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Abstract 
Clustering, or unsupervised classification, has many uses 
in fields that depend on grouping results from large 
amount of data, an example being the N-body 
cosmological simulation in astrophysics. In this paper, we 
study a particular clustering algorithm used in 
astrophysics, called HOP, and present a parallel 
implementation to speed up its current sequential 
implementation. Our approach first builds in parallel the 
spatial domain hierarchical data structure, a three-
dimensional KD tree. Using a KD tree, the core of the 
HOP algorithm that searches for the highest density 
neighbor can be performed using only subsets of the 
particles and hence the communication cost is reduced. 
We evaluate our implementation by using data sets from a 
production cosmological application. The experimental 
results demonstrate up to 24× speedup using 64 
processors on three parallel processing machines. 
 
 
1. Introduction 
 

The size of various data sets has increased 
tremendously in recent years as speedups in processing 
and communication have greatly improved the capability 
for data generation and collection in areas such as 
scientific experimentation, business and government 
transactions, as well as the Internet. Traditional 
knowledge discovery systems have been found lacking in 
their ability to handle current data sets, due to 
characteristics such as their large sizes and high 
dimensionality. Consequently, new techniques that can 
automatically transform these large data sets into useful 
information are in strong demand.  Data mining, which is 
the process of discovering useful and understandable 
patterns hidden in massive data sets, has become an 
important research area. Clustering is one of the important 
data mining techniques whereby the data set is partitioned 

into subsets containing elements of similar properties. 
Due to the huge size and high dimensionality of the 
available data sets, it is quite common to see databases on 
the order of gigabytes or terabytes. A sequential 
clustering algorithm handling these large data sets would 
potentially be unable to run in-core or would take a 
tremendous amount of time. Therefore, parallel 
computing is an essential component of the solution to 
speed up large size data clustering. 

The HOP algorithm is a hierarchical clustering 
algorithm in astrophysics [1]. Having assigned to every 
particle an estimate of its local density, HOP associates 
each particle with the densest neighbor of its Nhop nearest 
particle neighbors. By repeating this process, a hopping 
path can be generated for each particle in the direction of 
increasing density. The path ends when it reaches a 
particle that is its own densest neighbor. All particles 
reaching the same such particle are identified as a group. 
HOP is spatially adaptive, coordinate-free, and the results 
are insensitive to most of the subjective user input 
parameters. 

In this paper, we present a parallel implementation of 
the HOP clustering algorithm. In order to achieve load 
balance, our approach distributes the particles evenly 
across all processors by constructing a parallel KD tree. 
The inter-processor data communication is implemented 
by combining many small size communication requests 
into a single large request. By transferring the required 
particles beforehand, searching for the highest density 
neighbor can be performed locally in each processor. This 
strategy is also applied to the process of hopping and 
group merging. We ran our experiments on three parallel 
machines using the data outputs from a production 
cosmological simulation application, called ENZO. Two 
sets of star particle data, each with different spatial 
distribution pattern, were tested. The experimental results 
present up to 24× speedup using 64 processors. Our 
parallelization approach is also applicable to other 
scientific fields, such as molecular biology, geology, or 



 

astronomy as long as they have similar requirements on 
clustering and neighbor finding procedures. 

The rest of this paper is organized as follows. The next 
section overviews the related works of clustering 
algorithms. Section 3 describes the HOP algorithm. Our 
design and parallelization of HOP algorithm is presented 
in Section 4. Software development issues are given in 
Section 5. Section 6 presents our experimental results and 
we conclude the paper in Section 7.  
 
2. Related work 
 

Data mining, also referred as knowledge discovery, is 
a process of extracting implicit, previously unknown and 
potentially useful information. It is commonly used in 
many fields, including scientific computation, financial 
analysis, information retrieval, decision making, and the 
World Wide Web. Data mining techniques can be roughly 
categorized into classification, clustering, association 
rules, sequence mining, similarity search, and other 
methods. Classification is a method that assigns a new 
record to one of several predefined categories or classes. 
Clustering, also referred as unsupervised classification, is 
to group a set of data (without a predefined class 
attribute) based on the conceptual clustering principles: 
maximizing the intra-class similarity and minimizing the 
interclass similarity. This technique is useful in document 
retrieval, image segmentation, taxonomy generation, 
biomedical engineering, geological spatial data analysis, 
earth science, telecommunication, etc. Clustering 
algorithms can be further divided into two categories: 
agglomerative algorithms and partitional algorithms. 
Agglomerative algorithms find clusters by initially 
assigning each object to its own cluster and then 
repeatedly merging pairs of clusters until a certain 
stopping criterion is met [5]. Examples include group 
average [6], single-link [7], CURE [8], ROCK [9] and 
CHAMELEON [10]. Partitional algorithms find clusters 
by partitioning the entire dataset into either a 
predetermined or an automatically derived number of 
clusters. Examples include k-means [11], k-medoids [6], 
auto-class [12] and graph-partitioning-based method [13].  

Clustering algorithms are commonly applied in 
astrophysics, such as cosmological simulations that 
identify collapsed halos, determine the merge of two 
galaxies and locate dwarf galaxies. IsoDen [4], FOF [17], 
DENMAX [18] and HOP [1] are clustering algorithms 
proposed and used in cosmological simulation. IsoDen 
finds clusters by constructing an adaptive oct-tree with 
individual particles stored in the leaves while internal 
nodes represent the cubical regions of space. The idea of 
FOF is that two particles belong to the same group if their 
separation is less than some chosen threshold and, then, 
such pairs are chained into groups. However, some 
groups found by FOF may appear as two clumps linked 

by a small thread of particles between the subgroups that 
may be inappropriate for some applications [1]. 
DENMAX takes a different approach by first estimating 
the density of each particle and then, determining the 
group of the particle through tracing path along the 
gradient of its density surface until a local maximum is 
reached. All particles that end up at the same maximum 
are defined to the same group. The drawback is that it 
may result in splitting large groups into smaller pieces 
due to the discovery of multiple local maxima at finer 
resolution [1]. HOP [1] is a clustering algorithm that 
overcomes the drawbacks of FOF and DENMAX. 

Since most of clustering applications are 
computational and data intensive, many efforts have been 
contributed to their parallelization recently. Examples of 
parallel agglomerative methods are SLINK algorithm 
[14], Prim’s minimal spanning tree algorithm [15], 
Ward’s minimum variance method [16], etc. An example 
of a partitional method is parallel K-Means [19].  Several 
works have been applied to cosmological simulation, such 
as Halo World [4], a parallel implementation of IsoDen 
method in which a parallel tree library handles all the 
communication on message passing parallel architecture.  
 
3. HOP clustering algorithm 
 

Instead of constructing the density gradient field in 
FOF and DENMAX, HOP assigns a density to each 
particle and replaces the concept of gradient by a simple 
search within the particle’s neighborhood to find the 
neighbor with the highest density. Each particle is 
associated to its highest density neighbor. Through this 
densest neighbor, a particle can “hop” to the next highest 
density particle and continues hopping until it reaches a 
particle that is its own highest density neighbor. All 
particles that hop to the same particle constitute a single 
group. Groups that share a sufficiently dense boundary 
are reconnected. Particles whose densities are less than a 
given threshold are excluded from groups.  

The HOP clustering algorithm consists of four 
processing stages: 

1) Constructing a KD tree: To reduce the workload 
of locating Ndens nearest neighbors for each particle, 
we use a KD tree structure to partition the particles 
based on their spatial locations, so that nearby 
particles are in the same sub-domain. Therefore, the 
neighborhood searching process can be performed by 
first checking the sub-domain’s boundary before 
going through all the particles in it. K-dimensional 
(KD) tree, a data structure used in orthogonal range 
searching, is commonly used in domain partition 
application [3]. KD tree is a balanced tree that 
partitions the spatial domain recursively along the 
longest axis into sub-domains. Each sub-domain 



 

contains approximately the same number of particles. 
The root node represents the entire simulation 
domain that covers all the particles and each tree 
node represents a sub-domain of its parent node. In a 
KD tree, only the leaf nodes (also called buckets) 
contain the particle data. The less number of particles 
in a bucket, the more levels of the tree depth. Every 
sub-domain partitioning involves determining the 
longest axis and searching the median coordinate 
value among all particles along that axis. One key 
property of a KD tree is that particles spatially closed 
are located in the same buckets or sibling buckets of 
the same tree branch. This property makes it very 
efficient to find neighbors of any particle. Figure 1 
illustrates an example of a two-dimensional KD tree. 
In HOP, bucket size (the number of particles in a 
bucket) is a user-provide parameter that determines 
the tree depth and affects the computational cost of 
the neighborhood search in the next stage. 

2) Generating density: HOP estimates the density of 
a particle by using an adaptive kernel with a length 
scale set by the distance to its Ndens nearest neighbor 
particles, where Ndens is a user-provide parameter. 
HOP employs SMOOTH as its density generating 
mechanism. SMOOTH [2] is a KD-tree based near 
neighbor search engine that can calculate some mean 
quantities for particles in an N-Body simulation, such 
as mean velocity, mean speed, and velocity 
dispersion. This stage is the most computational 
intensive part of HOP due to large amount of 
computation when searching for Ndens neighbors.  

3) Hopping: The core of HOP is to associate each 
particle to its highest density neighbor within its Nhop 

nearest neighbors, where Nhop is a user-provide 
parameter (Nhop <= Ndens). A particle continues 
“hopping” to a higher density until it reaches the 
particle that is its own highest density neighbor. 
Since the hopping is performed in increasing density 
order, its convergence is guaranteed. 

4) Grouping: Particles associated to the same densest 
particle are defined as a group. Therefore, every 
particle is assigned to one and only one group. To 
refine the clustering quality, group merging and 
pruning are performed according to some chosen 
density thresholds. Groups can be merged if their 
boundary satisfies some thresholds. Particles whose 
densities don’t exceed the density thresholds are 
excluded from the groups. A group might be 
disbanded if its maximum density is less than a given 
density threshold. 

 
4. HOP parallelization 
 

The key idea of our parallel implementation is to 
distribute the data particles across all processors evenly to 
ensure the balanced computational workload and access 
remote particles through communication. Thus, the 
balanced load and the data locality contribute to the 
efficiency of the parallelization. We assume the initial 
state of the parallel HOP as following: given an array of N 
particles, each of P processors reads N/P particles 
exclusively. The particles owned by a processor can 
locate arbitrarily across the whole problem domain. The 
data structure of a particle consists of its mass value and 
three spatial coordinates. 

 
4.1 Constructing a parallel KD tree 
 

Starting from the root-node of the KD tree, we first 
determine the longest axis d and, then, find the median 
value m of all particles’ d coordinates in parallel. The 
whole spatial domain is bisected into two sub-domains by 
m. Particles are exchanged between processors such that 
the particles whose d coordinate are greater than m go to 
one sub-domain and the rest particles to the other one. 
Therefore, an equal number of particles are maintained in 
each sub-domain after the bisection. We repeat this 
procedure recursively in every sub-domain till the number 
of sub-domains is equal to the number of processors. 
Then, each processor continues to build its own local tree 
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Fig. 1. Two-dimensional KD tree with 24 particles. 
Bucket size is 3 and the KD tree has 3 levels. Every 
internal node contains the boundary information of its 
sub-domain. Bisection is performed by the median 
coordinate value of the particles in the sub-domain. 
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Fig. 2. Two-dimensional KD tree distributed over four 
processors. Each processor contains 6 particles. 
Bucket size is 3 and the global tree has 3 levels. Local 
tree can be built concurrently without communication. 
Every processor maintains the same copy of the global 
tree.  



 

within its domain until the desired bucket size (number of 
particles in each leaf) is reached. Note that inter-processor 
communication is not required when constructing the 
local trees. 

We maintain a copy of the whole tree on every 
processor so that the communication overhead incurred at 
performing search domain intersection test with the 
remote local trees at the stages 2 and 3 can be reduced. 
Therefore, at the end of this stage, local trees are 
broadcasted to all processors. As shown in Figure 2, the 
root-node of the KD tree represents the entire simulation 
domain while each of the rest tree nodes represent a 
rectangular sub-domain of its parent node. The 
information contained in a non-leaf tree node includes the 
aggregated mass, center of mass, number of particles, and 
domain boundaries. When the KD tree is completed, 
particles are divided into spatially closed regions of 
approximately equal number. The advantage of using a 
KD tree is not only its simplicity but also the balanced 
data distribution.  

 
4.2 Generating density 
 

The density of a particle is estimated by its Ndens nearest 
neighbors, where Ndens is a user-provide parameter. Since 
it is possible that some of the Ndens neighbors of a particle 
are owned by remote processors, communication is 
required to access non-local neighbor particles at this 
stage. Our approach is, for each particle, first to perform 
intersection test by traversing the global tree with a given 

initial search radius r while keeping track of the non-local 
intersected buckets, as shown in Figure 3. If the total 
number of particles in all intersected buckets is less than 
Ndens, the intersection test is re-performed with a larger 
radius. Once tree walking is completed for all local 
particles, all the remote buckets containing the potential 
neighbors are obtained through communication. Note that 
there is only one communication request to each remote 
processor to gather the intersected buckets. No further 
communication is necessary when searching for its Ndens 
nearest neighbors. Since the KD tree displays the value of 
spatial locality, particle neighbors are most likely located 
in the same or nearby buckets. According to our 
experimental results, the communication volume is only 
10% - 20% of the total number of particles. However, 
with highly irregular particle distribution, communication 
costs may increase. 

To calculate the density for particle p, we use a PQ 
tree (priority queue) [24] to maintain a sorted list of 
particles that are currently the Ndens nearest neighbors. The 
root of the PQ tree contains the neighbor farthest from p. 
If a new neighbor whose distance to p is shorter than the 
root, replace the root with the second farthest one and 
update the PQ tree. Finally, the particles remained in the 
PQ tree are the Ndens nearest neighbors of p. 

 
4.3 Hopping 
 

This stage first associates each particle to its highest 
density neighbor among its Nhop nearest neighbors that are 
already stored in the PQ tree generated at the previous 
stage. Each particle, then, hops to the highest density 
neighbor of its associated neighbor. Hopping to remote 
particles is performed by first keeping track of all the 
remote particles and, then, making a communication 
request to the owner processors. This procedure may 
repeat several times until all the needed non-local 
particles are already stored locally. Since the hopping is 
in density increasing order, the convergence is 
guaranteed.  

 
4.4 Grouping 
 

Particles linked to the same densest particle are 
defined as a group. However, some groups should be 
merged or refined according to the chosen density 
thresholds. Thus, every processor first builds a boundary 
matrix for the groups constructed from its local particles 
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Fig. 3. Intersection test for particle p in processor P4. 
The neighborhood is a sphere region with a search 
radius r. The neighborhood search domain of particle p
intersects with P1 and P3. 
 

 
 

             Configuration 
Machine 

# Processor/Node Memory/Node Processor Type Inter-connection 

IBM SP2 8 SIMD, 12 GB 375 MHz, Power3 Colony Switch 

SGI Origin2000 1 SIMD, 0.25 – 0.6 GB  195 MHz, 250 MHz, MPIS R1000 Gigabit Ethernet 

Linux Cluster 2 MIMD, 512 MB  500 MHz, Pentium III Myrinet 

Table 1. Parallel Machine Specification 



 

and, then, exchanges the boundary matrix among all 
processors. Particles whose densities are less than a given 
threshold are excluded from groups and two groups are 
merged if their boundary satisfies some given thresholds.  
 
5. Software development 
 

We develop our parallel implementation in C and use 
Message Passing Interface (MPI) [23] for the inter-
processor communication. The program was developed in 
a Single Program Multiple Data (SPMD) model. We 
conducted our experiments on three parallel machines: an 
IBM SP2 at San Diego Supercomputing Center, an SGI 
Origin2000 at National Center for Supercomputing 
Application (NCSA), and a Linux Cluster at Argonne 
National Lab. System configurations are summarized in 
Table 1. We run our experiments using 1 to 64 processors 
on each of them.  

 
6. Experimental results 
 

To evaluate our parallel implementation of the HOP 
algorithm, we use the star particle data sets generated 
from a large-scale production cosmological application, 
ENZO, developed at NCSA [20], [21]. ENZO is a three-
dimensional parallel application that simulates the 
formation of a cluster of galaxies consisting of gas and 
stars [21]. The simulation starts near the beginning of the 
universe, a few hundred million years after the big bang, 
when the galaxy is in a relative uniform radiation 
distribution, and continues till the present day, when it is 
in a highly irregular star particle distribution. It is used to 
test theories of how galaxy and clusters of galaxies form 
by comparing the results with what is really observed in 
the sky today [22]. The ENZO’s outputs are periodical 
data dumps that show the evolution of the galaxy 
formation. In our experiments, we use two attributes of 
star particles: the Euclid coordinates in three dimensions 

and particle mass. The performance results were obtained 
by running our parallel HOP implementation on two 
output data sets from ENZO: one is in the earlier stage of 
the galaxy formation and the other is at the end of the 
simulation. Both data sets contain 491,520 star particles. 
Figure 4 shows the spatial distribution of these two data 
sets in three dimensions. 
 
6.1 Performance evaluation 
 

Throughout our experiments, we vary the following 
two parameters:  

1). bucket size: It is the number of particles contained 
in each leaf of the 3-dimensinal KD tree. The 
larger the bucket size, the less number of the tree 
depth. 

2). Ndens: A particle’s density is estimated by the mass 
of its Ndens nearest neighbor particles. A larger Ndens 
means more computation and communication 
involved in locating the neighbors.  

 
Although there are other parameters that can be varied, 

we only consider these two because they affect over 90% 
of the clustering performance. We also vary the number 
of processors from 1 to 64 to study the scalability of our 
implementation. Figure 5 presents the measured total 
execution time with break down time of each stage. The 
corresponding speedups are presented in Figure 6.   

We observed that the overall performance scales up on 
both IBM SP2 and SGI Origin2000. However, on the 
Linux Cluster, the performance scales well till using 32 
processors and the speedup goes down when using more 
processors. The reason is that the more processors are 
used, the less number of particles each individual 
processor owns, which results in relative lower 
computation cost and higher communication overhead. As 
we expected, data set 2 takes longer time than data set 1 
in all cases since the more irregular the particle 
distribution is, the more inter-processor communication 
occurs.  

We now examine the execution time for each 
individual stage. As observed in Figure 5, the density 
generation is the most time consuming stage, which takes 
more than 60 % of the total time. Figures 7 and 8 give the 
measured time and the speedups of this stage, 
respectively, which show similar performance curves as 
in Figures 5 and 6.  

In order to find out what is the main cause of the 
speedup saturation, we now study the communication 
time and the computation time separately. From Figure 9 
we can see that the communication time doesn’t scale 
well, even increases when using more than 32 processors. 
On the other hand, from Figure 10 we can observe that 
the computation part of our approach obtains very good 
scalability. It obtains up to 45x speedup when using 64 

(a) Data set 1 (b) Data set 2 

Fig. 4. 3-dimensional spatial distribution of two particle 
data sets from the ENZO outputs. Data set 1 
represents the results at the earlier stage of the 
simulation. Data set 2 represents the more irregular 
distribution near the end of the simulation.  
   



 

processors, which is much better than the overall speedup. 
Therefore, we can conclude that the communication 
overhead is the main cause of the speedup saturation.  

KD tree construction is the first stage of the HOP 
parallelization. Particle transfer during the recursive 
bisection may result in a large amount of data 
communication. Particles can be moved multiple times 
before they go to their final destination processors. Figure 
11 and Figure 12 present the execution time of this stage 
and the corresponding speedups, respectively. The 
speedups saturate when the number of processors goes 
beyond 32. 
 
Varying bucket size.  Varying the number of particles in 
each bucket affects the depth of the KD tree. Although a 
larger bucket size can reduce the time for constructing the 
parallel KD tree, it increases the total volume of particle 
transferring at the density generation stage and the 
hopping stage. Figure 13 shows the performance trend 
when varying bucket size from 16 to 128 using 1 to 64 
processors. We observe that the execution time goes up 
with larger bucket size for most of the cases. 
 
Varying Ndens. Figure 14 provides the performance of 
using 16, 32, 64 and 128 as Ndens. Although execution time 
increases when using a larger Ndens as more neighbor 
searching computation occurs, we get an interesting 

observation that the speedups improve when we increase 
Ndens. The reason is that the cost of communication is not 
increased as much as the computation.  

In general, our experiments present good overall 
performance results of our parallel HOP implementation. 
We obtain up to 24x speedup using 64 processors.  
 
7. Conclusions 
 

We presented our parallel implementation of the HOP 
clustering algorithm. The parallel implementation 
distributes particle data across processors to guarantee the 
balanced computational load. The data structure used by 
the clustering algorithm is a KD tree that contributes to 
the efficiency of searching for neighbors. Our strategy is 
to obtain non-local data through an inter-processor 
communication before each individual processor can 
work independently. We benchmarked our 
implementation using data generated from a real 
cosmological simulation, ENZO. Two data sets with 
different spatial particle distributions were used in our 
test. Our experiments presented good speedups on 
different parallel machines, which benefit from the 
balanced data distribution and the minimal data 
communications.   

Although HOP is a clustering algorithm in 
cosmological N-body problem, it may find applications in 
other fields, such as molecular biology, geology and 

Total Time 
on 1, 4, 8, 16, 32, 64 processors, 491520 particles, Ndens=128, bucket size=16 

Fig. 5. Total execution time on 
IBM SP2, SGI Origin2000 and Linux Cluster. 
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astronomy, where large spatial data sets are to be 
processed with similar clustering or neighbor finding 
procedures. One example is molecular pattern 
recognition, which normally involves huge amount of 
neighbor finding computation. Our parallelization 
strategy is applicable to those fields.  
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