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ABSTRACT 
Modern high performance processors employ advanced techniques 
for thermal management, which rely on accurate readings of on-die 
thermal sensors.  As the importance of thermal effects on reliability 
and performance of integrated circuits increases careful planning 
and embedding of thermal monitoring mechanisms into these 
systems will be crucial. Systematic tools for analysis of thermal 
behavior and determination of best allocation and placement of 
thermal sensing elements is therefore a highly relevant problem. In 
this paper, we propose novel optimization techniques for 
determining the optimal locations and allocations for thermal 
sensors to provide a high fidelity thermal profile of a complex 
microprocessor system. Our algorithm identifies an optimal 
physical location for each sensor such that the sensor’s the 
attraction towards steep thermal gradient is maximized. We also 
present a hybrid allocation and placement strategy showing the 
trade-offs associated with number of sensors used and expected 
accuracy. Our results show that our tool is able to create a sensor 
distribution for a given microprocessor architecture providing 
thermal measurements with maximum error of 3.18°C and average 
maximum error of 1.63°C across a wide set of applications.   

Categories and Subject Descriptors: J.6 [Computer 
Applications]: Computer-aided Engineering (CAD): B.8.2 
[Hardware]: Performance and Reliability – Performance Analysis 
and Design Aids. 

General Terms: Algorithms, Measurement, Experimentation.  

Keywords: Temperature, Sensor, Allocation, Placement.  
 
1. INTRODUCTION 
Steady miniaturization and large-scale integration are vital to meet 
aggressive performance targets in high performance circuits. They 
have lead to rapidly increasing power densities on microprocessors 
[1]. Power dissipated on a chip is converted to heat, which creates 
reliability threats, adversely impacts leakage power and increases 
cost of cooling. The challenge is to provide high performance and 
reliability at lowest cost possible. Effective assessment and 
analysis of the thermal behavior of microprocessors is crucial to 
overcome this challenge. Modeling and simulation tools and 
thermal-aware design methodologies are one avenue of efforts 
towards this goal [2-5]. A major hurdle in this direction is the fact 
that thermal behavior is input dependent and also sensitive to 
environmental conditions. Thus, a highly accurate thermal profile 

of a complex system can only be established once it is deployed.  
Thermal monitoring using on-die thermal sensors provides the 
means to assess the run-time thermal profile of a system. Thermal 
monitoring is already in use in modern processor architectures to 
assist Dynamic Thermal Management (DTM) mechanisms. For 
instance, Intel Pentium 4, Pentium M and IBM PowerPC 
processors are equipped with thermal sensors that trigger alerts if 
the junction temperature exceeds a specified limit. Based on these 
alerts the processor power consumption is regulated via clock 
throttling [6]. POWER5, IBM’s next generation POWER 
microprocessor employs 24 digital temperature sensors [7]. In this 
paper, we propose a tool that helps the designer to determine the 
best allocation and placement of thermal sensors in a complex 
microprocessor system. In the following, we will first elaborate on 
the need for optimization in this problem.  
The thermal behavior of complex systems is affected by various 
factors. For example localized heating on a processor is application 
dependent. Moreover, different architectural choices may result in 
diverse thermal profiles. Also, the specific purpose of monitoring 
will determine what specific form of sensing setup should be used. 
For instance, if we are primarily interested in worst case operating 
temperatures and design of emergency intervention mechanisms, 
then the spots that reach the highest temperatures on the processor 
are most relevant. On the other hand, if we are interested in 
controlling temperature dependent leakage power and developing 
dynamic mechanisms to manipulate the configuration of certain 
components, then we might need to capture the thermal profile of 
an individual component even if its absolute temperatures are not 
threatening reliability. Similarly, if temperature dependent delay 
violation is the focus of attention, the thermal condition of the 
critical path of the processor must be monitored closely. 
It is intriguing to observe that several recent studies aiming to 
identify hottest regions of microprocessors seemed to have reached 
different conclusions. It is reported that the single thermal sensor 
on the Intel Pentium 4 processor is placed near the rapid integer 
ALU, which was identified as the likeliest candidate to cause a 
hotspot [8]. Skadron et al. [5] report that in the Alpha 21364 
architecture the register file appears to be the hottest component 
consistently across a large set of SPEC CPU2000 [9] benchmarks. 
We performed yet another set of experiments with the same 
architecture (with a slightly different configuration), benchmark 
suite, and thermal simulator. Our detailed results from this analysis 
will be presented in Section 4. Our thermal analysis revealed that 
the Instruction Queue generated the hottest points consistently.   
Figure 1 depicts the map of hotspots at the level of individual 
processor blocks. This map was obtained from our thermal 
simulations across the SPEC2000 benchmarks in the same Alpha 
21364 architecture. Across 25 benchmarks and 18 different 
components of the processor, the number of unique block-level 
hotspots is 184 (out of possible distinct 420 points, some hotspots 
re-occur due to correlation of activity and power density, which 
leaves us with 184 distinct points). This means that the location of 
the hottest point within each block shifts across applications. Thus, 
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the number of distinct hotspots and their relative spatial 
distribution within each individual block can present unique 
characteristics. For example, in the floating-point multiplier 
hotspots appear in widely disperse locations. In contrast, in the 
instruction queue (IntQ) the local hotspots are concentrated near 
the center. If we aim to setup a network of thermal sensors to 
capture the thermal behavior at individual block-level, there is a 
need to determine the optimal locations for best accuracy by 
considering these characteristics in a systematic framework.  

With the increasing impact of process technologies, process 
variation specifically; it will become increasingly harder to depend 
on the measurements of sensors placed “near” a component. In 
addition, there is an increasing interest in design of dynamic 
thermal management techniques that are applied at the granularity 
of individual blocks. Several local optimization techniques applied 
to various processor components such as “Heat and Run” thread 
assignment for chip multiprocessors [10], activity migration to 
reduce hotspots [11], temperature-aware steering, clustering and 
thermal-aware renaming, and committing mechanisms have been 
proposed [12]. All such efforts will require accurate local thermal 
monitoring for individual processor components to support fine 
grain dynamic optimizations. Therefore, techniques for strategic 
placement of thermal sensors will become indispensable aids to 
processor component designers and architects. 
In conclusion, the thermal behavior of a microprocessor can be 
affected by a variety of factors and the presentation of the thermal 
behavior itself is highly purpose-specific. Therefore, there is a clear 
need to establish a thermal monitoring mechanism that can capture 
different aspects of the thermal behavior with high fidelity. In this 
paper, we address this challenge and propose a method to 
determine the best allocation and placement of thermal sensors to 
maximize the accuracy of measurements. We formulate the 
problem of thermal sensor instantiation as a clustering problem. 
We propose a k-means-based algorithm to cluster hotspots into 
groups and assign a sensor to monitor each group. Our algorithm 
identifies an optimal physical location (we refer to as cluster 
centers) for each sensor such that the sensor’s the attraction 
towards steep thermal gradient is maximized. This essentially 
translates into placing a thermal sensor near a location of 
potentially high thermal stress. We also present a hybrid allocation 
and placement strategy showing the trade-offs associated with 
number of sensors used and expected accuracy. Our specific 
contributions in this paper are as follows. We, 
- Formulate of the sensor instantiation problem for thermal 

monitoring of microprocessors, 
- Propose efficient clustering-based algorithms for allocation 

and placement of sensors, 

- Present extensive simulation results to study the impact of 
different placement strategies on measurement accuracy.  

To the best of our knowledge this is the first attempt to develop an 
automated and optimized tool to determine the distribution and 
locations of thermal sensors for microprocessors and other similar 
complex integrated circuits. 
In the following, we give an overview of related work. In Section 3 
we discuss the thermal sensor insertion paradigm. We provide an 
overview of k-means clustering in Section 3.1 and introduce our 
sensor placement algorithm in Section 3.2. Section 4 presents our 
experimental results. We conclude with a summary in Section 5.  
2. RELATED WORK   
While design of highly accurate efficient sensors has been studied 
extensively, the problem of automated sensor placement has not 
been investigated in detail. Lee et al. [13] presented an analytical 
model that describes the maximum temperature difference between 
a hotspot and a region of interest. Gunther et al. [14], present 
observations on thermal maps and point to opportunities for 
optimized decisions on sensor placement. In this regard, our work 
is the first attempt to address this opportunity.  
On a different track, Bratek et al. [15] present sensor placement for 
fault diagnosis of integrated circuits, by linking temperature 
sensors and power modules in pairs. In various other fields the 
problem of “sensor placement” has been studied. In the context of 
wireless sensor networks, coverage refers to the quality of 
surveillance. This is generally formulated as a decision problem 
verifying that a given sensor deployment successfully covers a 
certain area [16]. In contrast our problem is to place sensors to 
minimize the error margin of the resulting “coverage”, hence, it is 
an optimization problem that tries to create the best coverage. 
Sensor networks also encounter problems similar to the Art Gallery 
Problem [17]. Art Gallery Problem is defined as setting minimal 
number of observers required for complete visual coverage of a 
polygonal gallery. Placing sensors for thermal monitoring is 
constrained by the range of the sensor or the tolerable error margin 
in contrast to the “line of sight” of the observer. Hence, the 
meaning of establishing sight (i.e. coverage) in our problem also 
requires satisfaction of a distance constraint between the sensor and 
the point of interest.   
Partitioning and clustering techniques are widely used in the 
placement of VLSI circuits [18]. The objective of clustering in 
such problems is to minimize the net cut cost and balance the 
cluster sizes. The clusters are not evaluated considering any spatial 
relationship between the elements contained in them. In our 
problem, the goodness of a clustering solution must consider the 
spatial and thermal properties of the hotspots. 
3. THERMAL SENSOR INSERTION 
Our goal is to systematically analyze thermal maps to identify 
locations, which lie close to a maximal number of eventful thermal 
spots across a range of applications. We formulate this problem as 
a clustering of the points of interest in the spatial domain. The 
center of each cluster will indicate the physical location of a 
sensor. This sensor will monitor the points associated with that 
cluster. Hence, the temperature reading from that sensor is 
representative of the entire coverage area. We developed 
algorithms based on k-means clustering to carry out this task. In the 
next section we will first introduce the k-means clustering concept.  
For the remainder of the discussion we will focus on accurate 
monitoring of hotspots on a microprocessor. We define a hotspot as 
a point, which reaches the highest temperature during the execution 
of an application. This point can be defined globally over the entire 
processor (to monitor reliability threats) or locally for each 

Figure 1. Distribution of the hotspots (marked in red) for each
processor block for SPEC2000 benchmarks. 
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individual component (to assist in dynamic thermal management of 
local components). If we consider a collection of applications, each 
application can create a distinct hotspot with a distinct temperature 
value. This yields a set of hotspots observed across a range of 
applications. Such a set of hotspots can be obtained via thermal 
simulation of a given architecture configuration. We will describe 
our methodology to perform such a simulation in Section 4.   
3.1 K-means Clustering-Based Sensor Placement   
K-means clustering technique can be defined as: given a set of n 
data points in d-dimensional space and an integer k, determining k 
centers, such that the mean squared distance from each data point 
to its nearest center is minimized [19]. The k-means clustering 
works by iteratively refining the position of the k cluster centers. 
Initial cluster centers are assigned to any k points from n elements 
and the membership set (based on the Euclidean distance) of each 
cluster is calculated. Next, each element hi is assigned to a cluster 
Cj such that the Euclidean E(Oj, hi) distance between hi and jth 
cluster center Oj is minimum. The Euclidean distance calculation is 
shown in Equation 1, where {hix, hiy} and {Ojx, Ojy} represent the 
locations of hi and Oj in the (x,y) plane, respectively.   
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The elements assigned to a cluster Cj comprise the membership set 
Msj of the cluster j. The coordinates of the cluster center Oj are then 
updated as shown in Equation 2. 
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In the next iteration, Euclidean distance E(Oj, hi) for i∈1…n and 
j∈1…k changes due to new positions of cluster centers leading to 
new membership sets of clusters. Based on the new membership 
sets the cluster centers are recomputed (Equation 2). Adding 
elements at minimum Euclidean distance from cluster center Oj to 
the membership set Msj for cluster Cj (∀j∈1…k), and refining the 
position of center Oj to the centroid of those elements belonging to 
Msj, are iterated until there is no reassignment of an element from 
its present cluster to another or the sum of Euclidean distances does 
not decrease significantly. We refer to this as basic k-means.                   
For our purpose the elements are hotspots on the die. For number 
of sensors equal to k, k clusters need to be created to monitor n 
hotspots. The k cluster centers corresponding to each of the k 
clusters specify the location of a thermal sensor. We refer to the 
location of the sensor as cluster center in the remainder of this 
discussion. The final cluster centers Oj would indicate the positions 
of the sensors Sj, for all j∈1…k. The membership set Msj of cluster 
Cj corresponds to the set hotspots for which the sensor Sj will be 
the one expected to provide the most accurate measurement.  
Localized heating happens much faster than the chip-wide heating 
due to slow rate of lateral heat propagation. Considering two 
distinct hotspots, the one at a relatively higher temperature will 
exhibit a steeper thermal gradient with respect to its neighbors as 
compared to the other hotspot. Thus, the sensor needs to be placed 
closer to the former hotspot than to the later to maximize overall 
accuracy. If we were to apply the basic k-means directly to sensor 
placement problem (we will refer to this as the 2-Dimensional 
placement), such clustering in the (x, y) plane would minimize 
average distances of the sensors from all the hotspots. However, it 
would not differentiate between hotspots in terms of their thermal 
gradients. An optimal sensor placement should place an emphasis 
on minimizing the distance of the sensors from steep temperature 
gradients on the die and prioritize among different hotspots 
accordingly. We propose a thermal gradient-aware clustering and 
sensor placement algorithm to overcome this challenge.  

3.1.1 Thermal Gradient-Aware Sensor Placement 
Considering the thermal characteristic t of the hotspots, each such 
element can be considered distributed in the 3-D space and defined 
by the tuple (x, y, t). Using this representation, our sensor 
placement algorithm operates in two stages. In the first stage, we 
group hotspots into clusters where elements in the same cluster 
exhibit both spatial and thermal correlation. In the second stage, we 
identify the physical location within each such cluster where a 
thermal sensor should be placed. The sensor placed at this location 
would provide the most reliable information regarding the thermal 
condition of any hotspot within a certain cluster.  
Hotspot Cluster Formation: We apply clustering to a set of 
hotspots in 3-D space. The k cluster centers are initially set to k 
hotspots. Euclidean distance E(Oj, hi) between hi and Oj is 
computed according to Equation 3 shown below. The difference 
between temperature (t) coordinates of the jth cluster center Oj and 
hotspot hi are considered in calculating this distance.  
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The hotspots hi (∀i, i∈1…n) are then assigned to cluster Cj (∀j, 
j∈1…k) such that E(Oj, hi) (∀i, j) is minimum. Using 3-
dimensional distance evaluation is more likely to create clusters 
containing hotspots having similar thermal characteristics.   
Determination of Physical Sensor Location within Clusters: 
The key idea behind this approach is to move cluster centers or 
sensors closer to the relatively higher temperature hotspots. This is 
equivalent to the sensor being attracted to hotspots with higher 
temperature values with a larger force. For each addition of hotspot 
hi to Msj of cluster Cj, the cluster center coordinates are the 
cumulative sum of the corresponding member coordinates. The 
cumulative sum computation is shown in Equation 4. 
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The (x, y) coordinates of the cluster center Ojx,y are closer to the 
hotspot hi if the t dimension of the center Oj is less than that of hi. 
If hit < Ojt, the cluster center moves further from the position of hi. 
We represent this phenomena using an attraction coefficient α in 
Equation 4. We have determined experimentally that an attraction 
coefficient value α = 0.1 performs best. After iterating over all the 
hotspots the final position of Oj is updated as shown in Equation 5.  

)(/,,,, sjtyjxtyjx MsizeOO =  

The cluster centers determined using Equation 4 and Equation 5 are 
then iteratively refined such that the mean squared distances of the 
hotspots from their respective cluster centers is minimized. Note 
that computing the cluster center using this method moves the 
sensor location physically closer to steeper thermal gradients. We 
would also point to the fact that although we use the temperature 
dimension of the cluster centers (as the average of the cluster 
members), this dimension (t) is used for modeling attraction 
towards points exhibiting high thermal stress. The temperature at 
the sensor’s physical location determines its thermal reading, 
which has no physical relation with the temperature coordinate of 
the cluster center. Next, we will show how our proposed algorithm 
can be applied for different sensor placement scenarios.   
3.2 Sensor Placement Strategies 
In this section we discuss two different strategies for sensor 
placement. Thermal monitoring can be performed in the global 
scope for the entire processor or locally per processor block.  
3.2.1 Global Sensor Placement 
In this strategy, the global hotspots are considered. The global 
hotspots generally emerge in the same block (although shifted 
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inside the block across applications). However, there can be 
reasons for hotspots to move into different components of the 
processor. For instance, in a superscalar processor multiple copies 
of the floating point unit can be selectively activated. During the 
intervals, where a single floating point unit is active it can contain 
the hotspot. In another interval, where multiple copies of this unit 
are active, the load would be distributed evenly and the power 
density would be low in this location. At that point a different unit, 
such as the instruction queue can be the origin of the hotspot. Our 
strategy to place sensors to capture such events works as follows. 
First an initial number of sensors are estimated and thermal 
gradient-aware sensor placement is performed with that number. 
Then, the sensor allocation is changed iteratively until the results 
are within a given accuracy. A good starting point is to select the 
number of sensors to be equal to the total number of blocks and 
then increase or decrease that number of sensors.  
3.2.2 Local Sensor Placement 
In this case our goal is to determine the placement of the sensors 
for each individual processor component. Effective local 
monitoring can be vital in various dynamic optimizations.  Activity 
migration and thread assignment techniques [10, 11] can be 
assisted by local thermal monitoring mechanisms. Temperature 
information regarding local components can be exploited by 
dynamic cache optimizations [20, 21] to reduce leakage. There can 
be different approaches for local sensor placement. 
Naïve Placement: The naïve approach is to place a fixed number 
of sensors per processor block. There are different ways to place 
sensors based on the geometry and alignment of the block. The 
main idea is to recursively bisect the block into smaller units, until 
the number of units is equal to the number of desired sensors. For 
example, this will involve placing a single sensor at the geometric 
center of the processor block. For two sensors, the block is bisected 
along the longest edge and a sensor is placed at the center of the 
each bisected rectangle.    
Single Sensor Placement at Weighted Cluster Center: This 
technique involves placing a single sensor for each processor 
component. This method is equivalent to applying the thermal 
gradient-aware placement without performing clustering. All 
hotspots are by default contained within one single cluster. The 
location of the center of this cluster is determined using Equation 4 
and Equation 5.  We experimentally determined that attraction 
coefficient α = 0.05 gives best results for this local placement. 
Thermal Gradient-Aware Placement Applied to Local Blocks: 
In this method multiple sensors are placed per processor block. 
Such placement is performed by our thermal gradient-aware 
technique, where k is the number of sensors and their physical 
locations are the k cluster centers. Increasing the number of sensors 
increases monitoring accuracy. We observed that selecting number 
of sensors equal to 2 gives good accuracy thermal sensing for the 
processor configuration in our experiments. 
Hybrid Sensor Placement: In this method the sensor placement is 
determined by a synergy of weighted cluster center and thermal 
gradient aware placement strategies. In contrast to the previous 
approaches where all blocks have equal number of sensors (either 
single or multiple), we allow allocation of variable number of 
sensors in different blocks to maximize accuracy. By customizing 
the number of sensors required for accurate temperature 
measurement for each block, the number of sensors is also reduced. 
At first for each processor unit, single sensor placement by 
weighted cluster center method is performed and temperature error 
is determined. Then thermal gradient-aware placement is 

repeatedly applied with increasing number of sensors until no 
significant improvement in accuracy is observed.  
4. EXPERIMENTAL RESULTS 
In the following sections we describe our experimental 
methodology and then we present our results. 
4.1 Experimental Setup 
We simulated the SPEC2000 benchmark (13 floating point and 12 
integer benchmarks) suite [9] using SimpleScalar [22].  
SimpleScalar simulates a super-scalar processor with out-of-order 
issue and execution. We simulate for 10 million instructions after 
fast-forwarding application-specific number of instructions as 
proposed by Sherwood et al. [23]. We have chosen Alpha 21364 as 
our base processor. The base processor is a 4-way processor with a 
load store queue and register update unit of size 32 and 64 
respectively. The level 1 instruction and data cache are 64 KB, 4-
way associative with 32-byte block size and 2 cycle latency. 
Unified level 2 cache is 512 KB, 4-way associative cache with 
128-byte line size and 15 cycle latency. Wattch infrastructure [24] 
is used for architectural level power modeling. The access patterns 
of the processor blocks from SimpleScalar are then used by Wattch 
(version 1.02) to compute the power dissipation of the blocks. The 
power data for 1.6 V at 1 GHz at 180nm node was scaled using 
Wattch’s linear scaling to obtain power for 130nm node, Vdd=1.3V, 
and a clock speed of 3 GHz. We have used HotSpot version 3.0 [5] 
for performing thermal simulation. The floorplan of Alpha 21364 
and the power dissipation from Wattch are used as input to 
HotSpot. HotSpot can perform thermal simulation in block level 
and also in the grid level. The processor floorplan is divided into 
grids and the temperature of each grid element is calculated. 
Depending on the grid size, a block can have multiple grid 
elements. This type of grid level thermal modeling is useful for 
capturing spatial temperature variation within a processor unit. 
During static thermal simulation the initial die temperature was 
assumed to be 60°C. This represents the die temperature if the 
processor was already executing instructions prior to execution of 
benchmarks to model the warm up period. The ambient 
temperature is set to 40°C. For 3Ghz clock frequency, a rise in 
0.1°C of temperatures takes 100K cycles. Sampling rate of 10K 
cycles gives the best tradeoff between precision and overhead [5]. 
For our experiments the point of interest is the hottest point per 
component. For each benchmark, each component will exhibit a 
hotspot. For different applications, the location of this hotspot may 
change. We first combine these locations to find the distribution of 
hotspots across different benchmarks. Based on this distribution we 
make decisions of the location of sensors. When a sensor is placed 
at a certain location, we assume that it reads the exact temperature 
at that location. We adjusted our grid size to ensure that each 
component contains a large number of distinctly monitored grid 
points, i.e., the granularity of the thermal simulation is much finer 
than the number of components. One of our main goals is to 
measure the error of temperature readings provided by the sensors. 
To calculate this error, we consider the temperature read by the 
sensor (i.e., the temperature of its location) and compare it against 
all the temperature values of the hotspots within the corresponding 
component. If there are multiple sensors within a component, we 
find the error by comparing the temperature reading and all the 
hotspots that the sensor is associated with.   
4.2 Results 
Our first set of results presents the maximum error in sensor 
reading for each benchmark using the global placement technique 
described in Section 3.2.1 for allocating 16 sensors. We observed 



that allocating number of sensors equal to the number of blocks in 
the processor is a good starting point. Then, the number of sensors 
can be increased or decreased depending on the desired accuracy. 
Since the starting number of sensors is few, a linear increase or 
decrease in the number of sensors for meeting accuracy proved to 
be a good method. For our experiments we found that 16 sensors 
provide good accuracy. We compared our method against 2 
alternatives - 2-dimensional placement (g-2D), and 3-dimensional 
placement (g-3D). The 3-dimensional placement computes the 
distance function using Equation 3 and updating the cluster center 
as shown in Equation 6.  
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Figure 2 shows the maximum error and average of maximum errors 
for each benchmark using 2-dimensional placement (g-2D), 3-
dimensional placement (g-3D) and our thermal gradient-aware 
approach (g-T-GA). The maximum error for g-2D can be as high as 
13.7°C whereas that for g-T-GA is 4.5°C. g-T-GA also performs 
better than 3D, which has a maximum error of 6.1°C. For all 
benchmarks except wupwise-ref, g-2D exhibits higher maximum 
error than g-3D. For majority of benchmarks it can be observed 
that the maximum error for g-T-GA is less than g-3D. The average 
of the maximum error for g-2D, g-3D, and g-T-GA are 4.5°C, 
2.6°C and 2.1°C respectively. This shows g-T-GA on average 
shows 19% improvement in accuracy over g-3D. 

Our second set of results present the thermal monitoring accuracy 
for local sensor placement as discussed in Section 3.2.2. In our 
experiments we observed placing 1 to 2 sensors per block gives 
good accuracy for our hotspot distribution. Of the different local 
placement techniques, we present the thermal monitoring accuracy 
results for weighted-centroid (l-WC) for a single sensor per unit, 
thermal gradient-aware approach (l-T-GA) for 2 sensors per block, 
and hybrid assignment (l-H) of one to two sensors per block. These 
set of results shown in Figure 3 represent the most interesting 
trends for our proposed methods. For hybrid method, initially a 
single sensor is placed at the weighted centroid per block and the 
sensor errors are computed. At this point, we identified the blocks 
responsible for maximum sensor error. We found that L2_left, 
FPAdd, FPReg, FPMul, FPMap, IntExec, and FPQ contributed the 
largest sensor errors. Note that out of the 7 processor units, only 
L2_left belongs to memory subsystem and the rest are functional 
units. It can be observed from Figure 1 and Figure 4, L2_left has 2 
distinct hotspot clusters – one at the boundary of Icache and 
another at FPMul. The l-WC found the sensor location for L2_left 
at the center of 2 such hotspot clusters showing large error.  
Then, we applied l-T-GA for placing 2 sensors in those blocks. 
Using l-WC method, the maximum and average error is 5.2°C, and 
9.5°C. When we selectively assigned 2 sensors in 7 blocks namely 
L2_left, FPAdd, FPReg, FPMul, FPMap, IntExec, and FPQ, the 
maximum and average error reduced to 3.8°C, and 1.9°C. The 
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Figure 2. Maximum Temperature Error for each SPEC benchmark performing global sensor placement using 2-dimensional placement (g-2D), 3-
dimensional placement (g-3D) and thermal gradient-aware (g-T-GA) techniques. 

Figure 3. Maximum Temperature Error for each SPEC benchmark performing local sensor placement using one sensor per component using 
weighted centroid (l-WC), 2 sensors per component using thermal gradient-aware (l-T-GA) technique, and hybrid approach (l-H).  



maximum error is comparable with l-T-GA using 2 sensors per 
block. The average of the maximum error is slightly better for l-T-
GA (1.63°C) as compared to 1.9°C in l-H. We would like to point 
out that this increased accuracy for l-T-GA over l-H comes at an 
increased number of sensors, which we illustrate in Table 1.  
Table 1 summarizes the maximum error and average of maximum 
errors for each of our sensor placement techniques. We have also 
listed the number of sensors required for each approach. It is 
evident that performing l-T-GA sensor placement (modeling 
attraction of the sensor to relatively hotter points) performs best. 
For g-T-GA placement the maximum and average of maximum 
error across benchmarks is higher (maximum: 4.85°C, average: 
2.10°C) when compared to l-T-GA placement (maximum: 3.18°C, 
average: 1.63°C). Local sensor placement shows more accuracy. 
However, for global placement we would require 16 sensors 
whereas local sensor placement would require 36 sensors (we have 
assigned 2 sensors per component for 18 processor components). 
We observe the most interesting results for l-H placement. It 
achieves comparable accuracy to l-T-GA with 11 sensors fewer. 
The maximum errors for l-H and l-T-GA are same. 
Table 1. Maximum error and average of the maximum error for 
SPEC benchmarks using different global and local thermal sensor 
placement strategies.  

 # of Sensors Type Max Err Avg Err Sensors 
2-D placement 13.69°C 4.58°C 16 
3-D placement 6.11°C 2.66°C 16 

G
lo

ba
l  

16 
T-GA 4.85°C 2.10°C 16 

1 Weighted-centroid 9.46°C 5.25°C 18 
Naïve 22.96°C 10.79°C 36 
2-D placement 7.27°C 3.05°C 36 
3-D placement 4.05°C 2.01°C 36 

2 

T-GA 3.18°C 1.63°C 36 

L
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al
 (s

en
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r 
/ b

lo
ck

) 

1-2 Hybrid 3.18°C 1.95°C 25 

Figure 4 shows the sensor distribution using hybrid approach for a 
distribution of hotspots. This floorplan zooms onto the core of the 
processor. Dotted lines represent that the majority of the cache 
blocks have not been included in this floorplan. It can be seen from 
the figure that 2 sensors were assigned to the blocks L2_left, 
FPAdd, FPReg, FPMul, FPMap, IntExec, and FPQ and single 
sensor assigned to the rest.  

5. CONCLUSIONS 
We have introduced a systematic technique for thermal sensor 
allocation and placement in microprocessors. Our algorithm 
identifies an optimal physical location for each sensor such that the 
sensor’s the attraction towards steep thermal gradients is 
maximized. The sensor allocation is determined by the required 

accuracy in temperature measurement. Such accurate monitoring 
schemes will have implications for dynamic thermal and power 
management schemes in microprocessors.  
The results show that our technique has average accuracy 
improvement of 19% over 3-dimensional placement for global 
sensor placement strategy. For local placement strategy thermal 
gradient aware placement and hybrid methods provide average 
error for 1.63°C and 1.95°C respectively. The number of sensors is 
36 for the former and 25 for the later, which can be used to trade-
off number of sensors and accuracy. The results show that our 
allocation and placement techniques have been indeed effective in 
minimizing thermal sensing error. 
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Figure 4. Hotspot distribution (marked in red) across processor blocks
and the sensor locations (marked in blue and squares) determined by
our hybrid strategy. 


