
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): PKDD 2006, LNAI 4213, pp. 309 – 321, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Scalable Distributed Stream Mining System for
Highway Traffic Data*

Ying Liu1, Alok Choudhary2, Jianhong Zhou3, and Ashfaq Khokhar3

1 Graduate University of Chinese Academy of Sciences
Data Technology and Knowledge Economy Research Center, Chinese Academy of Sciences

Beijing, China 100080
yingliu@gucas.ac.cn

2 Electrical and Computer Engineering Department, Northwestern University
 Evanston, IL, USA 60208

choudhar@ece.northwestern.edu
3 Computer Science Department, University of Illinois at Chicago

Chicago, IL, USA 60607
{jzhou13, ashfaq}@uic.edu

Abstract. To achieve the concept of smart roads, intelligent sensors are being
placed on the roadways to collect real-time traffic streams. Traditional method
is not a real-time response, and incurs high communication and storage costs.
Existing distributed stream mining algorithms do not consider the resource
limitation on the lightweight devices such as sensors. In this paper, we propose
a distributed traffic stream mining system. The central server performs various
data mining tasks only in the training and updating stage and sends the
interesting patterns to the sensors. The sensors monitor and predict the coming
traffic or raise alarms independently by comparing with the patterns observed in
the historical streams. The sensors provide real-time response with less wireless
communication and small resource requirement, and the computation burden on
the central server is reduced. We evaluate our system on the real highway
traffic streams in the GCM Transportation Corridor in Chicagoland.

Keywords: data stream, distributed computing, real-time, traffic, sensor.

1 Introduction

Advances in computing and communication over wired and wireless networks have
resulted in many pervasive distributed computing environments, such as PDAs, cell
phones, sensors, etc. Data in such applications is increasingly getting transformed to
continuous data streams, which are dynamically changing, exhibit high volume, have
high dimensionality, and are potentially infinite in length. Several issues related to
mining stream data have been investigated in [1, 2, 3, 4, 8, 11]. The ever-increasing
computational capacity of ubiquitous equipments presents an opportunity for
intelligent data analysis to be performed “anytime, anywhere” with constrained
resources. Stream mining on pervasive computing devices has a broad range of
applications. For example, commercial fleet management companies spend a lot of

* This work was done during the first author’s doctoral study in Northwestern University.

310 Y. Liu et al.

time and labor in collecting vehicle performance data, studying the data offline, and
estimating the condition of the vehicle primarily through manual efforts. If on-board
PDA was installed in every vehicle and connected with the remote server through
wireless networks, real-time analysis of vehicle data streams would be achieved by
the PDAs with less communication with the server. Patient health monitoring, forest
fire monitoring, and security surveillance by sensor networks are also good examples.

Mining of highway traffic data, such as that of Gary-Chicago-Milwaukee (GCM)
Corridor Transportation System, is a typical example of distributed stream mining
application, where hundreds of sensors collect and send the traffic status data to a
central server all day long over the expensive wireless and wired connections.
Currently, a central server collects all the data and performs congestion analysis
offline. This traffic analysis results are then published to the travelers through a
central interface. However, this centralized process has several shortcomings: 1) over
1.2 GB data is sent to the server every day (5 MB per sampling) in GCM, which must
be a communication burden on low bandwidth networks. 2) The huge amount of data
per day is also a heavy burden on the storage system. 3) The traffic information
provided to the travelers is not a real-time response due to the communication
overhead. 4) This traffic data corresponds to only a small fraction of roads in the
Chicago area and thus is likely to increase over time when more roads are equipped
with sensors. There is an astonishing fact that traffic congestion wastes 2 billion
gallons of fuel per year in the United States alone. 135 million US drivers spend 2
billion hours trapped in congestion per year. The total cost to Americans due to traffic
congestion exceeds $100 billion per year. It would be highly beneficial to predict the
congestion level as early as possible so that the drivers can avoid being trapped by
choosing another route in advance. Therefore, there is an urgent demand for a traffic
analysis system where traffic data is processed and mined in a distributed fashion, and
the sensors are able to perform stream data analysis techniques on the fly (such as
abnormal events real-time detection, traffic jam prediction, flow speed prediction,
etc.). This demand for such a system is likely to increase with the increase in the use
of mobile database devices inside the vehicles. As a matter of fact, this problem is
very difficult because of the following issues:

1) Very little research has been done in distributed stream mining. Most of the
existing algorithms are designed to work as a centralized application. This type of
approaches is not scalable when the number of ubiquitous devices is large and
cannot provide real-time response.

2) Although some distributed data mining algorithms have been proposed in [10],
they don’t consider the unique characteristics of data streams that the patterns
change dynamically.

3) Sensors are lightweight devices, short of power supply, computation capability and
storage size. Data mining on resource-constrained devices is not well explored yet.

In this paper, we propose a scalable distributed traffic stream mining system. It is
designed to monitor the current roadway traffic status and predict the coming traffic
in real-time. The proposed system consists of the following four phases:
preprocessing, training, monitoring/predicting and updating. In the training phase, the
central server performs various offline data mining techniques on the cleaned
historical data streams, and ships the discovered patterns back to the sensors. Based

 A Scalable Distributed Stream Mining System for Highway Traffic Data 311

on the similarity of the patterns, it also groups the sensors into clusters. In the
monitoring/predicting phase, each sensor predicts the coming traffic using the global
patterns. If an “abnormal” event is predicted or observed at a sensor, the sensor raises
an alarm immediately. The alarm is sent to the central server which can notify all the
members in the group. Real-time analysis is achieved because each sensor works
independently and incurs no communication delay. The updating phase is triggered
periodically or when the number of mispredictions exceeds a threshold. There are
three main characteristics of our real-time distributed traffic stream mining system: 1)
The central server takes the major computation tasks in the training phase and the
updating phase using its strong computation capability; 2) the sensors or similar
lightweight devices perform predicting or monitoring using their constrained
resources; 3) the data mining techniques used in the updating phase update the
patterns efficiently. The design of this system tries to target the three challenges
mentioned above. The proposed framework can be applied to similar applications,
like forest fire monitoring, vehicle health monitoring, etc.

Data from a real roadway transportation system (GCM) is used in our experiments
to evaluate our proposed system. It shows good scalability in various aspects.
Memory usage on each sensor and communication overheads are small.

The rest of this paper is organized as follows. Section 2 briefly introduces the
related algorithms and systems. Section 3 describes a highway transportation system.
Section 4 presents the overall architecture of the real-time distributed traffic stream
mining system and describes the methodology in each phase, respectively.
Experimental results are presented in Section 6, and Section 7 summarizes this paper.

2 Related Work

2.1 Stream Mining

Lossy Counting [8] presents an algorithm for computing frequency counts exceeding
a user-specified threshold over data streams. Gianella et al. [3] proposed an efficient
approach to mine time-sensitive frequent patterns. It incrementally maintains only the
historical information of (sub)frequent patterns. In order to adapt quickly to the
changes of the underlying data stream, Aggarwal et al. [2] trains and tests streams
simultaneously by selecting an appropriate window of past data to build the classifier.
In [4] Guha et al. proposed a constant-factor approximation algorithm for K-Median
problem in data stream clustering. This algorithm maintains a consistently good
quality using a small amount of memory and time.

2.2 Time-Series Data Mining

A time-series database consists of sequences of values or events changing with time.
Similarity search [12] finds sequences that differ only slightly from a given sequence.
Similarity search analysis is useful in stock data analysis, cardiogram analysis, traffic
patterns, power consumption analysis, etc.

312 Y. Liu et al.

2.3 Distributed Stream Mining

As many large transaction databases are available, [15] proposes Fast Distributed
Mining (FDM), which generates a small number of candidate sets and reduces the
number of messages to be passed. [14] extends the traditional ARM to peer-to-peer
computing environments. This algorithm combines ARM, executed locally at each
node, with a majority voting protocol to discover all the rules that exist in the
combined database. It is asynchronous and communication efficient.

VEDAS, a real-time on-board stream mining system for vehicle-health-monitoring
and driver status characterization, is developed in [6]. The PDAs perform most of the
data management and mining tasks and send the analysis results to the central server
site. This system minimizes bandwidth usage by limiting the centralization of the
sensed data. The mobile stock monitoring system in [7], and the health monitoring
tool in [5] are similar to VEDAS in terms of conceptual design. Our proposed system
is sensor networks based, where the sensors have very limited computation capability
and resources. Therefore, the central server has to take the main computation tasks.

2.4 Roadway Traffic Management System

Contemporary roadway traffic management systems have investigated issues related
to route planning, automatic accident detection, short-term travel prediction, and
better user interfaces for answering these questions. Advanced traffic management
systems such as TrafficWise (Indiana's Intelligent Transportation System) rely on
traffic flow speed sensors and cameras, as well as information from emergency
responders and roadside assistance patrols, to detect traffic problems and determine
the underlying causes. The information is centrally collected, analyzed, and then the
results are delivered back to drivers, dispatchers, and emergency responders.
Grossman et al. [13] have developed a framework that detects real-time changes in
highway traffic data and send real-time alerts. However, the data collected at different
sensors are centralized to a supercomputer cluster system for analysis. In contrast, our
system doesn’t need to transmit any data streams unless updating the patterns.

3 Gary-Chicago-Milwaukee (GCM) Corridor Transportation
Data

The GCM Corridor (Figure 1) consists of the 16 urbanized counties and 2,500 miles
of roadways which connect the three cities. 855 sensors are placed on the roads, and
each sensor collects 288 streams every day (one sampling every 5 minutes). Each
sensor collects the real-time traffic data at its location and sends it to the central server
over wireless connections periodically. Each stream consists of static attributes
(longitude, latitude, length, direction, etc.) and dynamic attributes (vehicle speed,
congestion level, occupancy, volume, etc.)

GCM travel system is providing a number of services to travelers, for example, in
Figure 1, the different colors on the roadways mean different congestion levels.
Currently, all of the data analysis is still performed offline on a central server. It is not
real-time response because the sensors collect data every 5 minutes. In addition, the
computation burden on the server is heavy.

 A Scalable Distributed Stream Mining System for Highway Traffic Data 313

4 Framework of Distributed Traffic Stream Mining System

In order to reduce data transmission and computation time of the traditional
centralized stream mining model, we propose a distributed traffic stream mining
system. In our proposed system, the central server performs data mining techniques
to discover patterns in the training phase and update patterns in the updating phase,
respectively. The sensors perform monitoring and predicting tasks. This system
incurs little data transmission except the transmission for the discovered patterns,
alerts and the new streams for rebuilding the model. As the sensors in a roadway
traffic system usually do not have as sufficient power supply or computation
capability as on-board PDAs in VEDAS, most of the computation has to be
assigned to the central server. Figure 2 shows the framework of our proposed
system, which consists of four phases: preprocessing, training, monit-
oring/predicting, and updating. Each phase is described in detail in the following
subsections.

5.1 Preprocessing Phase

The central server collects streams from the distributed servers, then, extracts time-
series attributes that dynamically change with time (vehicle speed, congestion level,
etc.) from the raw data, and eliminates the static attributes. Clean the outliers and fill
up the missing numbers.

Fig. 1. Gary-Chicago-Milwaukee Corridor Transportation System

314 Y. Liu et al.

5.2 Training Phase

In this phase, the central server performs various data mining techniques on the
preprocessed data. A number of interesting patterns or trends can be mined. Then, the
interesting patterns are relayed to the sensors over the wireless network connections.
Since the congestion level prediction is very valuable to travelers as mentioned in
Section 1, we use “frequent episode mining” technique, which can help predict the
congestion level, as an example to illustrate the training phase. We would like to
emphasize that there are several algorithms can be applied to this application.
However, due to limitations in space, we only present the details of one technique,
although we would like to provide more.

Frequent Episode Mining. In roadway traffic data, the “congestion level” observed
by each sensor can be viewed as a sequence (A sequence is a series of events where
each event has an associated timing stamp.). A congestion level sequence database is
created by putting all the sequences from all the distributed sensors together. An
example of a congestion level sequence taking place at a sensor is

(non, 06:05), (light, 06:10), (medium, 06:15), (light, 06:20), (medium, 06:25), (heavy, 06:30)

The numbers indicate the timings when the events happened. The episode
“light_congestion followed by medium_congestion” occurs twice in a window of
6 events.

Frequent episode mining is to find the collections of events which occur so
frequently that exceed a pre-defined threshold [9] in the sequence database. Note that,
here, we are only interested in the episodes where the events have no intervals in
between. In the example sequence, if the threshold is set at 2, “non_congestion
followed by medium_congestion” is not considered as a frequent episode because
“medium_congestion” doesn’t follow “non_congestion” immediately. Figure 3
presents the pseudo code of the frequent episode mining algorithm used in our system.
It adopts an Apriori-like level-wise searching approach that generates new candidates
and calculates their supports by scanning the database at each level. Remember that
all the subepisodes of any frequent episode must be frequent. Please note line 6 in
Figure 3. For each occurrence of candidate episode c in sequence s, the support of c is
increased by 1, which is different from the support counting in association rule mining

Fig. 2. Framework of the distributed traffic stream mining system

Data Cleaning/
Attribute Extraction

Monitoing/Predicting

Frequent Episode Mining/
Similarity Search/

Spatial-Temproal Pattern
Search

Update Model

Historical Data

Current Stream

Normal?

External DevicesNo

Current Stream

Frequent Patterns/
Trends

 A Scalable Distributed Stream Mining System for Highway Traffic Data 315

where the support of c is only increased by 1 no matter how many times c occurs in s.
In addition, we keep track of which sensor and when each frequent episode happens.

The frequent congestion level episodes can help transportation domain experts
answer questions such as how the episodes evolve over time by sorting the interesting
patterns by the timing stamps, how a congestion propagates spatially (what is the
origin of the congestion and by what routes the congestion propagates) by combining
the knowledge of the spatial relations (distance, direction, inter-connection, etc.)
between the corresponding sensors, etc. Spatial effects are indirectly taken into
account because we do observe unusual effects of traffic pattern in one area to another
one in a “seemingly unrelated area”, which is not so obvious.

Consistent Pattern. We proceed to find the consistent patterns. Assume we have N
days’ data and a user-specified threshold M. If a frequent episode fe happens on M
out of the N days at a sensor A at a certain time t, we call (A, t, fe) a consistent
pattern. All the sensors that have a common fe are clustered into a same group. A
counter is maintained in each group to record the number of updating request.
Finally, we send the consistent patterns to the corresponding sensors over wireless
connections. We are interested in the consistent patterns and the corresponding
sensors because the patterns tend to re-occur. In addition, since the sensors in the
same group show similar traffic flow trends for known or unknown reason, a
sensor’s coming traffic could be predicted based on the most recent observations
from its group members.

One may have a question that why not to let each sensor predict its coming traffic
by using its local statistical values, such as the mean speed of the traffic flow

Input: sequence database SD, congestion level set E, min support threshold min_fr
Output: frequent episodes collection FE
1. C1 := {{e} | e ∈ E};
2. i := 1;
3. while Ci ≠ ∅ do
4. forall s ∈ SD do //scan database, calculate support
5. forall c ∈ Ci do
6. for each occurrence of c in s, c.support ++;
7. end forall
8. end forall
9. forall c ∈ Ci do //identify frequent episodes
10. if c.support > min_fr
11. add c to FEi;
12. end if
13. end forall
14. build Ci+1 from FEi; //generate candidate episodes
15. i := i + 1;
16. end while
17. FE := ∪ FEi;

Fig. 3. Pseudo code of the frequent episode mining algorithm

316 Y. Liu et al.

observed in the past few days at a given time, or the mean congestion level in the past
few days at a given time, or the observations of the last day. The answer is in the
following three aspects: 1) the storage cost is higher than using our proposed
framework and algorithms. A sensor needs a relatively large memory to store the
streams in the past few days in order to maintain the statistical numbers. In contrast,
in our system, each sensor only stores the frequent patterns delivered by the central
server. 2) It requires higher computation capability and power consumption for a
sensor to calculate the statistical values, which may exceed the capability of any
similar lightweight devices in pervasive environments. In contrast, the computation on
each sensor in our system is very simple: Compare the new observations with the
patterns; if not matching, send an updating request to increase its group counter by 1,
otherwise, do nothing. 3) Using local statistics, a sensor only sees its local view with
no chance to know the global view of the neighboring areas, which actually may
impact its traffic flow. A group of sensors that share a common consistent pattern
may have similar traffic behaviors. Therefore, it may be more confident to predict the
coming traffic at a certain sensor based on an event happened a moment ago. For
example, consider that sensors A, B, and C always experience the same congestion
level sequence (light, medium, medium, medium) from 6:30am, 6:50am, and 7:20am
for the subsequent 20 minutes, respectively. A, B, and C may or may not be spatially
connected to each other. If today, somehow, the congestion level sequence observed
at A at 6:30am is (medium, heavy, heavy, heavy), it is highly likely that this early rush
hour jam will happen at B and C soon. So A will send a warning to the server, and
then the server will notify B and C so that they can send out “early traffic jam”
warning signals to its local external devices in advance.

Predictive models (decision tree, logistic regression, Naive Bayesian classifier,
etc.) could be used to predict if a heavy congestion would happen in the next
moment. However, either the computation or the storage cost (there must be a
number of rules for different time slots) is larger than those of the frequent episode
mining algorithm.

5.3 Monitoring/Predicting Phase

Each sensor stores its significant patterns mined from the recent historical data,
such as the frequent congestion level episodes at some timing points, the speed
fluctuating patterns, etc. The monitoring/predicting phase is designed to predict the
local roadway coming traffic flow and detect abnormal events deviating from the
observed patterns. For example, sensor X predicts the forthcoming congestion level
l. If l is a severe situation, then X will send a warning to its external device and an
alarm to the server as well. Then, the server will notify all the members of the
cluster containing X. If l is different from the actual level l’, sensor X will send an
updating request to augment the counter in its corresponding group on the server.
The server maintains a counter for each group. The aim of the predictions is to
provide travelers with up-to-date information so that they can choose routes to
avoid being stuck in traffic jams.

 A Scalable Distributed Stream Mining System for Highway Traffic Data 317

5.4 Updating Phase

While monitoring their local traffic streams, the sensors send updating requests to
augment the counter in its corresponding group on the server whenever any
misprediction happens. The server maintains a counter for each group. Once the
counter exceeds a user-specified threshold, the server starts to download new streams
from the sensors which send out the requests. Thus, the data transmission cost is
much smaller than that of collecting new streams from all the sensors. It is not a
heavy burden for the central server, and will not exhaust the sensors’ power.

One important feature of data stream is that its patterns change dynamically,
therefore, there is no need to keep the old patterns when updating the patterns. The
server replaces the oldest day’s data in the database with today’s new data. Then, it
starts to perform some corresponding data mining algorithms. Finally, the updated
patterns are relayed to the sensors over wireless connections. The members in this
specific group may have to wait for one day to be informed the latest patterns.

6 Experimental Results

We evaluate our distributed traffic stream mining system on real traffic streams from
a roadway transportation system, Gary-Chicago-Milwaukee (GCM) Corridor
Transportation System (See details of GCM in Section 3). For the purpose of our
experiment, we extract the dynamic attribute “congestion level”. Each sensor of the
855 sensors contributes a sequence of 288 congestion levels every day. There are four
different congestion levels: non, light, medium, and heavy. We download the traffic
streams of 5 weekdays.

In this section, we only discuss the performance of frequent episode mining. Its
scalability and prediction accuracy are analyzed. Communication overheads and
memory usage are also discussed. All the experiments are performed on a 700-MHz

0

1

2

3

4

5

6

0 200 400 600 800 1000

Number of sensors

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

sup = 0.25%
sup = 0.5%
sup = 0.75%
sup = 1%
sup = 1.25%

Fig. 4. Execution time on one day’s data with
varying number of sensors. The number of
sensors varied from 107 to 855.

0

10

20

30

40

50

60

70

0 10 20 30

Maximum pattern length

E
xe

cu
ti

o
n

 t
im

e
(s

ec
.)

sup = 0.25%
sup = 0.5%
sup = 0.75%

Fig. 5. Execution time on one day’s
data. The maximum pattern length var-
ied from 4 to 24.

318 Y. Liu et al.

Xeon 8-way shared memory parallel machine with a 4GB memory, running the Red
Hat Linux Advanced Server 2.1 operating system. The program is implemented in C.

6.1 Scalability in Training Phase

Since the central server performs the data mining tasks in the training stage, we would
like to investigate the scalability of the data mining algorithms on the server,
specifically the scalability of frequent episode mining when varying the number of
sensors, minimum support or maximum pattern length.

As the number of sensors in different systems may be different, the scalability
when varying the number of sensors is evaluated in Figure 4. The number of sensors
is varied from 107 to 855. The maximum length of a frequent episode is set to be 8.
The execution time on one day’s (24 hours) congestion level sequences scales well
when the number of sensors is increasing.

In order to provide real-time congestion prediction, short episode is more useful.
Thus, we restrict the maximum length of the frequent episodes in each run. The total
number of frequent episodes increases as the maximum length increases. Figure 5
presents the execution time on one day’s (24 hours) congestion level sequences. The
support threshold is varied from 0.25% to 0.75%. When the support is set at 0.25%,
the execution time is increasing fast because both the number of frequent episode
candidates and the number of database scans are huge due to the low support
threshold. For the case of 0.5% and 0.75%, it scales well as the length of episodes
increases.

6.2 Traffic Prediction

As described in Section 5.2, all the sensors (associated with the same timing t) that
have a common “consistent frequent episodes fe” are clustered into the same group.
Then the consistent frequent episodes are sent to the corresponding sensors over
wireless connections for monitoring or predicting purpose. We use a fraction of the 5
weekdays’ data for training and the rest for predicting. Table 1 shows the prediction

Days for training Threshold Days for predicting Avg. cluster size Accuracy

day_1,day_2,day_3 3 day_4 10.3 25.2%

day_1,day_2,day_3 3 day_5 10.3 7%

day_2,day_3,day_4 3 day_5 22.4 11.9%

day_1,day_2 2 day_3 106.4 9.7%

day_1,day_2 2 day_4 106.4 7.7%

day_1,day_2 2 day_5 106.4 8.6%

day_2,day_3 2 day_4 105.8 21.5%

day_2,day_3 2 day_5 105.8 8.9%

day_3, day_4 2 day_5 291.8 6.6%

Table 1. Traffic congestion level prediction accuracy

 A Scalable Distributed Stream Mining System for Highway Traffic Data 319

accuracy. The maximum pattern length is set to be 8 because users are more interested
in short-term predictions. The support threshold is 0.75%. Overall speaking, the
prediction accuracy is not high. The best case happens when using day_1, day_2 and
day_3’s patterns to predict day_4’s traffic, where the overall accuracy is 25.2%. In
addition, in this case, 27% of the sensors get 100% prediction accuracy (All the
predictions made at these sensors match the actual streams.). The results in this table
verify the dynamic nature of traffic data streams.

As described in the monitoring/predicting phase in Section 5.3, if an “abnormal”
event is observed, the sensor sends an alert to the central server, and then, the server
notifies all its group members. In our experiments, we observe that the warnings are
pretty helpful in some cases. For example, sensor #337, #415, #731 and #732 are in
the same group because they have (light, light, light) at 1:00am, 1:20am, 3:10am,
respectively. The congestion levels on sensor #337 at 1:00am was (medium, medium,
medium), deviating from the pattern (light, light, light). Then, (medium, light,
medium) happened on sensor #415 at 1:20am, (medium, medium, light) happened on
sensor #731 and #732 at 3:10am. If the server sent an “abnormal congestion” alert to
sensor #415, #731 and #732 at 1:15am, they would have sent warning signals to the
drivers in advance, so that they could avoid the jam near sensor #731 and #732 at
3:10am. This observation verifies our claim that congestions may propagate spatially
and temporally between roadways where similar behaviors often happen.

6.3 Storage

As the storage resource on a sensor or a lightweight computing device is very limited,
we would like to investigate the cost for storing the patterns. Table 2 presents the
average number of patterns stored on each sensor. We use 3 days’, and 4 days’ data
for training and set the “consistent” pattern threshold as 2, 3, respectively. From Table
2 we can see that the average number of patterns on each sensor is quite small for any
case. Therefore, our proposed system doesn’t require a large storage resource.

6.4 Communication Cost

The number of mispredicitons is small, ranging from 300 to 3000 per day. Thus, the
data transmission cost must be small, because there is no data transmission between

Days for training Consistent pattern threshold Avg. # of patterns / sensor

day_1, day_2, day_3 3 0.46

day_2, day_3, day_4 3 0.46

day_3, day_4, day_5 3 0.97

day_1,day_2 2 4.6

day_2, day_3 2 4.6

day_3,day_4 2 14

Table 2. Average number of patterns on each sensor

320 Y. Liu et al.

the central server and a sensor unless a misprediction happens. In contrast, if the
central server were to download all the streams from all the sensors to analyze and
then provide up-to-date information, the data transmission cost must be huge.

7 Conclusions and Open Issues

This paper presented a scalable distributed traffic stream mining system. In the
training phase, the central server performs various data mining techniques on
historical data streams to find useful patterns. In the monitoring/predicting phase,
each sensor predicts the forthcoming data or raises alarms if an abnormal situation is
predicted by comparing with the patterns in recent historical streams. Our experiment
results on the real traffic data from GCM demonstrate that this model is scalable and
effective. The “abnormal” congestion warning is helpful. This system can provide
travelers with real-time traffic information and help transportation domain experts
understand the characteristics of a transportation system. It achieves real-time analysis
with low communication cost. In addition, the computation resource requirement on
each sensor is small as well as the storage requirement.

The proposed system is at an early stage of development and will be substantially
enhanced by incorporating the following aspects:

1) The most challenging part is how to build a model to involve both temporal and
spatial features. We plan to use connected graph to represent the spatial relations
between different sensors, and incorporate graph mining algorithms to our system.
The prediction accuracy must be improved a lot by then.

2) In order to discover more interesting patterns, more stream mining techniques
applicable to traffic streams should be explored.

3) Building of a simulation environment where we can see how the “early” warnings
affect the traffic flow.

Acknowledgments. This work was supported in part by National Science Foundation
grants IIS-0536994, CNS-0551639, CNS-0406341, Intel, IBM, CNS-0550210, and in
part by National Natural Science Foundation of China Project #70531040, #70472074,
Ministry of Science and Technology of China 973 Project #2004CB720103.

References

1. Aggarwal, C., Han, J., Wang, J., and Yu, P. S.: A Framework for Clustering Evolving Data
Streams. In Proc. Intl. Conf. on Very Large Data Bases (VLDB), 2003

2. Aggarwal, C., Han, J., Wang, J., and Yu, P. S.: On Demand Classification of Data
Streams. In Proc. 2004 Intl. Conf. on Knowledge Discovery and Data Mining (KDD),
2004

3. Giannella, C., Han, J., Pei, J., Yan, X., and Yu, P. S.: Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha (eds.), Next Generation Data Mining, 2003

4. Guha, S., Mishra, N., Motwani, R., and O'Callaghan, L.: Clustering Data Streams. In Proc.
IEEE FOCS Conf., 2000

 A Scalable Distributed Stream Mining System for Highway Traffic Data 321

5. Jorge, A.: Adaptive Tools for the Elderly: New Devices to Cope with Age-induced
Cognitive Disabilities. In Proc. EC/NSF workshop on the Universal accessibility of
ubiquitous computing: providing for the elderly, 2001, 66-70

6. Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K.,
Klein, M., Vasa, M., and Handy, D.: VEDAS: A Mobile and Distributed Data Stream
Mining System for Real-Time Vehicle Monitoring. In Proc. SIAM International Conf. on
Data Mining, 2004

7. Kargupta, H., Park, B. H., Pittie, S., Liu, L., Kushraj, D., and Sarkar, K.: MobiMine:
Monitoring the Stock Market from a PDA. SIGKDD Explorations, Jan. 2002, 3(2): 37-46

8. Manku, G. S., and Motawani, R.: Approximate Frequency Counts over Data Streams. In
Proc. 28th Intl. Conf. on Very Large Databases (VLDB), 2002

9. Mannila, H., Toivonen, H., and Verkamo, A. I.: Discovering frequent episodes in
sequences, In Proc. Intl. Conf. on Knowledge Discovery and Data Mining, 1995

10. Park, B., and Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and
Applications. Data Mining Handbook, 2002

11. Toivonnen, H.: Sampling large database for association rules. In Proc. 22nd Intl. Conf. on
Very Large Databases, 1996, 134–145

12. Agrawal, R., Faloutsos, C., and Swami, A.: Efficient Similarity Search in sequence
databases. In Proc. 4th Intl. Conf. Foundations of Data organization and Algorithms, 1993

13. Grossman R., Sabala, M., Alimohideen, J., Aanand, A., Chaves, J., Dillenburg, J., Eick, S.,
Leigh J., Nelson, P., Papka, M., Rorem, D., Stevens, R., Vejcik, S., Wilkinson, L., and
Zhang, P.: Real Time Change Detection and Alerts from Highway Traffic Data, In Proc.
Intl. Conf. Super Computing, 2005

14. Wolff, R., and Schuster, A.: Association Rule Mining in Peer-to-Peer systems. ICDM,
2003

15. Cheung, D., Han, J., Ng V., Fu, A. W., Fu, Y.: A Fast Distributed Algorithm for Mining
Association Rules. In Proc. of PDIS, 1996

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

