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ABSTRACT

Effective high-level data management is becoming an impor-
tant issue with more and more scientific applications ma-
nipulating huge amounts of secondary-storage and tertiary-
storage data using parallel processors. A major problem fac-
ing the current solutions to this data management problem
is that these solutions either require a deep understanding of
specific data storage architectures and file layouts to obtain
the best performance. In this paper, we discuss the de-
sign, implementation, and evaluation of a novel application
development environment for scientific computations. This
environment includes a number of components that make it
easy for the programmers to code and run their applications
without much programming effort, and at the same time, to
harness the available computational and storage power on
parallel architectures. Embarking on this ambitious goal,
we first present a performance-oriented meta-data manage-
ment system that governs data flow between storage devices
and applications. Another component of our environment
is a data analysis and visualization tool which has been in-
tegrated with the meta-data management system, storage
subsystem, and user applications. We also present an auto-
matic code generator component (ACG) to help users utilize
the information in the meta-data management system when
they are developing new applications. All these components
are tied together using an integrated Java graphical user in-
terface (IJ-GUI) through which the user can launch her ap-
plications, can query the meta-data management system to
obtain accurate information about the datasets she is inter-
ested in and about the current state of the storage devices,
and can carry out data analysis and visualization, all in a
unified framework. Finally, we present performance num-
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bers from our initial implementation. Our results demon-
strate that our novel application development environment
provides both ease-of-use and high performance for large-
scale, I/O-intensive scientific applications.

1. INTRODUCTION

Effective data management is a crucial part of the design of
large-scale scientific applications. An important subproblem
in this domain is to optimize the data flow between parallel
processors and several types of storage devices residing in a
storage hierarchy. While a knowledgeable user can manage
this data flow by exerting a great effort, this process is time-
consuming, error-prone, and not portable.

To illustrate the complexity of this problem, we consider a
typical computational science analysis cycle, shown in Fig-
ure 1. As can be seen easily, in this cycle, there are sev-
eral steps involved. These include mesh generation, domain
decomposition, simulation, visualization and interpretation
of results, archiving of data and results for post-processing
and check-pointing, and adjustment of parameters. Conse-
quently, it may not be sufficient to consider simulation alone
when determining how to store or access datasets because
these datasets are used in other steps as well. In addition,
these steps may need to be performed in a heterogeneous
distributed environment and the datasets in question can
be persistent on secondary or tertiary storage. Among the
important issues in this analysis cycle are detection of I/O
access patterns for data files, determination of suitable data
storage patterns, and effective data analysis and visualiza-
tion.

Obviously, designing effective I/O strategies in such an en-
vironment is not particularly suitable for a computational
scientist. To address this issue, over the years, several so-
lutions have been designed and implemented. While each
of these solutions is quite successful for a class of applica-
tions, we feel that the growing demand for large-scale data
management necessitates novel approaches that combine the
best characteristics of current solutions in the market. For
example, parallel file systems [10, 29, 8] might be effective
for applications whose I/O access patterns fit a few specific
forms. They achieve impressive performance for these appli-
cations by utilizing smart I/O optimization techniques such
as prefetching [18], caching [23, 6], and parallel I/O [16, 11].
However, there are serious obstacles preventing the paral-
lel file systems from becoming a global solution to the data
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Figure 1: A typical computational science analysis
cycle.

management problem. First of all, user interfaces of the
file systems are in general low-level [21], allowing the users
to express access patterns of their applications using only
low-level structures such as file pointers and byte offsets.
Second of all, nearly every file system has its own suite of
I/O commands, rendering the process of porting a program
from one machine to another a very difficult task. Third,
the file system policies and optimization parameters are in
general hard-coded within the file system and, consequently,
work for only a small set of access patterns. While runtime
systems and libraries like MPI-IO [9, 33] and others [35, 3, 7]
present users with higher-level, more structured interfaces,
the excessive number of calls to select from, each with sev-
eral parameters, make the user’s job very difficult. Also,
the usability of these libraries depends largely on how well
user’s access patterns and library calls’ functionality match
[20].

An alternative to parallel file systems and runtime libraries
is database management systems (DBMS). They present a
high-level, easy-to-use interface to the user and are portable
across a large number of systems including SMPs and clus-
ters of workstations. In fact, with the advent of object-
oriented and object-relational databases [31], they also have
the capability of handling large datasets such as multidi-
mensional arrays and image/video files [14]. A major ob-
stacle in front of DBMS (as far as the effective high-level
data management is concerned) is the lack of powerful I/O
optimizations that can harness parallel I/O capabilities of
current multiprocessor architectures. In addition to that,
the data consistence and integrity semantics provided by al-
most all DBMS put an added obstacle to high performance.
Finally, although hierarchical storage management systems
(e.g., [36]) are effective in large-scale data transfers between
storage devices in different levels of a storage hierarchy, they
also, like parallel file systems and DBMS, lack application
specific access pattern information, and consequently, their
I/0O access strategies and optimizations are targeted at only
a few well-defined access and storage patterns.

In this paper, we present a novel application development
environment for large-scale scientific applications that ma-
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goal, in this paper, we make the following contributions:

o We present a meta-data management system, called
MDMS, that keeps track of I/O accesses and enables
suitable I/O strategies and optimizations depending
on the access pattern information. Unlike classical
user-level and system-level meta-data systems [17, 27],
the main reason for the existence of MDMS is to keep
performance-oriented meta-data and utilize these meta-
data in deciding suitable I/O strategies.

e We explain how the MDMS interacts with parallel
applications and hierarchical storage systems (HSS),
relieving the users from the low-level management of
data flow across multiple storage devices. In this re-
spect, the MDMS plays the role of an easy-to-use in-
terface between applications and HSS.

e We present a tape device-oriented optimization tech-
nique, called subfiling, that enables fast access to small
portions of tape-resident datasets and show how it fits
in the overall application development environment.

o We illustrate how data analysis and visualization tools
can be integrated in our environment.

e We propose an automatic code generator component
(ACG) to help users utilize the meta-data management
system when they are developing new applications.

o We present an integrated Java graphical user interface
(IJ-GUI) that makes the entire environment virtually
an easy-to-use control platform for managing complex
programs and their large datasets.

e We present performance numbers from our initial im-
plementation using four I/O-intensive scientific appli-
cations.

nipulate secondary storage and tertiary storage resident datasets. The core part of our environment is a three-tiered architec-

Our primary objective is to combine the advantages of par-
allel file systems and DBMS without suffering from their dis-
advantages. To accomplish this objective, we designed and
implemented a multi-component system that is capable of
applying state-of-the-art I/O optimizations without putting
an excessive burden on users. Embarking on this ambitious

ture shown in Figure 2. In this environment, there are three
key components: (1) parallel application, (2) meta-data
management system (MDMS), and (3) hierarchical storage
system (HSS). These three components can co-exist in the
same site or can be fully-distributed across distant sites. The
MDMS is an active part of the system: it is built around



an OR-DBMS [32, 31] and it mediates between the user
program and the HSS. The user program can send query
requests to MDMS to obtain information about data struc-
tures that will be accessed. Then, the user can use this
information in accessing the HSS in an optimal manner,
taking advantage of powerful I/O optimizations like collec-
tive I/O [34, 7, 22], prefetching [18], prestaging [13], and
so on. The user program can also send access pattern hints
to the MDMS and let the MDMS to decide the best I/O
strategy considering the storage layout of the data in ques-
tion. These access pattern hints span a wide spectrum that
contains inter-processors I/O access patterns, information
about whether the access type is read-only, write-only, or
read/write, information about the size (in bytes) of average
I/0 requests, and so on. We believe that this is one of the
first studies evaluating the usefulness of passing large num-
ber of user-specified hints to the underlying I/O software
layers. In this paper, we focus on the design of MDMS, in-
cluding the design of database schema and MDMS library
(user interface), the optimizations for tape-resident datasets,
and an integrated Java graphical user interface (IJ-GUI) to
help users efficiently work in our distributed programming
environment. OQOur environment is different from previous
platforms (e.g., [24, 2, 1, 5]) in that it provides intelligent
data access methods for disk and tape-resident datasets.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the design details of meta-data manage-
ment system including design of database tables and high-
level MDMS library (user API). In Section 3, an optimiza-
tion method to access tape-resident datasets is presented. In
Section 4, we present an integrated Java graphical user in-
terface (IJ-GUI) to assist users in distributed environments.
In Section 5, our initial performance results are presented.
In Section 6, we review the previous work on I/O optimiza-
tions. Finally, we conclude the paper and briefly discuss
ongoing and future work in Section 7.

2. DESIGN OF META-DATA MANAGEMENT

SYSTEM (MDMS)

The meta-data management system is an active middle-ware
built at Northwestern University with the aim of providing a
uniform interface to data-intensive applications and hierar-
chical storage systems. Applications can communicate with
the MDMS to exploit the high performance I/O capabilities
of the underlying parallel architecture. The main functions
fulfilled by the MDMS can be summarized as follows.

e It stores information about the abstract storage de-
vices (ASDs) that can be accessed by applications.
By querying the MDMS,! the applications can learn
where in the HSS their datasets reside (i.e., in what
parts of the storage hierarchy) without the need of
specifying file names. They can also access the per-
formance characteristics (e.g., speed, capacity, band-
width) of the ASDs and select a suitable ASD (e.g., a
disk sub-system consisting of eight separate disk arrays
or a robotic tape device) to store their datasets. Inter-
nal data structures used in the MDMS map ASDs to

!These queries are performed using user-friendly constructs.
It would be very demanding to expect the user to know SQL
or any other query language.

physical storage devices (PSDs) available in the stor-
age hierarchy.

o It stores information about the storage patterns (stor-
age layouts) of data sets. For example, a specific mul-
tidimensional array that is striped across four disk de-
vices in round-robin manner will have an entry in the
MDMS indicating its storage pattern. The MDMS uti-
lizes this information in a number of ways. The most
important usage of this information, however, is to de-
cide a parallel I/O method based on access patterns
(hints) provided by the application. By comparing the
storage pattern and access pattern of a dataset, the
MDMS can, for example, advise the HSS to perform
collective I/O [15] or prefetching [18] for this dataset.

e It stores information about the pending access pat-
terns. It utilizes this information in taking some global
data movement decisions (e.g., file migration [36, 13]
and prestaging [36, 13]), possibly involving datasets
from multiple applications.

o It keeps meta-data for specifying access history and
trail of navigation. This information can then be uti-
lized in selecting appropriate optimization policies in
successive runs.

Overall, the MDMS keeps vital information about the datasets
and the storage devices in the HSS. Note that the MDMS is
not merely a data repository but also an active component
in the overall data management process. It communicates
with applications as well as the HSS and can influence the
decisions taken by both.

The MDMS design consists of the design of database tables
and the design of a high-level MDMS API. The database ta-
bles keep the meta-data that will be utilized in performance-
oriented I/O optimizations. The MDMS API, on the other
hand, presents an interface to the clients of the MDMS. They
are described in the subsequent subsections.

2.1 MDMS Tables

We have decided that, to achieve effective I/O optimiza-
tions automatically, the MDMS should keep five (database)
tables for each application. These are run table, storage
pattern table, access pattern table, dataset table, and ezecu-
tion table. Since, in our environment, a single user might
have multiple applications running, sharing tables among
different applications would not be a good implementation
choice because it might slow down the query speed when
tables become large. In our implementation, we construct
a table name by concatenating the application name and
a fixed, table-specific name. Consequently, each applica-
tion has its own suite of tables. For example, in an as-
trophysics application (called astro3d henceforth), the table
names are astro3d-run-table, astro3d-access-pattern-table,
and so on, while in a parallel volume rendering applica-
tion (called wolren henceforth), they are volren-run-table,
volren-access-pattern-table, and so forth. The tables with
same fixed table name (e.g., dataset table) have the same at-
tributes for different applications except the run table, which
is application specific: the user needs to specify interesting
attributes (fields) for a particular application in the run ta-
ble. For example, in astrod3d, the run table may contain the
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Figure 3: Internal representation in MDMS.

number of dimensions and the dimension sizes of each array,
the total number of iterations, the frequency of dumping for
data analysis, the frequency of check-point dumping, and so
on. The functionality of each table is briefly summarized
in Table 1. Note that, among these tables, the execution
table is the most frequently updated one. It is typically
updated whenever the application in question dumps data
on disk/tape for visualization and data analysis purposes.
The run table, on the other hand, is updated once for each
run (assigning a new run-id to each run). The dataset table
keeps the relevant information about datasets in the applica-
tion, the access pattern table maintains the access pattern
information and the storage pattern table keeps informa-
tion about storage layouts of the datasets. An advantage
of using an OR-DBMS [32] in building the MDMS is being
able to use pointers that minimize meta-data replication,
thereby keeping the database tables in manageable sizes.
The MDMS also has a number of global (inter-application)
tables to manage all applications, such as application table,
which records all the application names, their host machines,
and so on in the system, visualization table, where location
of visualization tools can be found, and storage devices ta-
ble, which maps ASDs to PSDs. An example use of our five
database tables is illustrated in Figure 3.

2.2 MDMS API
The MDMS API, which consists of a number of MDMS
functions, is in the center of our programming environment.

Through this API, the programs can interact with the database

tables without getting involved with low-level SQL-like com-
mands. Our MDMS library is built on top of MPI-I/O
[9], the emerging parallel I/O standard. MPI-I/O provides
many I/O optimization methods such as collective I/O, data
sieving, asynchronous I/0, and so forth. But for most com-
putational scientists with little knowledge of I/O optimiza-
tions and storage devices, it is very hard to choose the ap-
propriate I/O routines from among numerous complicated
MPI-I/O functions. Our MDMS API helps users choose
the most suitable I/O functions according to user-specified
data access pattern information. In this environment, an
access pattern for a dataset is specified by indicating how
the dataset is to be shared and accessed by parallel proces-
sors. For example, an access pattern such as (Block, *) says
that the two-dimensional dataset in question is divided (log-
ically) into groups of rows and each group of rows will be
accessed by a single processor. These patterns are also used

Application I
I

User specified 1. Data Storage
Access Pattern Pattern
— —
I/0 Optimizations
Collective /O Prefetch Prestage Subfiling
-

Figure 4: Selecting an I/0 optimization.

as storage patterns. As an example, for a two-dimensional
disk-resident array, a (Block,*) storage pattern corresponds
to row-major storage layout (as in C), a (*,Block) storage
pattern corresponds to column-major storage layout (as in
Fortran), and a (Block,Block) storage pattern corresponds
to blocked storage layout which might be very useful for
large-scale linear algebra applications whose datasets are
amenable to blocking [35]. Our experience with large-scale,
I/O-intensive codes indicates that, usually, the users know
how their datasets will be used by parallel processors; that
is, they have sufficient information to specify suitable access
patterns for the datasets in their applications. Note that
conveying an access pattern to the MDMS can be quite use-
ful, as the MDMS can compare this access pattern with the
storage pattern of the dataset (which is kept in the stor-
age pattern table), and can decide an optimal I/O access
strategy.

For instance, an example use of this information might occur
in the following way. If the user is going to access a dataset
in a (Block,Block) fashion while the dataset is stored, say
in a file on disk, as (Block,*), the MDMS will automati-
cally choose the MPI-I/O collective I/O function to achieve
better performance. Our library also provides other I/O
optimization methods that are not found in MPI-I/O but
can be built on top of MPI-IO using the access pattern in-
formation such as data prefetching (from disk or tape to
memory), data prestaging (from tape to disk) and subfiling
(for tape-resident data) [25]. For example, when the user
is going to access a sequence of datasets and perform some
computation on them sequentially, our library can overlap
the I/O access and computation by prefetching or prestag-
ing the next dataset while the computation on the current
dataset continues. As another example, if the user will ac-
cess a small chunk of data from a large tape-resident dataset,
our tape library, APRIL [25], will be called to achieve low la-
tency in tape accesses. Another feature of the MDMS is that
we provide mechanisms to locate the data by dataset names,
such as temperature or pressure rather than using file name
and offset. The user can also query the MDMS to locate
datasets in which she has particular interest and to devise
application-specific access strategies for these datasets. Fig-
ure 4 depicts a sketch of how an I/O optimization decision
is made. In short, comparing the access pattern and stor-
age pattern, and having access to the information about the
location of the dataset in the storage hierarchy, the MDMS
can decide a suitable I/O optimization.

Note that, in our environment, the users’ task is to con-



Table Name

Functionality

Primary Key

Run table
user-specified attributes

Records each run of the application with

Run id

Dataset table

Keeps information about the datasets used each run

run id + association id

Access pattern table
each dataset

Keeps the access pattern specified by user for

run id 4+ dataset name

Storage pattern table

Keeps information on how data stored for each dataset

dataset name

Execution table

Records I/O activities of the run,
including file path and name, offset, etc.

run id + dataset + iteration
number

Table 1: Functionality of database tables maintained in the MDMS.
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Figure 5: A typical MDMS execution flow.

vey the access pattern information to the MDMS and let
the MDMS select a suitable I/O strategy for her. In ad-
dition to inter-processor access pattern information (hint),
the MDMS also accepts information about, for example,
whether the dataset will be accessed sequentially, whether
it is read-only for the entire duration of the program, and
whether it will be accessed only once or repeatedly. An im-
portant problem now is in what part of the program the user
should convey this information (hints). While one might
think that such user-specified hints should be placed at the
earliest point in the program to give the MDMS maximum
time to develop a corresponding I/O optimization strategy,
this may also hurt performance. For example, in receiving a
hint, the MDMS can choose to act upon it, an activity that
may lead to suboptimal I/O strategies had we considered
the next hint. Therefore, sometimes delaying hints and is-
suing them to MDMS collectively might be a better choice.
Of course, only the correlated hints must be issued together.
While passing (access pattern) hints to file systems and run-
time systems was proposed by other researchers [26, 23, 28],
we believe that this is the first study that considers a large
spectrum (variety) of performance-oriented hints in a unified
framework.

The functions used by the MDMS to manipulate the database
tables are given in Table 2. Figure 5, on the other hand,
shows a typical flow of calls using the MDMS. These routines
are meant to substitute the traditional Unix I/O functions

or MPI-IO calls that may be used by the programmers when
they want to read or dump data. They look very similar to
typical Unix I/O functions in appearance, so the users do
not have to change their programming practices radically to
take advantage of state-of-the-art I/O optimizations. The
flow of these functions can be described as follows.

(1) Initialization The MDMS flow starts with a call to
the initialization() routine.

(2) Write The write operations start with create-association()

that creates an association for the datasets that can
be grouped together for manipulation. The create-
association() returns an association-id that can be used
later for collectively manipulating all the associated
datasets. The subsequent function for the write oper-
ations is the save-initial() routine. This can be thought
of as ‘file open’ command in Unix-like I/O. Then, the
user can use the save() function to perform data write
operations to the storage hierarchy. Note that in tra-
ditional Unix-like I/O, each dataset needs a ‘file open’,
while in the MDMS library, there is only one ‘open’:
the save-initial() routine collectively opens all the asso-
ciated datasets. The write operations are ended with
save-final() that corresponds to a ‘file close’ operation
in Unix-like I/0O.

(3) Read The read operations start with the get-association()

routine that obtains an association handle generated
by the create-association() routine during a previous
write operation. The next function to continue the
read operations is load-initial() which, again, corre-
sponds to ‘file-open’ in Unix I/O. Then, the user can
use the load() routine to perform read operations. The
read operations are completed by the load-final() func-
tion. Note that the read and write operations can, of
course, interleave.

(4) Finalization The MDMS flow is ended with the final-
ization() routine.

As stated earlier, the MDMS library provides transparent
access to the database tables, thus users do not need to
deal with these tables explicitly. The actions taken by the
MDMS for a typical run session are as follows.

(1) A row is added to the run table by set-run-table() to
record the user-specified information about this run.
Users can search this table by date and time to find
information pertaining to a particular run.



Name Functionality

Important Parameters Tables Involved

initialization()

Initializes the MDMS environment

Application name Application table

create-association() Creates an association for

the datasets with same behavior

Dataset name, Dataset table

access pattern

Obtains the association for
the datasets

get-association()

Dataset name, Dataset table

access pattern

set-run-table () Adds a row in the run table

Run table

load-initial()
of the dataset; Opens the file;

Determines the file name and offset

Determines I/O optimization method

Dataset,
Association handle

Execution table,
Access pattern table,
Storage pattern table

should be performed;
Performs 1/O (read)

load () Determines whether prefetching

Association handle None

load-final() Closes the files involved

Association handle None

Generates file names; Opens
files for write; Determines I/O
optimization method such as
collective 1/0, data sieving

save—initial()

Association handle Execution table,
Access pattern
table, Storage
pattern table

save () ‘Writes dataset Dataset, None
Association handle
save-final() Closes the files involved Association handle None

Table 2: Functions used in the MDMS.

(2) For the datasets having similar characteristics such as
the same dimension sizes, access pattern and so on,
an association is reated by create-association(). Each
association with one or several datasets is inserted
into the dataset table. The access pattern table and
storage pattern table are also accessed by the create-
association(): the access pattern and storage pattern
of each dataset are inserted into these two tables, re-
spectively. We expect the user to at least specify the
access pattern for each dataset. Note that, depend-
ing on the program structure, a dataset might have
multiple access patterns in different parts of the code.
The MDMS also accepts user-specified storage pattern
hints. If no storage pattern hint is given, the MDMS
selects row-major layout (for C programs) or column-
major layout (for Fortran programs).

(3) In load-init(), the file names, offsets, iteration num-
ber, etc. of a particular dataset are searched from the
execution table.

(4) In save-init(), the execution table may be searched to
find out the file name for check-pointing. In save(),
a row is inserted into execution table to record the
current I/O activity.

(5) Steps 3-4 are repeated until the main loop where the
I/0 activity occurs is finished.

3. HIERARCHICAL STORAGE SYSTEM

The datasets that are generated by large-scale scientific ap-
plications might be too large to be held on the secondary
storage devices permanently: thus they have to be stored
on tertiary storage devices (e.g., robotic tape) depending on
their access profile. In many tape-based storage systems,
the access granularity is a whole file [36]. Consequently,
even if the program tries to access only a section of the
tape-resident file, the entire file must be transferred from the
tape to the upper level storage media (e.g., magnetic disk).
This can result in poor I/O performance for many access
patterns. The main optimization schemes in the MDMS we
have presented so far, such as collective I/O, prefetching and
prestaging, could not help much when the user accesses only

a small portion in a huge tape-resident dataset as the tape
access times would dominate. In this section, we present an
optimization technique called subfiling that can significantly
reduce the I/O latencies in accessing tape-resident datasets.

3.1 Subling

‘We have developed and integrated into the MDMS a parallel
run-time library (called APRIL) for accessing tape-resident
datasets efficiently. At the heart of the library lies an op-
timization scheme called subfiling. In subfiling, instead of
storing each tape-resident dataset as a single large file, we
store it as a collection of small subfiles. In other words, the
original large dataset is divided into uniform chunks, each
of which can be stored independently in the storage hierar-
chy as a subfile. This storage strategy however, is totally
transparent to the user who might assume that the dataset
is stored in a single (logical) file. For read or write opera-
tions to the tape-resident dataset, the start and end coordi-
nates should be supplied by the user. The MDMS;, in turn,
determines the set of subfiles that collectively contain the
required data segment delimited by the start and end coor-
dinates. These subfiles are brought (using the APRIL API)
from the tape to the appropriate storage device and the re-
quired data segment is extracted from them and returned
to the user buffer supplied in the I/O call. The program-
mer is not aware of the subfiles used to satisfy the request.
This provides a low-overhead (almost) random access for the
tape-resident data with an easy-to-use interface.

The interaction between the library calls and the I/O soft-
ware layers is depicted in Figure 6(a). Our current access
to a storage hierarchy that involves tape devices is through
HPSS (High Performance Storage System) [13]. The re-
quired subfiles are transferred (in a user-transparent man-
ner) using the HPSS calls from the tape device to the disk
device and then our usual MDMS calls (built on top of MPI-
I0) are used to extract the required subregions from each
subfile. Figure 6(b) shows some of the potential I/O opti-
mizations between different layers.

3.2 Experiments with APRIL
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MPI-I0, and HPSS. (b) Prefetching, prestaging,
and migration.

We have conducted several experiments using the APRIL li-
brary API from within the MDMS. During our experiments,
we have used the HPSS at the San Diego Supercomput-
ing Center (SDSC). We have used the low-level routines of
the SDSC Storage Resource Broker (SRB) [2] to access the
HPSS files. Table 3 shows the access patterns that we have
experimented with (A through H). It also gives the start and
end coordinates of the access patterns as well as the total
number of elements requested by each access. In all these ex-
periments, the global file was a two-dimensional matrix with
50000x 50000 floating-point elements. The chunk (subfile)
size was set to 2000x2000 (small chunks) and 4000x4000
(large chunks) floating-point elements.

The results from our experiments are summarized in Ta-
ble 4. The table gives the response times (in seconds) of
the naive scheme (i.e., without subfiling) and the percent-
age gains achieved by our library using two subfile sizes (as
given above) over the naive scheme. The results show that
the library can, in general, bring about substantial improve-
ments over the naive scheme for both read and write oper-
ations. The performance degradations in some patterns are
due to the fact that in those cases the original file storage
patterns (i.e., without subfiling) were very suitable for the
access patterns and the subfiling caused extra file seek oper-
ations. We plan to eliminate these problems by developing
techniques that help to select optimal subfile shapes given
a set of potential access patterns. Our initial observation
is that the techniques proposed by Sarawagi [30] might be
quite useful for this problem.

4. DESIGN OF THE INTEGRATED JAVA
GRAPHICAL USER INTERFACE

As it is distributed in nature, our application development
environment involves multiple resources across distant sites.
For example, let us consider our current working environ-
ment that consists of different platforms and tools. We do
program development using local HP or SUN workstations,
the visualization tools used are installed on a Linux machine,
our MDMS (database tables built on top of the Postgres
DBMS) is located on another machine, and our parallel ap-
plications currently run on a 16-node IBM SP-2 distributed-
memory message-passing architecture. Although these ma-
chines are within our department, they could be distributed

Access Start End Num of Floating
Pattern Coordinate Coordinate Point Elements

A (0,0) (1000, 1000) 1% 10°

B (0,0) (4000, 1000) 4 % 10°

c (0, 0) (24000, 1000) 24 % 10°

D (5000, 5000) (6000, 6000) 1% 10°

E (0, 0) (50000, 80) 4 % 10°

F (0,0) (80, 50000) 4 % 10°

G (0, 0) (1000, 4000) 4 % 10°

H (6000, 6000) (8000, 8000) 4 %10°

Table 3: Access patterns used in the experiments.
Each access pattern is delimited by a start coordi-
nate and an end coordinate and contains all the data
points in the rectangular region.

across different locations in the Internet.

When the user starts to work on such a distributed envi-
ronment without the help of our application development
system, she normally needs to go through several steps that
can be summarized as follows.

(1) Log on to IBM SP2 and submit the parallel applica-
tion.

(2) When the execution of the application is complete, log
on to the database host and use native SQL dialect to
find the dataset that would be needed for visualization.

(8) Once the required dataset has been found, transfer the
associated file(s) manually, for example using ftp, from
SP2 (where data are located) to the visualization host
(where visualization tools reside).

(4) Log on to the visualization host (Linux machine) and
start the visualization process.

(5) Repeat the steps 2-4 as long as there exist datasets to
be visualized.

Obviously, these steps might be very time-consuming and in-
convenient for the users. To overcome this problem (which
is due to the distributed nature of the environment), an inte-
grated Java graphical user interface (IJ-GUI) is implemented
and integrated to our application development environment.
The goal of the IJ-GUI is to provide users with an integrated
graphical environment that hides all the details of interac-
tion among multiple distributed resources (including storage
hierarchies). We use Java because Java is becoming a major
language in distributed systems and it is easy to integrate
Java in a web-based environment. Java also provides the
tools for a complete framework that addresses all aspects of
managing the process of application development: processes
and threads, database access, networking, and portability.
In this environment, the users need to work only with 1J-
GUI locally, rather than go to different sites to submit par-
allel applications or to do file transfers explicitly. Figure 7
shows how 1J-GUI is related to other parts of our system. It
actively interacts with three major parts of our system: with
parallel machines to launch parallel applications, with the
MDMS through JDBC to help users query meta-data from
databases, and with visualization tools. The main functions
that 1J-GUI provides can be summarized as follows.



Write Operations Read Operations
Access Times Small Large Times Small Large
Pattern w/o Chunk Chunk w/o Chunk Chunk
chunking || Gain (%) || Gain (%) || chunking || Gain (%) || Gain (%)
A 2774.0 96.1 94.5 784.7 85.2 77.1
B 2805.9 83.8 84.9 810.1 43.2 55.6
C 2960.3 8.8 37.9 793.3 —240.5 —172.4
D 3321.2 96.7 95.4 798.4 84.1 79.7
E 151.7 —3525.1 —2437.6 165.2 —3229.3 —2623.9
F 138723.3 96.0 97.2 39214.1 85.9 88.5
G 11096.3 95.9 96.4 3242.9 88.3 88.6
H 5095.2 91.2 96.5 1612.9 76.6 89.9

Table 4: Execution times and percentage gains for write and read operations. The second and the fifth
columns give the times for the naive I/O (without subfiling) in seconds. The remaining columns (except the
first one) show the percentage improvements over the naive I/O method when subfiling is used.

A
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Figure 7: Java GUI and the overall system.

¢ Registering new applications To start a new appli-
cation, the user needs to create a new suite of tables for
the new application. Using the IJ-GUI, the user needs
only to specify attributes (fields) of the run table and
all other tables (e.g., storage pattern table, execution
table, etc.) will be created automatically using the in-
formation provided in the run table.

e Running applications remotely The applications
typically run on some form of parallel architecture such
as IBM SP2 that can be specified by the user when
she registers a new application. Therefore, a remote
shell command is used in IJ-GUI to launch the job on
remote parallel machines. The user can also specify
command line arguments in the small text fields. De-
faults are provided and the user can change them as
needed. The running results will be returned in the
large text area.

e Data Analysis and Visualization Users can also
carry out data analysis and visualization through the
I1J-GUI. In general, data analysis is very application-
specific and may come in a variety of flavors. For
some applications, data analysis may simply calculate
the maximum, minimum, or average value of a given
dataset whereas, for some others, it may be plugged
into the application and calculate the difference be-
tween two datasets and decide whether the datasets

should be dumped now or later. The current approach
to the data analysis in our environment is to calcu-
late the maximum, minimum, and arithmetic means
of each dataset generated. From the IJ-GUIs point
of view, this process is no different than submitting a
remote job. Visualization, on the other hand, is an im-
portant tool in large-scale scientific simulation, helping
the users to inspect the inside nature of datasets. It is
in general slightly more complicated than data analy-
sis. First of all, the users’ interests in a particular data
set may be very arbitrary. Our approach is to list
all the candidate datasets by searching the database
using the user-specified characteristics such as maxi-
mum, minimum, means, iteration numbers, pattern,
mode, and so on. Then, the candidates are presented
in a radio box for the user so that she can select the
dataset she wants. Second, the datasets are created
by parallel machines, and they are located on paral-
lel machines or stored in hierarchical storage systems.
But our visualization tools are installed in different
locations. Therefore, inside IJ-GUI, we transparently
copy the data from the remote parallel machine or hi-
erarchical storage systems to the visualization host and
then start the visualization process. The user does not
need to check the MDMS tables explicitly for interest-
ing datasets or perform data transfers manually. The
only thing that she needs to do is to check-mark the
radio box for interesting datasets, select a visualization
tool (vtk, xv, etc.), and finally, click the visualization
button to start the process. The current visualization
tools supported in our environment include Visualiza-
tion Toolkit (vtk), Java 3D, and xv. Figure 8 shows
how the user visualizes datasets through vtk and xv.

e Table browsing and searching Advanced users may

want to search the MDMS tables to find the datasets
of particular interest. Therefore, the table browsing
and searching functions are provided in the IJ-GUI
The user can just move the mouse and pick a table to
browse and search the data without logging on to a
database host and typing native SQL script.

o Automatic Code Generator Our 1J-GUI relieves

users great burden of working in a distributed system
with multiple resources. For an application that has al-
ready been developed, the user would find it very easy
to run her application with any parameters she wants:
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Figure 8: A visualization example. The upper win-
dow shows the datasets along with their character-
istics such as data sizes, iteration number (in which
they are dumped), offset, pattern, and so on. These
datasets are chosen by the user for visualization.
The lower windows show the visualization results
for two different datasets, each using a different vi-
sualization tool.

she can also easily carries out data analysis and visual-
ization, search the database and browse the tables. For
a new application to be developed, however, although
our high-level MDMS API is easy to learn and use, the
user may need to make some efforts to deal with data
structure, memory allocations and argument selections
for the MDMS functions. Although these tasks may be
considered routine, we also want to reduce them to al-
most zero by designing an Automatic Code Generator
(ACG) for MDMS API. The idea is that given a spe-
cific MDMS function and other high-level information
such as the access pattern of a dataset, ACG will auto-
matically generate a code segment that includes vari-
able declarations, memory allocations, variable assign-
ments and identifications of as many of the arguments
of that API as possible. The most significant feature
of ACG is that it does not just works like a MACRO
which is substituted for real codes: it may also con-
sult databases for advanced information if necessary.
For example, to generate a code segment for set-run-
table(), which is to insert one row into the run table
to record this run with user-specified attributes, our
ACG would first search the database and return these
attributes, then, it uses these attributes to fill out a
pre-defined data structure as an argument in function
set-run-table(). Without consulting the database, the
user has to deal with these attributes by hand. Our
ACG is integrated within our IJ-GUI as part of its
functions. The user can simply copy the code segment
generated and paste them in her own program.

Currently, the IJ-GUI is implemented as a stand-alone sys-
tem, we are in the process of embedding it into the web
environment, so the user can work in our integrated envi-
ronment through a web browser.

5. EXPERIMENTS

Table 5: Total I/O times (in seconds) for astro2d
application (Data set size is 256 MB).

32 procs | 64 procs
Original 23.46 39.67
Optimized 14.05 11.23

Table 6: Total I/O times (in seconds) for astro3d
application (Data set size is 8 MB).

32 procs | 64 procs
Original 109.93 211.47
Optimized 3.33 3.51

In this section, we present some performance numbers from
our current MDMS and 1J-GUI implementations. The ex-
periments were run on an IBM SP-2 at Argonne National
Lab. Each node of the SP-2 is RS/6000 Model 390 proces-
sor with 256 megabytes memory and has an I/O sub-system
containing four 9 gigabytes SSA disks attached to it.

‘We used four different applications: three of them are used
to measure the benefits of collective I/O for disk-resident
datasets; the last one is used to see how prestaging (i.e.,
staging data from tape to disk before they are needed) per-
forms for tape-resident data and how prefetching (i.e., fetch-
ing data from disk to memory before they are needed) per-
forms data already on disks. The current implementation
of the APRIL library uses HPSS [13] as its main HSS in-
terface to tape devices. HPSS is a scalable, next-generation
storage system that provides standard interfaces (including
an API) for communication between parallel processors and
mass storage devices. Its architecture is based on the IEEE
Mass Storage Reference Model Version 5 [12]. Through its
parallel storage support by data striping, HPSS can scale
upward as additional storage devices are added.

Table 5 shows the total I/O times for a two-dimensional
astrophysics template (astro2d) on the IBM SP-2. Here,
Original refers to the code without collective I/O, and
Optimized denotes the code with collective I/O. In all cases,
the MDMS is run at Northwestern University. The im-
portant point here is that, in both the Original and the
Optimized versions, the user code is essentially the same;
the only difference is that the Optimized version contains
access pattern hints and I/O read/write calls to the MDMS.
The MDMS automatically determines that, for the best per-
formance, collective I/O needs to be performed. As a result,
impressive reductions in I/O times are observed. Since the

Table 7: Total I/O times (in seconds) for the un-
structured code (Data set size is 64 MB).

32 procs | 64 procs
Original 547.61 488.13
Optimized 1.25 2.13




number of I/O nodes are fixed on the SP-2, increasing the
number of processors may cause (for some codes) an increase
in the I/0 time.

Tables 6 and 7 report similar results for a three-dimensional
astrophysics code (astro8d) and for an unstructured (irreg-
ular data access pattern) code, respectively. The results
indicate two orders of magnitude improvement if collective
I/0 is used.

Note that an experienced programmer who is familiar with
file layouts and storage architectures can obtain the same
results by manually optimizing these three applications us-
ing collective I/O. This requires, however, significant pro-
gramming time and effort on the programmers’ part. Our
work and results show that such improvements can also be
possible using a smart meta-data management system and
requiring users to indicate only access pattern information.

Our next example is a parallel volume rendering applica-
tion (volren). As in previous experiments, the MDMS is
run at Northwestern University. The application itself, on
the other hand, is executed at Argonne National Lab’s SP-2
and the HPSS at San Diego Supercomputer Center (SDSC)
is used as the HSS. In the Original code, four data files are
opened and parallel volume rendering is performed. In the
Optimized code, the four datasets (corresponding to four
data files) are associated with each other, and prestaging
(from tape to disk) is applied for these datasets. Tables 8
and 9 give the total read times for each of the four files for
the Original and Optimized codes for 4 and 8 processor
case, respectively. The results reveal that, for both 4 and
8 processor cases, prestaging reduces the I/O times signif-
icantly. We need to mention that, in every application we
experimented with in our environment, the time spent by the
application in negotiating with the MDMS was less than 1
second. When considering the significant runtime improve-
ments provided by I/O optimizations, we believe that this
overhead in not great.

Finally, we also measure the benefits of prefetching in wvol-
ren. We assume the datasets are stored on local SP-2 disks.
In the Original code, four data files are opened and compu-
tations are performed sequentially. In the Optimized code,
prefetching (from disk to memory) is applied to the next
data file when each processor is doing computation on the
current data file. Consequently, the I/O time and computa-
tion time are overlapped. Table 10 shows the average read
times for the four files for the Original and Optimized codes
for 4 and 8 processor case, respectively. The results demon-
strate that, for both 4 and 8 processor cases, prefetching
decreases the I/O time by 15%. Actually, prefetching and
prestaging are complementary optimizations. Our environ-
ment is able to take advantage of overlapping prestaging,
prefetching, and computation, thereby maximizing the I/O
performance.

6. RELATED WORK

Numerous techniques for optimizing I/O accesses have been
proposed in literature. These techniques can be classified
into three categories: the parallel file system and run-time
system optimizations [21, 7, 9, 18, 20, 15], compiler opti-
mizations [4, 19, 16], and application analysis and optimiza-

Table 8: Total I/0O times (in seconds) for volren on
4 processors (Data set size is 64 MB).

File No — 1 2 3 4
Original 31.18 | 19.20 | 61.86 | 40.22
Optimized 11.90 | 11.74 | 20.10 | 18.38

Table 9: Total I/0O times (in seconds) for volren on
8 processors (Data set size is 64 MB).

File No — 1 2 3 4
Original 18.79 | 37.69 | 21.02 | 14.70
Optimized 10.74 | 6.23 | 4.49 | 6.42

tion [19, 6, 28, 16]. Brown et al. [5] proposed a meta-data
system on top of HPSS using DB2 DBMS. Our work, in
contrast, focuses more on utilizing state-of-the-art I/O op-
timizations with minimal programming effort. Additionally,
the design flexibility of our system allows us to easily exper-
iment with other hierarchical storage systems as well. The
use of high-level unified interfaces to data stored on file sys-
tems and DBMS is investigated by Baru et al. [2]. Their
system maintains meta-data for datasets, resources, users,
and methods (access functions) and provides the ability to
create, update, store, and query this meta-data. While the
type of meta-data maintained by them is an extension of
meta-data maintained by a typical operating system, our
meta-data involves performance-related meta-data as well
which enables automatic high-level I/O optimizations as ex-
plained in this paper.

7. CONCLUSIONS

This paper has presented a novel application development
environment for large-scale scientific computations. At the
core of our framework is the Metadata Database Manage-

ment System (MDMS) framework, which uses relational database

technology in a novel way to support the computational sci-
ence analysis cycle described at the beginning of this paper
in Figure 1. A unique feature of our MDMS is that it re-
lieves users from choosing best I/O optimizations such as
collective I/O, prefetching, prestaging, and so on that may
typically exceed the capabilities of a computational scientist
who manipulates large datasets. The MDMS itself is made
useful by the presence of a C application programming in-
terface (API) as well as an integrated Java Graphical User
Interface (IJ-GUI), which eliminates the need for computa-
tional scientists to work with complex database program-
ming interfaces such as SQL and its embedded forms, which
typically varies from vendor to vendor. The 1J-GUI itself

Table 10: Average I/O times (in seconds) for volren
(Data set size is 2 MB).

4 procs | 8 procs
Original 2.27 1.34
Optimized 1.91 1.15




is a key component of the system that allows us to trans-
parently make use of heterogeneously distributed resources
without regard to platform. We also presented an optimiza-
tion for tape-resident datasets, called subfiling, that aims at
minimizing the I/O latencies during data transfers between
secondary storage and tertiary storage. Owur performance
results demonstrated that our novel programming environ-
ment provided both ease-of-use and high performance.

We are currently investigating other tape-related optimiza-
tions and trying to fully-integrate MDMS with hierarchical
storage systems such as HPSS. We are also examining other
optimizations that can be utilized in our distributed envi-
ronment when the user carries out visualization. Overall,
the work presented in this paper is a first attempt to unify
the best characteristics of databases, parallel file systems,
hierarchical storage systems, Java, and the web to enable
effective high-level data management in scientific computa-
tions.
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