension (stacking the pixels together to make a vector of dimension N)
- Preprocessing
\checkmark cropping
\checkmark normalization
- These faces should lie in a "face" subspace
- Questions:
- What is the dimension of this subspace?
- How to identify this subspace?
- How to use it for recognition?

Eigenface

$\left\{x_{i}\right\}_{i=1}^{M} x \in R^{N} \quad M<N$
$\mu=\frac{1}{M} \sum_{i=1}^{M} x_{i}$
$S=\sum_{i=1}^{M}\left(x_{i}-\mu\right)\left(x_{i}-\mu\right)^{T}$
$S=U L U^{T}$
$y=U^{T}(x-\mu)$

The EigenFace approach: M. Turk and A. Pentland, 1992

An Issue

- In general, N >> M
- However, S , the covariance matrix, is NxN !
- Difficulties:
- S is ill-conditioned. $\operatorname{Rank}(\mathrm{S}) \ll \mathrm{N}$
- The computation of the eigenvalue decomposition of S is expensive when N is large
- Solution?

Solution I:

■ Let's do eigenvalue decomposition on $\mathrm{A}^{\mathrm{T}} \mathrm{A}$, which is a MxM matrix

- $\mathrm{A}^{\mathrm{T}} \mathrm{Av}_{\mathrm{v}}=\lambda_{\mathrm{v}}$
$\square \rightarrow \mathrm{AA}^{\mathrm{T}} \mathrm{Av}=\lambda \mathrm{Av}$
- To see is clearly! $\left(A A^{T}\right)(A v)=\lambda(A v)$

■ i.e., if v is an eigenvector of $A^{T} A$, then $A v$ is the eigenvector of AA^{T} corresponding to the same eigenvalue!
■ Note: of course, you need to normalize Av to make it a unit vector

Solution II:

- You can simply use SVD (singular value decomposition)
■ $\mathrm{A}=\left[\mathrm{x}_{1}-\mathrm{m}, \ldots, \mathrm{x}_{\mathrm{M}}-\mathrm{m}\right]$
■ $\mathrm{A}=\mathrm{U} \sum \mathrm{V}^{\mathrm{T}}$
- A: NxM
- U: NxM UTU=I
$-\sum: ~ M x M$ diagonal
$-\mathrm{V}: \mathrm{MxM} \quad \mathrm{V}^{\mathrm{T}} \mathrm{V}=\mathrm{VV}^{\mathrm{T}}=\mathrm{I}$

Fisher Linear Discrimination
\checkmark LDA
\checkmark PCA + LDA for Face Recognition

When does PCA fail?

Linear Discriminant Analysis

- Finding an optimal linear mapping W
- Catches major difference between classes and discount irrelevant factors
- In the mapped space, data are clustered

Within/between class scatters

$$
m_{1}=\frac{1}{n_{1}} \sum_{x \in D_{1}} x, \quad m_{2}=\frac{1}{n_{2}} \sum_{x \in D_{2}} x
$$

the linear transform : $\quad y=W^{T} x$
$\widetilde{m}_{1}=\frac{1}{n_{1}} \sum_{x \in D_{1}} W^{T} x=W^{T} m_{1}, \quad \widetilde{m}_{2}=W^{T} m_{2}$
$S_{1}=\sum_{x \in D_{1}}\left(x-m_{1}\right)\left(x-m_{1}\right)^{T}, \quad S_{2}=\sum_{x \in D_{2}}\left(x-m_{2}\right)\left(x-m_{2}\right)^{T}$
$\widetilde{S}_{1}=\sum_{y \in Y_{1}}\left(y-\widetilde{m}_{1}\right)^{2}=W^{T} S_{1} W, \quad \widetilde{S}_{2}=\sum_{y \in Y_{2}}\left(y-\widetilde{m}_{2}\right)^{2}=W^{T} S_{2} W$
within class scatter : $S_{W}=S_{1}+S_{2}$
between class scatter : $S_{B}=\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T}$

Fisher LDA

$J(W)=\frac{\left|\widetilde{m}_{1}-\widetilde{m}_{2}\right|^{2}}{\widetilde{S}_{1}+\widetilde{S}_{2}}=\frac{W^{T}\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{T} W}{W^{T}\left(S_{1}+S_{2}\right) W}=\frac{W^{T} S_{B} W}{W^{T} S_{W} W}$

$$
W^{*}=\underset{W}{\arg \max } J(W)
$$

$\max J(W) \Leftrightarrow S_{B} w=\lambda S_{W} w \leftarrow$ this is a generalized eigenvalue problem

Solution I

- If S_{w} is not singular

$$
S_{W}^{-1} S_{B} w=\lambda w
$$

- You can simply do eigenvalue decomposition on $S_{W}{ }^{-1} S_{B}$

Solution II

■ Noticing:
$-\mathrm{S}_{\mathrm{B}} \mathrm{W}$ is on the direction of $\mathrm{m}_{1}-\mathrm{m}_{2}$ (WHY?)

- We are only concern about the direction of the projection, rather than the scale
■ We have

$$
w=S_{W}^{-1}\left(m_{1}-m_{2}\right)
$$

Multiple Discriminant Analysis

$$
\begin{array}{ll}
m_{i}=\frac{1}{n_{i}} \sum_{x \in D_{i}} x, & \widetilde{m}_{i}=\frac{1}{n_{i}} \sum_{y \in Y_{i}} y=W^{T} m_{i}, \\
S_{i}=\sum_{x \in D_{i}}\left(x-m_{i}\right)\left(x-m_{i}\right)^{T} & y=W^{T} x \\
S_{W}=\sum_{k=1}^{C} S_{k} & \widetilde{m}=\frac{1}{n} \sum_{k=1}^{c} n_{k} \widetilde{m}_{k}, \\
\widetilde{S}_{W}=W^{T} S_{W} W, \\
\widetilde{S}_{B}=\sum_{k=1}^{c} n_{i}\left(\widetilde{m}_{i}-\widetilde{m}\right)\left(\widetilde{m}_{i}-\widetilde{m}\right)^{T}=W^{T} S_{B} W \\
W^{*}=\underset{W}{\arg \max } \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|}=\frac{\left|W^{T} S_{B} W\right|}{\left|W^{T} S_{W} W\right|} \\
S_{B} w_{i}=\lambda S_{W} w_{i}
\end{array}
$$

Comparing PCA and LDA

MDA for Face Recognition

Lighting

- PCA does not work well! (why?)
- solution: PCA+MDA

Independent Component Analysis

\checkmark The cross-talk problem
\checkmark ICA

Cocktail party

Can you recover $\mathrm{s}_{1}(\mathrm{t})$ and $\mathrm{s}_{2}(\mathrm{t})$ from
$x_{1}(t), x_{2}(t)$ and $\mathrm{x}_{3}(\mathrm{t})$?

Formulation

$$
\begin{aligned}
& x_{j}=a_{j 1} s_{1}+\ldots+a_{j n} s_{n} \quad \forall j \\
& X=\sum_{i=1}^{n} a_{i} s_{i} \quad \text { or } \quad X=A S
\end{aligned}
$$

Both A and S are unknowns!
Can you recover both A and S from X ?

The Idea

$$
Y=W^{T} X=W^{T} A S=Z^{T} S
$$

- y is a linear combination of $\left\{\mathrm{s}_{\mathrm{i}}\right\}$
- Recall the central limit theory!
- A sum of even two independent r.v. is more

Gaussian than the original r.v.

- So, Z^{T} S should be more Gaussian than any of $\left\{s_{i}\right\}$
- In other words, $Z^{\mathrm{T}} \mathrm{S}$ become least Gaussian when in fact equal to $\left\{\mathrm{s}_{\mathrm{i}}\right\}$
- Amazed!

Face Recognition: Challenges

View

[^0]: \checkmark The principal axes (the direction) are given by the eigenvectors of Σ;
 \checkmark The length of the axes (the uncertainty) is given by the eigenvalues of Σ

