
A High-Performance Application Data
Environment for Large-Scale

Scientific Computations
Xiaohui Shen, Wei-keng Liao, Alok Choudhary, Senior Member, IEEE,

Gokhan Memik, and Mahmut Kandemir, Member, IEEE

Abstract—Effective high-level data management is becoming an important issue with more and more scientific applications

manipulating huge amounts of secondary-storage and tertiary-storage data using parallel processors. A major problem facing the

current solutions to this data management problem is that these solutions either require a deep understanding of specific data storage

architectures and file layouts to obtain the best performance (as in high-performance storage management systems and parallel file

systems), or they sacrifice significant performance in exchange for ease-of-use and portability (as in traditional database management

systems). In this paper, we discuss the design, implementation, and evaluation of a novel application development environment for

scientific computations. This environment includes a number of components that make it easy for the programmers to code and run

their applications without much programming effort and, at the same time, to harness the available computational and storage power

on parallel architectures.

Index Terms—Data intensive computing, access pattern, storage pattern, MDMS.

�

1 INTRODUCTION

EFFECTIVE data management is a crucial part of the design

of large-scale scientific applications. An important

subproblem in this domain is to optimize the data flow

between parallel processors and several types of storage

devices residing in a storage hierarchy. While a knowl-

edgeable user can manage this data flow by exerting a great

effort, this process is time-consuming, error-prone, and not
portable.

To illustrate the complexity of this problem, we consider
a typical computational science analysis cycle shown in
Fig. 1. As can be seen easily, in this cycle, there are several
steps involved. These include mesh generation, domain
decomposition, simulation, visualization and interpretation
of results, archiving of data and results for postprocessing
and check-pointing, and adjustment of parameters. Conse-
quently, it may not be sufficient to consider simulation
alone when determining how to store or access data sets,
because these data sets are used in other steps as well. In
addition, these steps may need to be performed in a
heterogeneous distributed environment and the data sets in
question can be persistent on secondary or tertiary storage.

Among the important issues in this analysis cycle are
detection of I/O access patterns for data files, determination
of suitable data storage patterns, and effective data analysis
and visualization.

Obviously, designing effective I/O strategies in such an
environment is not particularly suitable for a computational
scientist. To address this issue, over the years, several
solutions have been designed and implemented. While each
of these solutions is quite successful for a class of
applications, we feel that the growing demand for large-
scale data management necessitates novel approaches that
combine the best characteristics of current solutions in the
market. For example, parallel file systems [11], [30], [9]
might be effective for applications whose I/O access
patterns fit a few specific forms. They achieve impressive
performance for these applications by utilizing smart I/O
optimization techniques such as prefetching [19], caching
[24], [6], and parallel I/O [17], [12]. However, there are
serious obstacles preventing the parallel file systems from
becoming a global solution to the data management
problem. First of all, user interfaces of the file systems are,
in general, low-level [22], allowing the users to express
access patterns of their applications using only low-level
structures such as file pointers and byte offsets. Second of
all, nearly every file system has its own suite of I/O
commands, rendering the process of porting a program
from one machine to another a very difficult task. Third, the
file system policies and optimization parameters are, in
general, hard-coded within the file system and, conse-
quently, work for only a small set of access patterns. While
runtime systems and libraries like MPI-IO [10], [35] and
others [37], [3], [8] present users with higher-level, more
structured interfaces, the excessive number of calls to select
from, each with several parameters, make the user’s job

1262 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

. X. Shen is with the Core Technology Department, Motorola Inc., 1000
Technology Way, Libertyville, IL 60048. E-mail: axs095@email.mot.com.

. W.-k. Liao, A. Choudhary, and G. Memik are with the Electrical and
Computer Engineering Department, Northwestern University, L359
Technological Institute, 2145 Sheridan Road, Evanston, IL 60208-3118.
E-mail: {wkliao, choudhar, memik}@ece.northwestern.edu.

. M. Kandemir is with the Department of Computer Science and
Engineering, The Pennsylvania State University, University Park, PA
16802. E-mail: kandemir@cse.psu.edu.

Manuscript received 18 Dec. 2001; revised 24 Nov. 2002; accepted 20 May
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 115578.

1045-9219/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

very difficult. Also, the usability of these libraries depends
largely on how well user’s access patterns and library calls’
functionality match [21].

An alternative to parallel file systems and runtime
libraries is database management systems (DBMS). They
present a high-level, easy-to-use interface to the user and
are portable across a large number of systems including
SMPs and clusters of workstations. In fact, with the advent
of object-oriented and object-relational databases [32], they
also have the capability of handling large data sets such as
multidimensional arrays and image/video files [15]. A
major obstacle in front of DBMS (as far as the effective high-
level data management is concerned) is the lack of powerful
I/O optimizations that can harness parallel I/O capabilities
of current multiprocessor architectures. In addition to that,
the data consistency and integrity semantics provided by
almost all DBMS put an added obstacle to high-perfor-
mance. Finally, although hierarchical storage management
systems (e.g., [39]) are effective in large-scale data transfers
between storage devices in different levels of a storage
hierarchy, they also, like parallel file systems and DBMS,
lack application specific access pattern information and,
consequently, their I/O access strategies and optimizations
are targeted at only a few well-defined access and storage
patterns.

In this paper, we present a novel application develop-
ment environment for large-scale scientific applications that
manipulate secondary storage and tertiary storage resident
data sets. Our primary objective is to combine the
advantages of parallel file systems and DBMS without
suffering from their disadvantages. To accomplish this
objective, we designed and implemented a multicomponent
system that is capable of applying state-of-the-art I/O
optimizations without putting an excessive burden on
users. Our contributions are summerized as follows:

. We present a metadata management system, called
MDMS, that keeps track of I/O accesses and enables
suitable I/O strategies and optimizations depending
on the access pattern information. Unlike classical
user-level and system-level metadata systems [18],
[28], the main reason for the existence of MDMS is to
keep performance-oriented metadata and utilize
these metadata in deciding suitable I/O strategies.

. We explain how the MDMS interacts with parallel
applications and hierarchical storage systems (HSS),
relieving the users from the low-level management
of data flow across multiple storage devices. In this

respect, the MDMS plays the role of an easy-to-use
interface between applications and HSS.

. We present a tape device-oriented optimization
technique, called subfiling, that enables fast access
to small portions of tape-resident data sets and show
how it fits in the overall application development
environment.

. We illustrate how data analysis and visualization
tools can be integrated in our environment.

. We propose an automatic code generator component
(ACG) to help users utilize the metadata manage-
ment system when they are developing new
applications.

. We present an integrated Java graphical user inter-
face (IJ-GUI) that makes the entire environment
virtually an easy-to-use control platform for mana-
ging complex programs and their large data sets.

. We present performance numbers from our initial
implementation using four I/O-intensive scientific
applications.

The core part of our environment is a three-tiered
architecture shown in Fig. 2. In this environment, there
are three key components: 1) parallel application, 2) meta-
data management system (MDMS), and 3) hierarchical
storage system (HSS). These three components can coexist
in the same site or can be fully-distributed across distant
sites. The MDMS is an active part of the system: It is built
around an Object-Relational DBMS (OR-DBMS) [33], [32]
and it mediates between the user program and the HSS. OR-
DBMS is a marriage of the SQL from the relational world
and the modeling primitives from the object world, and is
very effective for large and complex scientific data. The user
program can send query requests to MDMS to obtain
information about data structures that will be accessed.
Then, the user can use this information in accessing the HSS
in an optimal manner, taking advantage of powerful I/O
optimizations like collective I/O [36], [8], [23], prefetching
[19], prestaging [14], etc. The user program can also send
access pattern hints to the MDMS and let the MDMS to
decide the best I/O strategy considering the storage layout
of the data in question. These access pattern hints span a

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1263

Fig. 1. A typical computational science analysis cycle.

Fig. 2. Three-tiered architecture.

wide spectrum that contains interprocessors I/O access
patterns, information about whether the access type is read-
only, write-only, or read/write, information about the size
(in bytes) of average I/O requests, etc. We believe that this
is one of the first studies evaluating the usefulness of
passing a large number of user-specified hints to the
underlying I/O software layers. In this paper, we focus
on the design of MDMS, including the design of database
schema and MDMS library (user interface), the optimiza-
tions for tape-resident data sets, and an integrated Java
graphical user interface (IJ-GUI) to help users efficiently
work in our distributed programming environment. Our
environment is different from previous platforms (e.g., [25],
[2], [1], [5]) in that it provides intelligent data access
methods for disk and tape-resident data sets.

The remainder of the paper is organized as follows: In
Section 2, we present the design details of metadata
management system including design of database tables
and high-level MDMS library (user API). In Section 3, an
optimization method to access tape-resident data sets is
presented. In Section 4, we present an integrated Java
graphical user interface (IJ-GUI) to assist users in distrib-
uted environments. In Section 5, our initial performance
results are presented. In Section 6, we review the previous
work on I/O optimizations. Finally, we conclude the paper
and briefly discuss ongoing and future work in Section 7.

2 DESIGN OF METADATA MANAGEMENT

SYSTEM (MDMS)

The metadata management system is an active middle-ware
built at Northwestern University with the aim of providing
a uniform interface to data-intensive applications and
hierarchical storage systems. Applications can communi-
cate with the MDMS to exploit the high-performance I/O
capabilities of the underlying parallel architecture. The
main functions fulfilled by the MDMS can be summarized
as follows:

. It stores information about the abstract storage
devices (ASDs) that can be accessed by applications.
By querying the MDMS,1 the applications can learn
where in the HSS their data sets reside (i.e., in what
parts of the storage hierarchy) without the need of
specifying file names. They can also access the
performance characteristics (e.g., speed, capacity,
bandwidth) of the ASDs and select a suitable ASD
(e.g., a disk subsystem consisting of eight separate
disk arrays or a robotic tape device) to store their
data sets. Internal data structures used in the MDMS
map ASDs to physical storage devices (PSDs)
available in the storage hierarchy.

. It stores information about the storage patterns
(storage layouts) of data sets. For example, a specific
multidimensional array that is striped across four
disk devices in round-robin manner will have an
entry in the MDMS indicating its storage pattern.
The MDMS utilizes this information in a number of

ways. The most important usage of this information,
however, is to decide a parallel I/O method based
on access patterns (hints) provided by the application.
By comparing the storage pattern and access pattern
of a data set, the MDMS can, for example, advise the
HSS to perform collective I/O [16] or prefetching
[19] for this data set.

. It stores information about the pending access
patterns.2 It utilizes this information in taking some
global data movement decisions (e.g., file migration
[39], [14] and prestaging [39], [14]), possibly invol-
ving data sets from multiple applications.

. It keeps metadata for specifying access history and
trail of navigation. This information can then be
utilized in selecting appropriate optimization poli-
cies in successive runs.

Overall, the MDMS keeps vital information about the
data sets and the storage devices in the HSS. Note that the
MDMS is not merely a data repository, but also an active
component in the overall data management process. It
communicates with applications as well as the HSS and can
influence the decisions taken by both.

The MDMS design consists of the design of database
tables and the design of a high-level MDMS API. The
database tables keep the metadata that will be utilized in
performance-oriented I/O optimizations. The MDMS API,
on the other hand, presents an interface to the clients of the
MDMS. They are described in the subsequent subsections.

2.1 MDMS Tables

We have decided that, to achieve effective I/O optimiza-
tions automatically, the MDMS should keep five (database)
tables for each application. These are run table, storage
pattern table, access pattern table, data set table, and execution
table. Since, in our environment, a single user might have
multiple applications running, sharing tables among differ-
ent applications would not be a good implementation
choice because it might slow down the query speed when
tables become large. In our implementation, we construct a
table name by concatenating the application name and a
fixed, table-specific name. Consequently, each application
has its own suite of tables. For example, in an astrophysics
application (called astro3d henceforth), the table names are
astro3d-run-table, astro3d-access-pattern-table, etc., while
in a parallel volume rendering application (called volren
henceforth), they are volren-run-table, volren-access-pat-
tern-table, and so forth. The tables with same fixed table
name (e.g., data set table) have the same attributes for
different applications except the run table, which is
application specific: The user needs to specify interesting
attributes (fields) for a particular application in the run
table. For example, in astrod3d, the run table may contain
the number of dimensions and the dimension sizes of each
array, the total number of iterations, the frequency of
dumping for data analysis, the frequency of check-point
dumping, etc. The functionality of each table is briefly
summarized in Table 1. Note that, among these tables, the
execution table is the most frequently updated one. It is

1264 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

1. These queries are performed using user-friendly constructs. It would
be very demanding to expect the user to know SQL or any other query
language.

2. The pending access patterns here refer to future access patterns that
will be known at runtime where a user can specify the type of access pattern
that will occur. Using this information, the system can perform optimiza-
tions such as prefetching, prestaging from tape, data migration, etc.

typically updated whenever the application in question
dumps data on disk/tape for visualization and data
analysis purposes. The run table, on the other hand, is
updated once for each run (assigning a new run-id to each
run). The data set table keeps the relevant information
about data sets in the application, the access pattern table
maintains the access pattern information, and the storage
pattern table keeps information about storage layouts of the
data sets. An advantage of using an OR-DBMS [33] in
building the MDMS is being able to use pointers that
minimize metadata replication, thereby keeping the data-
base tables in manageable sizes. The MDMS also has a
number of global (interapplication) tables to manage all
applications, such as application table, which records all the
application names, their host machines, etc., in the system,
visualization table, where location of visualization tools can
be found, and storage devices table, which maps ASDs to
PSDs. An example use of our five database tables is
illustrated in Fig. 3. Note that the memory requirements
for MDMS are small. A typical run of a large scale aplication
results in about 20-30K increase of metadata.

2.2 MDMS API

The MDMS API, which consists of a number of MDMS
functions, is in the center of our programming environment.

Through this API, the programs can interact with the
database tables without getting involved with low-level
SQL-like commands. Our MDMS library is built on top of
MPI-I/O [10], the emerging parallel I/O standard. MPI-I/O
provides many I/O optimization methods such as collective
I/O, data sieving, asynchronous I/O, etc. But, for most
computational scientists with little knowledge of I/O
optimizations and storage devices, it is very hard to choose
the appropriate I/O routines from among numerous
complicated MPI-I/O functions. Our MDMS API helps
users choose the most suitable I/O functions according to
user-specified data access pattern information. In this
environment, an access pattern for a data set is specified
by indicating how the data set is to be shared and accessed
by parallel processors. For example, an access pattern such
as (Block,*) says that the two-dimensional data set in
question is divided (logically) into groups of rows and each
group of rows will be accessed by a single processor. These
patterns are also used as storage patterns. As an example,
for a two-dimensional disk-resident array, a (Block,*)
storage pattern corresponds to row-major storage layout (as
in C), a (*,Block) storage pattern corresponds to column-
major storage layout (as in Fortran), and a (Block,Block)
storage pattern corresponds to blocked storage layout
which might be very useful for large-scale linear algebra
applications whose data sets are amenable to blocking [37].
Our experience with large-scale, I/O-intensive codes
indicates that, usually, the users know how their data sets
will be used by parallel processors; that is, they have
sufficient information to specify suitable access patterns for
the data sets in their applications. Note that conveying an
access pattern to the MDMS can be quite useful, as the
MDMS can compare this access pattern with the storage
pattern of the data set (which is kept in the storage pattern
table), and can decide an optimal I/O access strategy.3 For
instance, an example use of this information might occur in
the following way. If the user is going to access a data set in
a (Block,Block) fashion while the data set is stored, say
in a file on disk, as (Block,*), the MDMS will auto-
matically choose the MPI-I/O collective I/O function to

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1265

3. Our MDMD supports many regular partitioning patterns such as
(Block, *), (Block,Block), (Block, CYCLIC), etc. In addition, our recent work
would allow users to specify irregular and more flexible access patterns by
employing MPI-I/Os derived datatypes mechanism [34]. In this work,
however, only the most popular patterns such as (Block, *), (Block, Block)
have been used for our experiments.

TABLE 1
Functionality of Database Tables Maintained in the MDMS

Fig. 3. Internal representation in MDMS.

achieve better performance. Our library also provides other
I/O optimization methods that are not found in MPI-I/O,
but can be built on top of MPI-IO using the access pattern
information such as data prefetching (from disk or tape to
memory), data prestaging (from tape to disk), and subfiling
(for tape-resident data) [26]. For example, when the user is
going to access a sequence of data sets and perform some
computation on them sequentially, our library can overlap
the I/O access and computation by prefetching or presta-
ging the next data set while the computation on the current
data set continues. As another example, if the user will
access a small chunk of data from a large tape-resident data
set, our tape library, APRIL [26], will be called to achieve
low latency in tape accesses. Another feature of the MDMS
is that we provide mechanisms to locate the data by data set
names, such as temperature or pressure rather than using
file name and offset. The user can also query the MDMS to
locate data sets in which she has particular interest and to
devise application-specific access strategies for these data
sets. Fig. 4 depicts a sketch of how an I/O optimization
decision is made. In short, comparing the access pattern and
storage pattern, and having access to the information about
the location of the data set in the storage hierarchy, the
MDMS can decide a suitable I/O optimization.

Note that, in our environment, the users’ task is to
convey the access pattern information to the MDMS and let
the MDMS select a suitable I/O strategy for her. In addition
to interprocessor access pattern information (hint), the
MDMS also accepts information about, for example,
whether the data set will be accessed sequentially, whether
it is read-only for the entire duration of the program, and
whether it will be accessed only once or repeatedly. An
important problem now is in what part of the program the
user should convey this information (hints). While one
might think that such user-specified hints should be placed
at the earliest point in the program to give the MDMS
maximum time to develop a corresponding I/O optimiza-
tion strategy, this may also hurt performance. For example,
in receiving a hint, the MDMS can choose to act upon it, an
activity that may lead to suboptimal I/O strategies had we
considered the next hint. Therefore, sometimes delaying
hints and issuing them to MDMS collectively might be a
better choice. Of course, only the correlated hints must be
issued together. While passing (access pattern) hints to file
systems and runtime systems was proposed by other
researchers [27], [24], [29], we believe that this is the first
study that considers a large spectrum (variety) of perfor-
mance-oriented hints in a unified framework.

The functions used by the MDMS to manipulate the
database tables are given in Table 2. Fig. 5, on the other
hand, shows a typical flow of calls using the MDMS. These
routines are meant to substitute the traditional Unix I/O
functions or MPI-IO calls that may be used by the
programmers when they want to read or dump data. They
look very similar to typical Unix I/O functions in appear-
ance, so the users do not have to change their programming
practices radically to take advantage of state-of-the-art I/O
optimizations. The flow of these functions can be described
as follows:

1. Initialization. The MDMS flow starts with a call to
the initialization() routine.

2. Write. The write operations start with create-
association() that creates an association for the data
sets that can be grouped together for manipulation.
The create-association() returns an association-id
that can be used later for collectively manipulating
all the associated data sets. The subsequent function
for the write operations is the save-initial() routine.
This can be thought of as “file open” command in
Unix-like I/O. Then, the user can use the save()
function to perform data write operations to the
storage hierarchy. Note that, in traditional Unix-like
I/O, each data set needs a “file open,” while in the
MDMS library, there is only one “open:” the save-
initial() routine collectively opens all the associated
data sets. The write operations are ended with save-
final() that corresponds to a “file close” operation in
Unix-like I/O.

3. Read. The read operations start with the get-associa-
tion() routine that obtains an association handle
generated by the create-association() routine during
a previous write operation. The next function to
continue the read operations is load-initial() which,
again, corresponds to “file-open” in Unix I/O. Then,
the user can use the load() routine to perform read
operations. The read operations are completed by the
load-final() function. Note that the read and write
operations can, of course, interleave.

4. Finalization. The MDMS flow is ended with the
finalization() routine.

As stated earlier, the MDMS library provides transparent
access to the database tables, thus users do not need to deal
with these tables explicitly. The actions taken by the MDMS
for a typical run session are as follows:

1. A row is added to the run table by set-run-table() to
record the user-specified information about this run.
Users can search this table by date and time to find
information pertaining to a particular run.

2. For the data sets having similar characteristics such
as the same dimension sizes, access pattern, etc., an
association is reated by create-association(). Each
association with one or several data sets is inserted
into the data set table. The access pattern table and
storage pattern table are also accessed by the create-
association(): The access pattern and storage pattern
of each data set are inserted into these two tables,
respectively. We expect the user to at least specify
the access pattern for each data set. Note that,

1266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

Fig. 4. Selecting an I/O optimization.

depending on the program structure, a data set
might have multiple access patterns in different
parts of the code. The MDMS also accepts user-
specified storage pattern hints. If no storage pattern
hint is given, the MDMS selects row-major layout
(for C programs) or column-major layout (for
Fortran programs).

3. In load-init(), the file names, offsets, iteration
number, etc., of a particular data set are searched
from the execution table.

4. In save-init(), the execution table may be searched to
find out the file name for check-pointing. In save(), a
row is inserted into execution table to record the
current I/O activity.

5. Steps 3 and 4 are repeated until the main loop where
the I/O activity occurs is finished.

3 HIERARCHICAL STORAGE SYSTEM

The data sets that are generated by large-scale scientific
applications might be too large to be held on the secondary
storage devices permanently: thus, they have to be stored
on tertiary storage devices (e.g., robotic tape) depending on
their access profile. In many tape-based storage systems, the
access granularity is a whole file [39]. Consequently, even if
the program tries to access only a section of the tape-
resident file, the entire file must be transferred from the
tape to the upper level storage media (e.g., magnetic disk).
This can result in poor I/O performance for many access
patterns. The main optimization schemes in the MDMS we

have presented so far, such as collective I/O, prefetching

and prestaging, could not help much when the user

accesses only a small portion in a huge tape-resident data

set as the tape access times would dominate. In this section,

we present an optimization technique called subfiling that

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1267

TABLE 2
Functions Used in the MDMS

Fig. 5. A typical MDMS execution flow.

can significantly reduce the I/O latencies in accessing tape-
resident data sets.

3.1 Subfiling

We have developed and integrated into theMDMS a parallel
runtime library (called APRIL) for accessing tape-resident
data sets efficiently. At the heart of the library lies an
optimization scheme called subfiling. In subfiling, instead of
storing each tape-resident data set as a single large file, we
store it as a collection of small subfiles. In other words, the
original large data set is divided into uniform chunks, each of
which canbe stored independently in the storagehierarchyas
a subfile. This storage strategy, however, is completely
transparent to the user who might assume that the data set
is stored in a single (logical) file. For read or write operations
to the tape-resident data set, the start and end coordinates
should be supplied by the user. The MDMS, in turn,
determines the set of subfiles that collectively contain the
required data segment delimited by the start and end
coordinates. These subfiles are brought (using the APRIL
API) from the tape to the appropriate storage device and the
requireddata segment is extracted from themand returned to
the user buffer supplied in the I/O call. The programmer is
not aware of the subfiles used to satisfy the request. This
provides a low-overhead (almost) randomaccess for the tape-
resident data with an easy-to-use interface.

The interaction between the library calls and the I/O
software layers is depicted in Fig. 6a. Our current access to a
storage hierarchy that involves tape devices is throughHPSS
(High Performance Storage System) [14]. The required
subfiles are transferred (in a user-transparent manner) using
theHPSScalls fromthe tapedevice to thediskdevice and then
our usual MDMS calls (built on top of MPI-IO) are used to
extract the required subregions from each subfile. Fig. 6b
shows some of the potential I/O optimizations between
different layers.

3.2 Experiments with APRIL

We have conducted several experiments using the APRIL
library API from within the MDMS. During our experi-
ments, we have used the HPSS at the San Diego Super-
computing Center (SDSC). We have used the low-level

routines of the SDSC Storage Resource Broker (SRB) [2] to
access the HPSS files. Table 3 shows the access patterns that
we have experimented with (A through H). It also gives the
start and end coordinates of the access patterns as well as
the total number of elements requested by each access. In all
these experiments, the global file was a two-dimensional
matrix with 50; 000� 50; 000 floating-point elements. The
chunk (subfile) size was set to 2; 000� 2; 000 (small chunks)
and 4; 000� 4; 000 (large chunks) floating-point elements.

The results from our experiments are summarized in
Table 4. The table gives the response times (in seconds) of
the naive scheme (i.e., without subfiling) and the percentage
gains achieved by our library using two subfile sizes (as
given above) over the naive scheme. The results show that
the library can, in general, bring about substantial improve-
ments over the naive scheme for both read and write
operations. The performance degradation in pattern C is
due to the fact that subfiling causes a large number of small
I/O calls while the naive approach completes the whole
access with a single I/O call. We plan to eliminate these
problems by developing techniques that help to select
optimal subfile shapes given a set of potential access
patterns. Smaller chunk sizes have the advantage of
increased granularity. With the increased granularity the
amount of redundant data transfer reduces, possibly
increasing the efficiency. However, if the chunk size is too
small, the number of files that has to be accessed increases,
possibly reducing the overall efficiency. Hence, there is an
optimal chunk size for each access pattern. If there is a
single known pattern with fixed form accesses (i.e., accesses
to the file has exactly the same form and size even if they
are to different positions in the file), setting the chunk size
to be equal to the access pattern will naturally result in the
minimal delay. On the other hand, optimal chunk form for
arbitrary access patterns or for a set of access patterns
depends on the relative costs of transferring redundant data
and accessing a file. Hence, it is related to the specific costs
of the underlying system, such as data transfer rates and file
access delay. Our initial observation is that the techniques
proposed by Sarawagi [31] might be quite useful for this
problem. Nevertheless, the results in Table 4 show that even
a fixed chunk form increases the performance of the system
significantly for almost all access patterns.

1268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

Fig. 6. (a) Interaction between the library calls, MPI-IO, and HPSS.

(b) Prefetching, prestaging, and migration.

TABLE 3
Access Patterns Used in the Experiments

Each access pattern is delimited by a start coordinate and an end
coordinate and contains all the data points in the rectangular region.

4 DESIGN OF THE INTEGRATED JAVA GRAPHICAL

USER INTERFACE

As it is distributed in nature, our application development

environment involves multiple resources across distant

sites. For example, let us consider our current working

environment that consists of different platforms and tools.

We do program development using local HP or SUN

workstations, the visualization tools used are installed on a

Linux machine, our MDMS is located on another machine,

and our parallel applications currently run on a 16-node

IBM SP-2 distributed-memory message-passing architec-

ture. Although these machines are within our department,

they could be distributed across different locations in the

Internet.

When the user starts to work on such a distributed

environment without the help of our application develop-

ment system, she normally needs to go through several

steps that can be summarized as follows:

1. Log on to IBM SP2 and submit the parallel

application.
2. When the execution of the application is complete,

log on to the database host and use native SQL

dialect to find the data set that would be needed for

visualization.
3. Once the required data set has been found, transfer

the associated file(s) manually, for example, using
ftp, from SP2 (where data are located) to the
visualization host (where visualization tools reside).

4. Log on to the visualization host (Linux machine) and
start the visualization process.

5. Repeat Steps 2, 3, and 4 as long as there exist data
sets to be visualized.

Obviously, these stepsmight be very time-consuming and

inconvenient for the users. To overcome this problem (which

is due to the distributed nature of the environment), an

integrated Java graphical user interface (IJ-GUI) is imple-

mented and integrated to our application development

environment. The goal of the IJ-GUI is to provide users with

an integrated graphical environment that hides all the details

of interaction among multiple distributed resources (includ-

ing storage hierarchies).We use Java because it is becoming a

major language in distributed systems and it is easy to

integrate Java in a Web-based environment. Java also

provides the tools for a complete framework that addresses

all aspects of managing the process of application develop-

ment: processes and threads, database access, networking,

and portability. In this environment, the users need to work

only with IJ-GUI locally, rather than go to different sites to

submit parallel applications or to do file transfers explicitly.

Fig. 7 showshowIJ-GUI is related tootherpartsof our system.

It actively nteracts with three major parts of our system: with

parallel machines to launch parallel applications, with the

MDMS through JDBC to help users query metadata from

databases, and with visualization tools. The main functions

that IJ-GUI provides can be summarized as follows:

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1269

TABLE 4
Execution Times and Percentage Gains for Write and Read Operations

The second and fifth columns give the times for the naive I/O (without subfiling) in seconds. The remaining columns (except the first one) show the
percentage improvements over the naive I/O method when subfiling is used.

Fig. 7. Java GUI and the overall system.

. Registering new applications. To start a new
application, the user needs to create a new suite of
tables for the new application. Using the IJ-GUI, the
user needs only to specify attributes (fields) of the
run table and all other tables (e.g., storage pattern
table, execution table, etc.) will be created automati-
cally using the information provided in the run table.

. Running applications remotely. The applications
typically run on some form of parallel architecture
such as IBM SP2 that can be specified by the user
when she registers a new application. Therefore, a
remote shell command is used in IJ-GUI to launch
the job on remote parallel machines. The user can
also specify command line arguments in the small
text fields. Defaults are provided and the user can
change them as needed. The running results will be
returned in the large text area.

. Data analysis and visualization. Users can also
carry out data analysis and visualization through the
IJ-GUI. In general, data analysis is very application-
specific and may come in a variety of flavors. For
some applications, data analysis may simply calcu-
late the maximum, minimum, or average value of a
given data set whereas, for some others, it may be
plugged into the application and calculate the
difference between two data sets and decide
whether the data sets should be dumped now or
later. The current approach to the data analysis in
our environment is to calculate the maximum,
minimum, and arithmetic means of each data set
generated. From the IJ-GUIs point of view, this
process is no different than submitting a remote job.
Visualization, on the other hand, is an important tool
in large-scale scientific simulation, helping the users
to inspect the inside nature of data sets. It is, in
general, slightly more complicated than data analy-
sis. First of all, the users’ interests in a particular data
set may be very arbitrary. Our approach is to list all
the candidate data sets by searching the database
using the user-specified characteristics such as
maximum, minimum, means, iteration numbers,
pattern, mode, etc. Then, the candidates are pre-
sented in a radio box for the user so that she can
select the data set she wants. Second, the data sets
are created by parallel machines, and they are
located on parallel machines or stored in hierarchical
storage systems. But, our visualization tools are
installed in different locations. Therefore, inside IJ-
GUI, we transparently copy the data from the remote
parallel machine or hierarchical storage systems to
the visualization host and then start the visualization
process. The user does not need to check the MDMS
tables explicitly for interesting data sets or perform
data transfers manually. The only thing that she
needs to do is to check-mark the radio box for
interesting data sets, select a visualization tool (vtk,
xv, etc.) and, finally, click the visualization button to
start the process. The current visualization tools
supported in our environment include Visualization
Toolkit (vtk), Java 3D, and xv. Fig. 8 shows how the
user visualizes data sets through vtk and xv.

. Table browsing and searching. Advanced users
may want to search the MDMS tables to find the
data sets of particular interest. Therefore, the table
browsing and searching functions are provided in

the IJ-GUI. The user can just move the mouse and
pick a table to browse and search the data without
logging on to a database host and typing native
SQL script.

. Automatic code generator. Our IJ-GUI relieves users
great burden of working in a distributed system
with multiple resources. For an application that has
already been developed, the user would find it very
easy to run her application with any parameters she
wants: She can also easily carries out data analysis
and visualization, search the database, and browse
the tables. For a new application to be developed,
however, although our high-level MDMS API is easy
to learn and use, the user may need to make some
efforts to deal with data structure, memory alloca-
tions, and argument selections for the MDMS
functions. Although these tasks may be considered
routine, we also want to reduce them to almost zero
by designing an Automatic Code Generator (ACG)
for MDMS API. The idea is that, given a specific
MDMS function and other high-level information
such as the access pattern of a data set, ACG will
automatically generate a code segment that includes
variable declarations, memory allocations, variable
assignments, and identifications of as many of the
arguments of that API as possible. The most
significant feature of ACG is that it does not just
work like a MACRO which is substituted for real
codes: It may also consult databases for advanced
information if necessary. For example, to generate a
code segment for set-run-table(), which is to insert
one row into the run table to record this run with
user-specified attributes, our ACG would first search
the database and return these attributes, then, it uses
these attributes to fill out a predefined data structure
as an argument in function set-run-table(). Without
consulting the database, the user has to deal with
these attributes by hand. Our ACG is integrated
within our IJ-GUI as part of its functions. The user
can simply copy the code segment generated and
paste them in her own program.

1270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

Fig. 8. A visualization example. The upper window shows the data sets
along with their characteristics such as data sizes, iteration number (in
which they are dumped), offset, pattern, etc. These data sets are chosen
by the user for visualization. The lower windows show the visualization
results for two different data sets, each using a different visualization
tool.

Currently, the IJ-GUI is implemented as a stand-alone
system, we are in the process of embedding it into the Web
environment, so the user can work in our integrated
environment through a Web browser.

5 EXPERIMENTS

In previous sections, we have shown that our MDMS can
provide an easy-to-use environment by relieving users from
details of data storage architectures and file layouts. Unlike
other systems that have to sacrifice significant performance
in exchange for ease-of-use, our MDMS can still take
advantage of state of the art I/O techniques to achieve
performance improvements. In this section, we present
some performance numbers from our current MDMS and
IJ-GUI implementations. The experiments were run on an
IBM SP-2 at Argonne National Lab. Each node of the SP-2 is
RS/6000 Model 390 processor with 256 megabytes memory
and has an I/O subsystem containing four nine gigabytes
SSA disks attached to it.

We used four different applications: three of them are
used to measure the benefits of collective I/O for disk-
resident data sets; the last one is used to see how prestaging
(i.e., staging data from tape to disk before they are needed)
performs for tape-resident data and how prefetching (i.e.,
fetching data from disk to memory before they are needed)
performs data already on disks. The current implementa-
tion of the APRIL library uses HPSS [14] as its main HSS
interface to tape devices. HPSS is a scalable, next-generation
storage system that provides standard interfaces (including
an API) for communication between parallel processors and
mass storage devices. Its architecture is based on the IEEE
Mass Storage Reference Model Version 5 [13]. Through its
parallel storage support by data striping, HPSS can scale
upward as additional storage devices are added.

Table 5 shows the total I/O times for a two-dimensional
astrophysics template (astro2d), a three-dimensional astro-
physics code (astro3d), and for an unstructured (irregular
data access pattern) code on the IBM SP-2. Here, Original

refers to the code without collective I/O and Optimized

denotes the code with collective I/O. In all cases, the MDMS
is run at Northwestern University. The important point here
is that, in both the Original and the Optimized versions,
the user code is essentially the same; the only difference is
that the Optimized version contains access pattern hints
and I/O read/write calls to the MDMS. The MDMS
automatically determines that, for the best performance,
collective I/O needs to be performed. As a result,
impressive reductions in I/O times are observed. Since
the number of I/O nodes are fixed on the SP-2, increasing
the number of processors may cause (for some codes) an
increase in the I/O time.

Note that an experienced programmer who is familiar
with file layouts and storage architectures can obtain the
same results by manually optimizing these three applica-
tions using collective I/O. This requires, however, signifi-
cant programming time and effort on the programmers’
part. Our work and results show that such improvements
can also be possible using a smart metadata management
system and requiring users to indicate only access pattern
information.

Our next example (Table 6) is a parallel volume
rendering application (volren). As in previous experiments,
the MDMS is run at Northwestern University. The applica-
tion itself, on the other hand, is executed at Argonne
National Lab’s SP-2 and the HPSS at the San Diego
Supercomputer Center (SDSC) is used as the HSS. In the
Original code, four data files are opened and parallel
volume rendering is performed. In the Optimized code,
the four data sets (corresponding to four data files) are
associated with each other, and prestaging (from tape to
disk) is applied for these data sets. Table 6 gives the total
read times for each of the four files for the Original and
Optimized codes for four and eight processor cases,
respectively. The results reveal that, for both four and eight
processor cases, prestaging reduces the I/O times signifi-
cantly. We need to mention that, in every application we
experimented with in our environment, the time spent by

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1271

TABLE 5
Total I/O Times (in Seconds) for astro2d, astro3d, and Unstructured Applications

(Data Set Size is 256 MB, 8 MB, and 64 MB, Respectively)

TABLE 6
Total I/O Times (in Seconds) for volren on Four and Eight Processors (Data Set Size is 64 MB) and Average I/O Times

the application in negotiating with the MDMS was less than
one second. When considering the significant runtime
improvements provided by I/O optimizations, we believe
that this overhead in not great.

Finally, we also measure the benefits of prefetching in

volren.We assume the data sets are stored on local SP-2 disks.

In the Original code, four data files are opened and

computations are performed sequentially. In theOptimized

code, prefetching (fromdisk tomemory) is applied to the next

data file when each processor is doing computation on the

current data file. Consequently, the I/O time and computa-

tion time are overlapped. Table 7 shows the average read

times for the four files for the Original and Optimized

codes for four and eight processor cases, respectively. The

results demonstrate that, for both four and eight processor

cases, prefetching decreases the I/O time by 15 percent.

Actually, prefetching and prestaging are complementary

optimizations. Our environment is able to take advantage of

overlapping prestaging, prefetching, and computation,

thereby maximizing the I/O performance.

6 RELATED WORK

Numerous techniques for optimizing I/O accesses have
been proposed in the literature. These techniques can be
classified into three categories: the parallel file system and
runtime system optimizations [22], [8], [10], [19], [21], [16],
compiler optimizations [4], [20], [17], and application
analysis and optimization [20], [6], [29], [17], [7], [38].
Brown et al. [5] proposed a metadata system on top of HPSS
using DB2 DBMS. Our work, in contrast, focuses more on
utilizing state-of-the-art I/O optimizations with minimal
programming effort. Additionally, the design flexibility of
our system allows us to easily experiment with other
hierarchical storage systems as well. The use of high-level
unified interfaces to data stored on file systems and DBMS
is investigated by Baru et al. [2]. Their system maintains
metadata for data sets, resources, users, and methods
(access functions), and provides the ability to create,
update, store, and query this metadata. While the type of
metadata maintained by them is an extension of metadata
maintained by a typical operating system, our metadata
involves performance-related metadata as well which
enables automatic high-level I/O optimizations as ex-
plained in this paper.

7 CONCLUSIONS

This paper has presented a novel application development

environment for large-scale scientific computations. At the

core of our framework is the Metadata Database Manage-

ment System (MDMS) framework, which uses relational

database technology in a novel way to support the

computational science analysis cycle described at the

beginning of this paper in Fig. 1. A unique feature of our

MDMS is that it relieves users from choosing best I/O

optimizations such as collective I/O, prefetching, presta-

ging, etc., that may typically exceed the capabilities of a

computational scientist who manipulates large data sets.

The MDMS itself is made useful by the presence of a

C application programming interface (API) as well as an

integrated Java Graphical User Interface (IJ-GUI), which

eliminates the need for computational scientists to work

with complex database programming interfaces such as

SQL and its embedded forms, which typically varies from

vendor to vendor. The IJ-GUI itself is a key component of

the system that allows us to transparently make use of

heterogeneously distributed resources without regard to

platform. We also presented an optimization for tape-

resident data sets, called subfiling, that aims at minimizing

the I/O latencies during data transfers between secondary

storage and tertiary storage. Our performance results

demonstrated that our novel programming environment

provided both ease-of-use and high-performance.

We are currently investigating other tape-related opti-

mizations and trying to fully-integrate MDMS with hier-

archical storage systems such as HPSS. We are also

examining other optimizations that can be utilized in our

distributed environment when the user carries out visua-

lization. Regarding future tertiary storage media, CD-

ROMS are a good competitor with tape-based storage

systems for large-scale applications. Overall, the work

presented in this paper is a first attempt to unify the best

characteristics of databases, parallel file systems, hierarch-

ical storage systems, Java, and the Web, to enable effective

high-level data management in scientific computations.

ACKNOWLEDGMENTS

This research was supported by the Department of Energy

under the Accelerated Strategic Computing Initiative

(ASCI) Academic Strategic Alliance Program (ASAP)

Level 2, under subcontract no. W-7405-ENG-48 from

Lawrence Livermore National Laboratories. The authors

would like to thank Reagan Moore for discussions and help

with SDSC resources. They would also like to thank Mike

Wan and Mike Gleicher of SDSC for helping them with the

implementation of the volume rendering code and in

understanding the SRB and the HPSS. They thank Larry

Schoof and Wilbur Johnson for providing the unstructured

code used in this paper. They also thank Rick Stevens and

Rajeev Thakur of ANL for various discussions on the

problem of data management. They also thank Jaechun No

for her help with the astrophysics application used in the

experiments. Finally, they would like to thank Celeste

Matarazzo, John Ambrosiano, and Steve Louis for discus-

sions and their input.

1272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

TABLE 7
Average I/O Times (in Seconds) for volren

(Data Set Size is 2 MB)

REFERENCES

[1] C. Baru, R. Frost, J. Lopez, R. Marciano, R. Moore, A. Rajasekar,
and M. Wan, “Meta-Data Design for a Massive Data Analysis
System,” Proc. CASCON Conf., 1996.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan, “The SDSC Storage
Resource Broker,” Proc. CASCON Conf., Dec. 1998

[3] R. Bennett, K. Bryant, A. Sussman, R. Das, and J.S. Jovian, “A
Framework for Optimizing Parallel I/O,” Proc. Scalable Parallel
Libraries Conf., 1994.

[4] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, and M.
Paleczny, “A Model and Compilation Strategy for Out-of-Core
Data Parallel Programs,” Proc. ACM Symp. Principles and Practice of
Parallel Programming, pp. 1-10, 1995.

[5] P. Brown, R. Troy, D. Fisher, S. Louis, J.R. McGraw, and R.
Musick, “Meta-Data Sharing for Balanced Performance,” Proc.
First IEEE Meta-Data Conf., 1996.

[6] P. Cao, E. Felten, and K. Li, “Application-Controlled File Caching
Policies,” Proc. Summer USENIX Technical Conf., pp. 171-182, 1994.

[7] C.-M. Chen and R.K. Sinha, “Analysis and Comparison of
Declustering Schemes for Interactive Navigation Queries,” IEEE
Trans. Knowledge and Data Eng., vol. 12, no. 5, pp. 763-778, Sept./
Oct. 2000.

[8] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R.
Ponnusamy, T. Singh, and R. Thakur, “Passion: Parallel and
Scalable Software for Input-Output,” NPAC Technical Report
SCCS-636, 1994.

[9] P. Corbett, D. Feitelson, J.-P. Prost, G. Almasi, S.J. Baylor, A.
Bolmarcich, Y. Hsu, J. Satran, M. Snir, R. Colao, B. Herr, J. Kavaky,
T. Morgan, and A. Zlotek, “Parallel File Systems for the IBM SP
Computers,” IBM Systems J., vol. 34, no. 2, pp. 222-248, Jan. 1995.

[10] P. Corbett, D. Fietelson, S. Fineberg, Y. Hsu, B. Nitzberg, J. Prost,
M. Snir, B. Traversat, and P. Wong, “Overview of the MPI-IO
Parallel I/O Interface,” Proc. Third Workshop I/O in Parallel and
Distributed Systems, 1995.

[11] P.F. Corbett, D.G. Feitelson, J.-P. Prost, and S.J. Baylor, “Parallel
Access to Files in the Vesta File System,” Proc. Supercomputing
Conf., pp. 472-481, 1993.

[12] T.H. Cormen and D.M. Nicol, “Out-of-Core FFTS with Parallel
Disks,” ACM SIGMETRICS Performance Evaluation Rev., pp. 3-12,
1997.

[13] R.A. Coyne and H. Hulen, “An Introduction to the Mass Storage
System Reference Model,” Proc. 12th IEEE Symp. Mass STorage
Systems, 1993.

[14] R.A. Coyne, H. Hulen, and R. Watson, “The High Performance
Storage System,” Proc. Supercomputing Conf., 1993.

[15] J.R. Davis, “Datalinks: Managing External Data with db2
Universal Database,” IBM Corporation White Paper, 1997.

[16] J. del Rosario, R. Bordawekar, and A. Choudhary, “Improved
Parallel I/O via a Two-Phase Run-Time Access Strategy,” Proc.
IPPS Workshop Input/Output in Parallel Computer Systems, 1993.

[17] J. del Rosario and A. Choudhary, “High Performance I/O for
Parallel Computers: Problems and Prospects,” IEEE Computer,
Mar. 1994.

[18] M. Drewry, H. Conover, S. McCoy, and S. Graves, “Meta-Data:
Quality vs. Quantity,” Proc. Second IEEE Meta-Data Conf., 1997.

[19] C.S. Ellis and D. Kotz, “Prefetching in File Systems for MIMD
Multiprocessors,” Proc. Int’l Conf. Parallel Processing, pp. 306-314,
1989.

[20] M. Kandaswamy, M. Kandemir, A. Choudhary, and D. Bernholdt,
“Performance Implications of Architectural and Software Techni-
ques on I/O-Intensive Applications,” Proc. Int’l Conf. Parallel
Processing, 1998.

[21] J.F. Karpovich, A.S. Grimshaw, and J.C. French, “Extensible File
Systems (ELFS): An Object-Oriented Approach to High Perfor-
mance File I/O,” Proc. Ninth Ann. Conf. Object-Oriented Program-
ming Systems, Languages, and Applications, pp. 191-204, 1994.

[22] D. Kotz, “Multiprocessor File System Interfaces,” Proc. Second Int’l
Conf. Parallel and Distributed Information Systems, pp. 194-201, 1993.

[23] D. Kotz, “Disk-Directed I/O for MIMD Multiprocessors,” Proc.
Symp. Operating Systems Design and Implementation, pp. 61-74, 1994.

[24] T. Madhyastha and D. Reed, “Intelligent, Adaptive File System
Policy Selection,” Proc. Conf. Frontiers of Massively Parallel
Computing, pp. 172-179, 1996.

[25] MCAT, http://www.npaci.edu/DICE/SRB/mcat.html, 2003.
[26] G. Memik, M. Kandemir, A. Choudhary, and V.E. Taylor, “APRIL:

A Run-Time Library for Tape Resident Data,” Proc. 17th IEEE
Symp. Mass Storage Systems, 2000.

[27] T.C. Mowry, A.K. Demke, and O. Krieger, “Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Applications,” Proc.
Second Symp. Operating Systems Design and Implementation, pp. 3-
17, 1996.

[28] J. Newton, “Application of Meta-Data Standards,” Proc. First IEEE
Meta-Data Conf., 1996.

[29] R.H. Patterson, G.A. Gibson, and M. Satyanarayanan, “A Status
Report on Research in Transparent Informed Prefetching,” ACM
Operating Systems Rev., pp. 21-34, 1993.

[30] B. Rullman, “Paragon Parallel File System,” External Product
Specification, Intel Supercomputer Systems Division, 1996.

[31] S. Sarawagi, “Query Processing in Tertiary Memory Databases,”
Proc. 21st Very Large Databases Conf., 1995.

[32] M. Stonebraker, Object-Relational DBMSs: Tracking the Next Great
Wave. Morgan Kaufman, 1998.

[33] M. Stonebraker and L.A. Rowe, “The Design of Postgres,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 340-355, 1986.

[34] R. Thakur, W. Gropp, and E. Lusk, “A Case for Using MPI’s
Derived Datatypes to Improve I/O Performance,” Proc. Super-
computing Conf.: High Performance Networking and Computing, 1998.

[35] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO
Portably and with High Performance,” Preprint ANL/MCS-P732-
1098, Math. and Computer Science Division, Argonne Nat’l
Laboratory, 1998.

[36] R.Thakur,W.Gropp, andE. Lusk, “Data Sieving andCollective I/O
in Romio,” Proc. Seventh Symp. Frontiers of Massively Parallel
Computation, 1999.

[37] S. Toledo and F.G. Gustavson, “The Design and Implementation
of Solar, a Portable Library for Scalable Out-of-Core Linear
Algebra Computations,” Proc. Fourth Ann. Workshop I/O in Parallel
and Distributed Systems, 1996.

[38] P. Triantafillou and T. Papadakis, “Continuous Data Block
Placement and Elevation from Tertiary Storage in Hierarchical
Storage Servers,” Cluster Computing: The J. Networks, Software Tools,
and Applications, 2001.

[39] UniTree User Guide, Release 2.0, UniTree Software, Inc., 1998.

Xiaohui Shen received the BS and MS degrees
from Department of Computer Science at
Tsinghua University, Beijing, and the PhD
degree from Northwestern University, Illinois, in
computer engineering in January 2001. He is
currently a senior software engineer at Core
Technology Department, Personal Communica-
tion Sector, Motorola Inc. His research interests
include parallel and distributed computing, data
management, I/O and storage systems, and

mobile computing. He has served as a program committee member for
several international conferences and workshops on high-performance
and mobile computing.

Wei-keng Liao received the PhD degree in
computer and information science from Syra-
cuse University in 1999. He is a research
assistant professor in the Electrical and Com-
puter Engineering Department at Northwestern
University. His research interests are in the area
of high-performance computing, parallel I/O,
data mining, and data management for large-
scale scientific applications.

SHEN ET AL.: A HIGH-PERFORMANCE APPLICATION DATA ENVIRONMENT FOR LARGE-SCALE SCIENTIFIC COMPUTATIONS 1273

Alok Choudhary received the PhD degree from
the University of Illinois, Urbana-Champaign, in
electrical and computer engineering in 1989,
and the MS degree from the University of
Massachusetts, Amherst, in 1986. Since Sep-
tember 2000, he has been a professor in the
Electrical and Computer Engineering Depart-
ment and The Kellogg School of Management at
Northwestern University. From 1989 to 1996, he
was a faculty member in the Electrical and

Computer Engineering Department at Syracuse University. He received
the US National Science Foundation’s Young Investigator Award in
1993, an IEEE Engineering Foundation award, and an IBM Faculty
Development award. His main research interests are in high-perfor-
mance computing and communication systems and their applications in
many domains including information processing (e.g., data mining) and
scientific computing (e.g., scientific discoveries). In particular, his
interests lie in the design and evaluation of architectures and software
systems (from system software such as runtime systems to compilers),
high-performance servers, high-performance databases, and input-
output. He has published more than 250 papers in various journals
and conferences in the above areas. He has also written a book and
several book chapters on the above topics. He is a senior member of
the IEEE.

Gokhan Memik received the BS degree in 1998
from Bogazici University, Istanbul, Turkey, and
the MS degree in 2000 from Northwestern
University, Evanston, Illinois, both in computer
engineering, and the PhD degree in electrical
engineering from the University of California,
Los Angeles in 2003. He has been an assistant
professor with the Electrical and Computer
Engineering Department at Northwestern Uni-
versity since September 2003. His research

interests are broadly in the area of computer architecture with an
emphasis on high-performance embedded systems. He has done active
research on network processors, general-purpose microarchitectures,
storage systems, and design automation for embedded systems.

Mahmut Kandemir received the BSc and MSc
degrees in control and computer engineering
from Istanbul Technical University, Istanbul,
Turkey, in 1988 and 1992, respectively. He
received the PhD degree from Syracuse Uni-
versity, Syracuse, New York in electrical en-
gineering and computer science in 1999. He has
been an assistant professor in the Computer
Science and Engineering Department at the
Pennsylvania State University since August

1999. His main research interests are optimizing compilers, I/O intensive
applications, and power-aware computing. He is a member of the IEEE
and the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

1274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 12, DECEMBER 2003

