

Design and Evaluation of a Parallel HOP Clustering Algorithm for Cosmological
Simulation

Ying Liu, Wei-keng Liao, Alok Choudhary

Department of Electrical and Computer Engineering
Northwestern University

Evanston, IL 60208
{yingliu, wkliao, choudhar}@ece.northwestern.edu

Abstract
Clustering, or unsupervised classification, has many uses
in fields that depend on grouping results from large
amount of data, an example being the N-body
cosmological simulation in astrophysics. In this paper, we
study a particular clustering algorithm used in
astrophysics, called HOP, and present a parallel
implementation to speed up its current sequential
implementation. Our approach first builds in parallel the
spatial domain hierarchical data structure, a three-
dimensional KD tree. Using a KD tree, the core of the
HOP algorithm that searches for the highest density
neighbor can be performed using only subsets of the
particles and hence the communication cost is reduced.
We evaluate our implementation by using data sets from a
production cosmological application. The experimental
results demonstrate up to 24× speedup using 64
processors on three parallel processing machines.

1. Introduction

The size of various data sets has increased
tremendously in recent years as speedups in processing
and communication have greatly improved the capability
for data generation and collection in areas such as
scientific experimentation, business and government
transactions, as well as the Internet. Traditional
knowledge discovery systems have been found lacking in
their ability to handle current data sets, due to
characteristics such as their large sizes and high
dimensionality. Consequently, new techniques that can
automatically transform these large data sets into useful
information are in strong demand. Data mining, which is
the process of discovering useful and understandable
patterns hidden in massive data sets, has become an
important research area. Clustering is one of the important
data mining techniques whereby the data set is partitioned

into subsets containing elements of similar properties.
Due to the huge size and high dimensionality of the
available data sets, it is quite common to see databases on
the order of gigabytes or terabytes. A sequential
clustering algorithm handling these large data sets would
potentially be unable to run in-core or would take a
tremendous amount of time. Therefore, parallel
computing is an essential component of the solution to
speed up large size data clustering.

The HOP algorithm is a hierarchical clustering
algorithm in astrophysics [1]. Having assigned to every
particle an estimate of its local density, HOP associates
each particle with the densest neighbor of its Nhop nearest
particle neighbors. By repeating this process, a hopping
path can be generated for each particle in the direction of
increasing density. The path ends when it reaches a
particle that is its own densest neighbor. All particles
reaching the same such particle are identified as a group.
HOP is spatially adaptive, coordinate-free, and the results
are insensitive to most of the subjective user input
parameters.

In this paper, we present a parallel implementation of
the HOP clustering algorithm. In order to achieve load
balance, our approach distributes the particles evenly
across all processors by constructing a parallel KD tree.
The inter-processor data communication is implemented
by combining many small size communication requests
into a single large request. By transferring the required
particles beforehand, searching for the highest density
neighbor can be performed locally in each processor. This
strategy is also applied to the process of hopping and
group merging. We ran our experiments on three parallel
machines using the data outputs from a production
cosmological simulation application, called ENZO. Two
sets of star particle data, each with different spatial
distribution pattern, were tested. The experimental results
present up to 24× speedup using 64 processors. Our
parallelization approach is also applicable to other
scientific fields, such as molecular biology, geology, or

astronomy as long as they have similar requirements on
clustering and neighbor finding procedures.

The rest of this paper is organized as follows. The next
section overviews the related works of clustering
algorithms. Section 3 describes the HOP algorithm. Our
design and parallelization of HOP algorithm is presented
in Section 4. Software development issues are given in
Section 5. Section 6 presents our experimental results and
we conclude the paper in Section 7.

2. Related work

Data mining, also referred as knowledge discovery, is
a process of extracting implicit, previously unknown and
potentially useful information. It is commonly used in
many fields, including scientific computation, financial
analysis, information retrieval, decision making, and the
World Wide Web. Data mining techniques can be roughly
categorized into classification, clustering, association
rules, sequence mining, similarity search, and other
methods. Classification is a method that assigns a new
record to one of several predefined categories or classes.
Clustering, also referred as unsupervised classification, is
to group a set of data (without a predefined class
attribute) based on the conceptual clustering principles:
maximizing the intra-class similarity and minimizing the
interclass similarity. This technique is useful in document
retrieval, image segmentation, taxonomy generation,
biomedical engineering, geological spatial data analysis,
earth science, telecommunication, etc. Clustering
algorithms can be further divided into two categories:
agglomerative algorithms and partitional algorithms.
Agglomerative algorithms find clusters by initially
assigning each object to its own cluster and then
repeatedly merging pairs of clusters until a certain
stopping criterion is met [5]. Examples include group
average [6], single-link [7], CURE [8], ROCK [9] and
CHAMELEON [10]. Partitional algorithms find clusters
by partitioning the entire dataset into either a
predetermined or an automatically derived number of
clusters. Examples include k-means [11], k-medoids [6],
auto-class [12] and graph-partitioning-based method [13].

Clustering algorithms are commonly applied in
astrophysics, such as cosmological simulations that
identify collapsed halos, determine the merge of two
galaxies and locate dwarf galaxies. IsoDen [4], FOF [17],
DENMAX [18] and HOP [1] are clustering algorithms
proposed and used in cosmological simulation. IsoDen
finds clusters by constructing an adaptive oct-tree with
individual particles stored in the leaves while internal
nodes represent the cubical regions of space. The idea of
FOF is that two particles belong to the same group if their
separation is less than some chosen threshold and, then,
such pairs are chained into groups. However, some
groups found by FOF may appear as two clumps linked

by a small thread of particles between the subgroups that
may be inappropriate for some applications [1].
DENMAX takes a different approach by first estimating
the density of each particle and then, determining the
group of the particle through tracing path along the
gradient of its density surface until a local maximum is
reached. All particles that end up at the same maximum
are defined to the same group. The drawback is that it
may result in splitting large groups into smaller pieces
due to the discovery of multiple local maxima at finer
resolution [1]. HOP [1] is a clustering algorithm that
overcomes the drawbacks of FOF and DENMAX.

Since most of clustering applications are
computational and data intensive, many efforts have been
contributed to their parallelization recently. Examples of
parallel agglomerative methods are SLINK algorithm
[14], Prim’s minimal spanning tree algorithm [15],
Ward’s minimum variance method [16], etc. An example
of a partitional method is parallel K-Means [19]. Several
works have been applied to cosmological simulation, such
as Halo World [4], a parallel implementation of IsoDen
method in which a parallel tree library handles all the
communication on message passing parallel architecture.

3. HOP clustering algorithm

Instead of constructing the density gradient field in
FOF and DENMAX, HOP assigns a density to each
particle and replaces the concept of gradient by a simple
search within the particle’s neighborhood to find the
neighbor with the highest density. Each particle is
associated to its highest density neighbor. Through this
densest neighbor, a particle can “hop” to the next highest
density particle and continues hopping until it reaches a
particle that is its own highest density neighbor. All
particles that hop to the same particle constitute a single
group. Groups that share a sufficiently dense boundary
are reconnected. Particles whose densities are less than a
given threshold are excluded from groups.

The HOP clustering algorithm consists of four
processing stages:

1) Constructing a KD tree: To reduce the workload
of locating Ndens nearest neighbors for each particle,
we use a KD tree structure to partition the particles
based on their spatial locations, so that nearby
particles are in the same sub-domain. Therefore, the
neighborhood searching process can be performed by
first checking the sub-domain’s boundary before
going through all the particles in it. K-dimensional
(KD) tree, a data structure used in orthogonal range
searching, is commonly used in domain partition
application [3]. KD tree is a balanced tree that
partitions the spatial domain recursively along the
longest axis into sub-domains. Each sub-domain

contains approximately the same number of particles.
The root node represents the entire simulation
domain that covers all the particles and each tree
node represents a sub-domain of its parent node. In a
KD tree, only the leaf nodes (also called buckets)
contain the particle data. The less number of particles
in a bucket, the more levels of the tree depth. Every
sub-domain partitioning involves determining the
longest axis and searching the median coordinate
value among all particles along that axis. One key
property of a KD tree is that particles spatially closed
are located in the same buckets or sibling buckets of
the same tree branch. This property makes it very
efficient to find neighbors of any particle. Figure 1
illustrates an example of a two-dimensional KD tree.
In HOP, bucket size (the number of particles in a
bucket) is a user-provide parameter that determines
the tree depth and affects the computational cost of
the neighborhood search in the next stage.

2) Generating density: HOP estimates the density of
a particle by using an adaptive kernel with a length
scale set by the distance to its Ndens nearest neighbor
particles, where Ndens is a user-provide parameter.
HOP employs SMOOTH as its density generating
mechanism. SMOOTH [2] is a KD-tree based near
neighbor search engine that can calculate some mean
quantities for particles in an N-Body simulation, such
as mean velocity, mean speed, and velocity
dispersion. This stage is the most computational
intensive part of HOP due to large amount of
computation when searching for Ndens neighbors.

3) Hopping: The core of HOP is to associate each
particle to its highest density neighbor within its Nhop

nearest neighbors, where Nhop is a user-provide
parameter (Nhop <= Ndens). A particle continues
“hopping” to a higher density until it reaches the
particle that is its own highest density neighbor.
Since the hopping is performed in increasing density
order, its convergence is guaranteed.

4) Grouping: Particles associated to the same densest
particle are defined as a group. Therefore, every
particle is assigned to one and only one group. To
refine the clustering quality, group merging and
pruning are performed according to some chosen
density thresholds. Groups can be merged if their
boundary satisfies some thresholds. Particles whose
densities don’t exceed the density thresholds are
excluded from the groups. A group might be
disbanded if its maximum density is less than a given
density threshold.

4. HOP parallelization

The key idea of our parallel implementation is to
distribute the data particles across all processors evenly to
ensure the balanced computational workload and access
remote particles through communication. Thus, the
balanced load and the data locality contribute to the
efficiency of the parallelization. We assume the initial
state of the parallel HOP as following: given an array of N
particles, each of P processors reads N/P particles
exclusively. The particles owned by a processor can
locate arbitrarily across the whole problem domain. The
data structure of a particle consists of its mass value and
three spatial coordinates.

4.1 Constructing a parallel KD tree

Starting from the root-node of the KD tree, we first
determine the longest axis d and, then, find the median
value m of all particles’ d coordinates in parallel. The
whole spatial domain is bisected into two sub-domains by
m. Particles are exchanged between processors such that
the particles whose d coordinate are greater than m go to
one sub-domain and the rest particles to the other one.
Therefore, an equal number of particles are maintained in
each sub-domain after the bisection. We repeat this
procedure recursively in every sub-domain till the number
of sub-domains is equal to the number of processors.
Then, each processor continues to build its own local tree

 1 st

2 nd

2 nd

3 rd

3 rd

3 rd

3 rd

3 rd

2 nd

1 st

bucket

Fig. 1. Two-dimensional KD tree with 24 particles.
Bucket size is 3 and the KD tree has 3 levels. Every
internal node contains the boundary information of its
sub-domain. Bisection is performed by the median
coordinate value of the particles in the sub-domain.

P2

P1

P4

P3

Domain
Decomposition

Tree

Local
Tree

Globa
l Tree

P1 P2 P3 P4

1 st

2 nd

2 nd

3 rd

3 rd

3 rd

3 rd

Fig. 2. Two-dimensional KD tree distributed over four
processors. Each processor contains 6 particles.
Bucket size is 3 and the global tree has 3 levels. Local
tree can be built concurrently without communication.
Every processor maintains the same copy of the global
tree.

within its domain until the desired bucket size (number of
particles in each leaf) is reached. Note that inter-processor
communication is not required when constructing the
local trees.

We maintain a copy of the whole tree on every
processor so that the communication overhead incurred at
performing search domain intersection test with the
remote local trees at the stages 2 and 3 can be reduced.
Therefore, at the end of this stage, local trees are
broadcasted to all processors. As shown in Figure 2, the
root-node of the KD tree represents the entire simulation
domain while each of the rest tree nodes represent a
rectangular sub-domain of its parent node. The
information contained in a non-leaf tree node includes the
aggregated mass, center of mass, number of particles, and
domain boundaries. When the KD tree is completed,
particles are divided into spatially closed regions of
approximately equal number. The advantage of using a
KD tree is not only its simplicity but also the balanced
data distribution.

4.2 Generating density

The density of a particle is estimated by its Ndens nearest
neighbors, where Ndens is a user-provide parameter. Since
it is possible that some of the Ndens neighbors of a particle
are owned by remote processors, communication is
required to access non-local neighbor particles at this
stage. Our approach is, for each particle, first to perform
intersection test by traversing the global tree with a given

initial search radius r while keeping track of the non-local
intersected buckets, as shown in Figure 3. If the total
number of particles in all intersected buckets is less than
Ndens, the intersection test is re-performed with a larger
radius. Once tree walking is completed for all local
particles, all the remote buckets containing the potential
neighbors are obtained through communication. Note that
there is only one communication request to each remote
processor to gather the intersected buckets. No further
communication is necessary when searching for its Ndens
nearest neighbors. Since the KD tree displays the value of
spatial locality, particle neighbors are most likely located
in the same or nearby buckets. According to our
experimental results, the communication volume is only
10% - 20% of the total number of particles. However,
with highly irregular particle distribution, communication
costs may increase.

To calculate the density for particle p, we use a PQ
tree (priority queue) [24] to maintain a sorted list of
particles that are currently the Ndens nearest neighbors. The
root of the PQ tree contains the neighbor farthest from p.
If a new neighbor whose distance to p is shorter than the
root, replace the root with the second farthest one and
update the PQ tree. Finally, the particles remained in the
PQ tree are the Ndens nearest neighbors of p.

4.3 Hopping

This stage first associates each particle to its highest
density neighbor among its Nhop nearest neighbors that are
already stored in the PQ tree generated at the previous
stage. Each particle, then, hops to the highest density
neighbor of its associated neighbor. Hopping to remote
particles is performed by first keeping track of all the
remote particles and, then, making a communication
request to the owner processors. This procedure may
repeat several times until all the needed non-local
particles are already stored locally. Since the hopping is
in density increasing order, the convergence is
guaranteed.

4.4 Grouping

Particles linked to the same densest particle are
defined as a group. However, some groups should be
merged or refined according to the chosen density
thresholds. Thus, every processor first builds a boundary
matrix for the groups constructed from its local particles

P1

P2
P3

P4

p
search radius

r

intersecting with local bucket

intersecting with non-local bucket
intersecting with non-local bucket

Fig. 3. Intersection test for particle p in processor P4.
The neighborhood is a sphere region with a search
radius r. The neighborhood search domain of particle p
intersects with P1 and P3.

 Configuration
Machine

Processor/Node Memory/Node Processor Type Inter-connection

IBM SP2 8 SIMD, 12 GB 375 MHz, Power3 Colony Switch

SGI Origin2000 1 SIMD, 0.25 – 0.6 GB 195 MHz, 250 MHz, MPIS R1000 Gigabit Ethernet

Linux Cluster 2 MIMD, 512 MB 500 MHz, Pentium III Myrinet

Table 1. Parallel Machine Specification

and, then, exchanges the boundary matrix among all
processors. Particles whose densities are less than a given
threshold are excluded from groups and two groups are
merged if their boundary satisfies some given thresholds.

5. Software development

We develop our parallel implementation in C and use
Message Passing Interface (MPI) [23] for the inter-
processor communication. The program was developed in
a Single Program Multiple Data (SPMD) model. We
conducted our experiments on three parallel machines: an
IBM SP2 at San Diego Supercomputing Center, an SGI
Origin2000 at National Center for Supercomputing
Application (NCSA), and a Linux Cluster at Argonne
National Lab. System configurations are summarized in
Table 1. We run our experiments using 1 to 64 processors
on each of them.

6. Experimental results

To evaluate our parallel implementation of the HOP
algorithm, we use the star particle data sets generated
from a large-scale production cosmological application,
ENZO, developed at NCSA [20], [21]. ENZO is a three-
dimensional parallel application that simulates the
formation of a cluster of galaxies consisting of gas and
stars [21]. The simulation starts near the beginning of the
universe, a few hundred million years after the big bang,
when the galaxy is in a relative uniform radiation
distribution, and continues till the present day, when it is
in a highly irregular star particle distribution. It is used to
test theories of how galaxy and clusters of galaxies form
by comparing the results with what is really observed in
the sky today [22]. The ENZO’s outputs are periodical
data dumps that show the evolution of the galaxy
formation. In our experiments, we use two attributes of
star particles: the Euclid coordinates in three dimensions

and particle mass. The performance results were obtained
by running our parallel HOP implementation on two
output data sets from ENZO: one is in the earlier stage of
the galaxy formation and the other is at the end of the
simulation. Both data sets contain 491,520 star particles.
Figure 4 shows the spatial distribution of these two data
sets in three dimensions.

6.1 Performance evaluation

Throughout our experiments, we vary the following
two parameters:

1). bucket size: It is the number of particles contained
in each leaf of the 3-dimensinal KD tree. The
larger the bucket size, the less number of the tree
depth.

2). Ndens: A particle’s density is estimated by the mass
of its Ndens nearest neighbor particles. A larger Ndens
means more computation and communication
involved in locating the neighbors.

Although there are other parameters that can be varied,

we only consider these two because they affect over 90%
of the clustering performance. We also vary the number
of processors from 1 to 64 to study the scalability of our
implementation. Figure 5 presents the measured total
execution time with break down time of each stage. The
corresponding speedups are presented in Figure 6.

We observed that the overall performance scales up on
both IBM SP2 and SGI Origin2000. However, on the
Linux Cluster, the performance scales well till using 32
processors and the speedup goes down when using more
processors. The reason is that the more processors are
used, the less number of particles each individual
processor owns, which results in relative lower
computation cost and higher communication overhead. As
we expected, data set 2 takes longer time than data set 1
in all cases since the more irregular the particle
distribution is, the more inter-processor communication
occurs.

We now examine the execution time for each
individual stage. As observed in Figure 5, the density
generation is the most time consuming stage, which takes
more than 60 % of the total time. Figures 7 and 8 give the
measured time and the speedups of this stage,
respectively, which show similar performance curves as
in Figures 5 and 6.

In order to find out what is the main cause of the
speedup saturation, we now study the communication
time and the computation time separately. From Figure 9
we can see that the communication time doesn’t scale
well, even increases when using more than 32 processors.
On the other hand, from Figure 10 we can observe that
the computation part of our approach obtains very good
scalability. It obtains up to 45x speedup when using 64

(a) Data set 1 (b) Data set 2

Fig. 4. 3-dimensional spatial distribution of two particle
data sets from the ENZO outputs. Data set 1
represents the results at the earlier stage of the
simulation. Data set 2 represents the more irregular
distribution near the end of the simulation.

processors, which is much better than the overall speedup.
Therefore, we can conclude that the communication
overhead is the main cause of the speedup saturation.

KD tree construction is the first stage of the HOP
parallelization. Particle transfer during the recursive
bisection may result in a large amount of data
communication. Particles can be moved multiple times
before they go to their final destination processors. Figure
11 and Figure 12 present the execution time of this stage
and the corresponding speedups, respectively. The
speedups saturate when the number of processors goes
beyond 32.

Varying bucket size. Varying the number of particles in
each bucket affects the depth of the KD tree. Although a
larger bucket size can reduce the time for constructing the
parallel KD tree, it increases the total volume of particle
transferring at the density generation stage and the
hopping stage. Figure 13 shows the performance trend
when varying bucket size from 16 to 128 using 1 to 64
processors. We observe that the execution time goes up
with larger bucket size for most of the cases.

Varying Ndens. Figure 14 provides the performance of
using 16, 32, 64 and 128 as Ndens. Although execution time
increases when using a larger Ndens as more neighbor
searching computation occurs, we get an interesting

observation that the speedups improve when we increase
Ndens. The reason is that the cost of communication is not
increased as much as the computation.

In general, our experiments present good overall
performance results of our parallel HOP implementation.
We obtain up to 24x speedup using 64 processors.

7. Conclusions

We presented our parallel implementation of the HOP
clustering algorithm. The parallel implementation
distributes particle data across processors to guarantee the
balanced computational load. The data structure used by
the clustering algorithm is a KD tree that contributes to
the efficiency of searching for neighbors. Our strategy is
to obtain non-local data through an inter-processor
communication before each individual processor can
work independently. We benchmarked our
implementation using data generated from a real
cosmological simulation, ENZO. Two data sets with
different spatial particle distributions were used in our
test. Our experiments presented good speedups on
different parallel machines, which benefit from the
balanced data distribution and the minimal data
communications.

Although HOP is a clustering algorithm in
cosmological N-body problem, it may find applications in
other fields, such as molecular biology, geology and

Total Time
on 1, 4, 8, 16, 32, 64 processors, 491520 particles, Ndens=128, bucket size=16

Fig. 5. Total execution time on
IBM SP2, SGI Origin2000 and Linux Cluster.

0

20

40

60

80

100

120

T
im

e
(s

ec
)

0

20

40

60

80

100

120

140

T
im

e
(s

ec
)

I BM SP2 SGI Origin2000 Linux Cluster
 (a) Data set 1

I BM SP2 SGI Origin2000 Linux Cluster
 (b) Data set 2

Constructing KD Tree Generating Density Hopping Grouping

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

Total Time Speedups
491520 particles, Ndens=128, bucket size=16

Number of Processor
(a) Data set 1

Number of Processor
(b) Data set 2

IBM S P2 S GI Or igin2000 L inux Cluster

Fig. 6. Speedups of the total execution time on
IBM SP2, SGI Origin2000 and Linux Cluster.

0

10

20

30

40

50

60

70

80

T
im

e(
se

c)

0

10

20

30

40

50

60

70

80

T
im

e(
se

c)

Generating Density Time
491520 particles, Ndens=128, bucket size=16

I BM SP2 SGI Origin2000 Linux Cluster
 (a) Data set 1

I BM SP2 SGI Origin2000 Linux Cluster
 (b) Data set 2

Fig. 7. Generating density time on
IBM SP2, SGI Origin2000 and Linux Cluster.

1 proc 4 procs 8 procs 16 procs 32 procs 64 procs

Generating Density Time Speedups
491520 particles, Ndens=128, bucket size=16

Fig. 8. Speedups of generating density on
IBM SP2, SGI Origin2000 and Linux Cluster.

Number of Processors
 (a) Data set 1

Number of Processors
 (b) Data set 2

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

0 8 16 24 32 40 48 56 64

IB M S P2 S GI Or igin2000 L inux Cluster

astronomy, where large spatial data sets are to be
processed with similar clustering or neighbor finding
procedures. One example is molecular pattern
recognition, which normally involves huge amount of
neighbor finding computation. Our parallelization
strategy is applicable to those fields.

Acknowledgements

This work is supported by National Computational
Science Alliance under contract ACI-9619019 and by
Department of Energy under the Accelerated Strategic
Computing Initiative (ASCI) Academic Strategic Alliance
Program (ASAP) Level 2, under subcontract No.W-7405-
ENG-48 from Lawrence Livermore National
Laboratories. This research was also supported in part by
NSF cooperative agreement ACI-9619020 through
computing resources provided by the National Partnership
for Advanced Computational Infrastructure at the San
Diego Supercomputer Center. We also acknowledge the
use of the SGI Origin2000 at NCSA, and the Linux
Cluster at ANL. We are grateful to Joseph Zambreno and
Jayaprakash Pisharath for their valuable feedback.

Reference

[1] Daniel J. Eisenstein, Piet Hut, “Hop: A New Group Finding

Algorithm for N-body Simulations,” Astrophysics. J. 498,
137-142, 1998.

[2] University of Washington, “N-Body Shop,” http://www-
hpcc.astro.washington.edu/tools/smooth.html.

[3] J.L. Bentley, “Multidimensional Binary Search Trees Used
for Associative Searching,” Communication of the ACM,
18(9), September 1975.

[4] David W. Pfitzner, John K. Salmon, Thomas Sterling,
“Halo World: Tools for Parallel Cluster Finding in
Astrophysical N-body Simulations,” Data Mining and
Knowledge Discovery, 419-438, Volume 1, No. 4, 1997.

[5] Ying Zhao, George Karypis, “Criterion Functions for
Document Clustering,” Technical Report, University of
Minnesota, tr# 01-40.

[6] K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Prentice Hall, 1998.

[7] B. King, “Step-wise clustering procedures,” Journal of the
American Statistical Association, 69:86-1-1, 1967.

[8] Sudipto Guha, Rajeev Rostogi, and Kyuseok Shim,
“CURE: an efficient clustering algorithm for categorical
attributes,” in Proc. Of 1998 ACM-SIGMOD Int. Conf. on
Management of Data, 1998.

[9] Sudipto Guha, Rajeev Rostogi, and Kyuseok Shim.
“ROCK: a robust clustering algorithm for categorical

I BM SP2 SGI Origin2000 Linux Cluster
 (a) Data set 1

0

1

2

3

4

5

6

7

8

T
im

e(
se

c)

0

2

4

6

8

10

T
im

e(
se

c)

Communication Time
491520 particles, Ndens=128, bucket size=16

I BM SP2 SGI Origin2000 Linux Cluster
 (b) Data set 2

Fig. 9. Communication time on
IBM SP2, SGI Origin2000 and Linux Cluster.

4 procs 8 pro cs 16 procs 32 procs 64 pro cs

0
5

10
15

20
25
30

35
40
45

0 8 16 24 32 40 48 56 64
0
5

10
15
20
25
30
35
40
45
50

0 8 16 24 32 40 48 56 64

Computation Time Speedups
491520 particles, Ndens=128, bucket size=16

Number of Processor
(a) Data set 1

IBM S P2 S GI Or igin2000 L inux Cluster

Fig. 10. Speedups of computation time on
IBM SP2, SGI Origin2000 and Linux Cluster.

Number of Processor
(b) Data set 2

I BM SP2 SGI Origin2000 Linux Cluster
 (a) Data set 1

0

0.5

1

1.5

2

2.5

3

T
im

e(
se

c)

0

0.5

1

1.5

2

2.5

3

T
im

e(
se

c)

Constructing KD Tree Time
491520 particles, Ndens=128, bucket size=16

I BM SP2 SGI Origin2000 Linux Cluster
 (b) Data set 2

1 proc 4 procs 8 procs 16 procs 32 procs 64 procs

Fig. 11. Constructing KD tree time on
IBM SP2, SGI Origin2000 and Linux Cluster.

0
1
2
3
4
5
6
7
8
9

0 8 16 24 32 40 48 56 64
0
1

2

3
4

5
6

7
8

9

0 8 16 24 32 40 48 56 64

Number of Processor
(a) Data set 1

Number of Processor
(b) Data set 2

IBM S P2 S GI Or igin2000 L inux Cluster

Fig. 12. Speedups of constructing KD tree time on
IBM SP2, SGI Origin2000 and Linux Cluster.

Constructing KD Tree Time Speedups
491520 particles, Ndens=128, bucket size=16

attributes,” in Proc. Of the 15th Int’l Conf. on Data Eng.,
1999.

[10] G. Karypis, E.H. Han, and V. Kumar. “Chameleon: A
hierarchical clustering algorithm using dynamic modeling,”
IEEE Computer, 32(8): 68-75, 1999.

[11] J. MacQueen, “Some methods for classification and
analysis of multivariate observations,” in Proc. 5th Symp.
Math. Statist, Prob., pages 281-297, 1967.

[12] P. Demspter, N. M. Laird and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,”
Journal of the royal Statistical Society, 39, 1977.

[13] K. Zahn, “Graph-theoretical methods for detecting and
describing gestalt clusters,” IEEE Transactions on
Computers, (C-20): 68-86, 1971.

[14] R. Sibson, “SLINK: An optimally efficient algorithm for
the single link cluster method,” Computer Journal, 16:30-
34, 1973.

[15] R. C. Prim, “Shortest connection networks and some
generalizations,” Bell System Technical Journal, 36:1389-
1401, 1957.

[16] J. H. Ward Jr., “Hierarchical grouping to optimize an
objective function,” Journal of the American Statistical
Association, 58:236-244, 1963.

[17] M. Davis, G. Efstathiou, C. S. Frenk, S. D. M. White, “The
evolution of large-scale structure in a universe dominated
by cold dark matter,” Astrophysical J., 292:371-394, 1985.

[18] J. M. Gelb and E. Bertschinger, “Cold dark matter 1: The
formation of dark halos,” Astrophysical J., 436:467-490,
1994.

[19] George Forman, Bin Zhang, “Linear Speed-Up for a
Parallel Non-Approximate Recasting of Center-based

Clustering Algorithms, including K-Means, K-Harmonic
Means, and EM,” ACM SIGKDD Workshop on Distributed
and Parallel Knowledge Discovery, KDD-2000, Boston,
MA, August 20, 2000.

[20] G. Bryan, T. Abel, and M. Norman, “Achieving Extreme
Resolution in Numerical Cosmology Using
Adaptive Mesh Refinement: Resolving Primordial Star
Formation,” SupuerComputing Conference, Nov., 2001.

[21] M. Norman, J. Shalf, S. Levy, and G. Daues, "Diving
Deep: Data-Management and Visualization Strategies for
Adaptive Mesh Refinement Simulations,” Computing in
Science and Engineering, 1(4), pp. 36-47, Jul/Aug, 1999.

[22] Jianwei Li, Wei-keng Liao, Alok Choudhary, Valerie
Taylor, “I/O Analysis and Optimization for an AMR
Cosmology Application,” in Proceeding of Cluster 2002,
Sept. 2002.

[23] Message Passing Interface Forum, “MPI: A Message
Passing Interface Standard,” http://www.mpi-
forum.org/docs/docs.html, June, 1995.

[24] Thomas H. Cormen, Charles E. Leiserson, Ponald L.
Rivest, “Introduction to Algorithms,” MIT press, 1990.

(a) IBM SP2 (b) SGI Origin2000 (c) Linux Cluster

0

20

40

60

80

100

1 4 8 16 32 64

T
im

e(
se

c)

0
20

40
60

80
100

120
140

1 4 8 16 32 64

T
im

e(
se

c)

0
20
40
60
80

100
120
140
160

1 4 8 16 32 64

T
im

e(
se

c)

Total Time
491520 particles, Ndens=128

Number of Processor Number of Processor Number of Processor

bucket size 16 bucket size 32 bucket size 64 bucket size 128

Fig. 13. Total time with varying bucket size on data set 1.

0

5

10

15

20

0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

0 8 16 24 32 40 48 56 64
0

2

4

6

8

10

12

14

16

0 8 16 24 32 40 48 56 64

Total Time Speedups
491520 particles, bucket size=16

Number of Processor Number of Processor Number of Processor

Ndens 16 Ndens 32 Ndens 64 Ndens 128

Fig. 14. Total execution time speedups with varying Ndens on data set 1.

(a) IBM SP2 (b) SGI Origin2000 (c) Linux Cluster

