Combining Interior-Point and Active-Set Approaches for Nonlinear Optimization in KNITRO

Richard A. Waltz, Northwestern University
Ziena Optimization, Inc.

INFORMS 2004 Annual Meeting
24 October 2004
Denver, Colorado, USA
KNITRO Overview

General purpose optimization software package:

- Unconstrained problems
- Bound constrained problems
- Equality constrained problems
- Linear programs (LP)
- Quadratic programs (QP)
- General non-linear optimization problems
KNITRO Overview

Motivation

• Diversity of nonlinear optimization probs. requires diversity of algorithms/features

Key Features

- Interior-point and Active-set algorithms
- Iterative and Direct approaches
- 1st and 2nd derivative options
- Feasible/honor bounds options
- Adaptive techniques
KNITRO 4.0 (New October 2004)

New Features

- new Active-set (SLQP) algorithm
- Automatic algorithm selection
- Improved performance on LPs and QPs
- Improved infeasibility detection
- Improved robustness and handling of degenerate problems
- Improved API
- threadsafe
KNITRO 3.x vs 4.0 (CUTER test set)

968 probs.

Robustness
4.0: 87%
3.1: 81%
3.0: 79%
Three Algorithms

1. **KNITRO/InteriorCG:**
 - Interior-point iterative approach
 - Good for large problems with dense Hessians

2. **KNITRO/InteriorDirect**
 - Interior-point direct approach
 - Good for large ill-conditioned problems

3. **KNITRO/Active (new October 2004!):**
 - SLQP active-set approach
 - Good for infeasibility detection and warm starts
CG-Direct Comparison

- **CVXQP2**
 - n=10,000,
 - m=2,500,
 - nnzH = 40,000
 - 99.6% time spent on factorization

- **BQPGAUSS**
 - n = 2003
 - bound-constrained
 - Hessian ill-conditioned but not dense

<table>
<thead>
<tr>
<th>Code</th>
<th>iters</th>
<th>time</th>
<th>time/it</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>11</td>
<td>401</td>
<td>36.5</td>
</tr>
<tr>
<td>Direct</td>
<td>14</td>
<td>2638</td>
<td>188.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Iters</th>
<th>time</th>
<th>time/it</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>27</td>
<td>1310</td>
<td>48.5</td>
</tr>
<tr>
<td>Direct</td>
<td>19</td>
<td>3</td>
<td>0.16</td>
</tr>
</tbody>
</table>
KNITRO Algorithms

- Function evals.
- 616 probs

Robustness

Auto: 91%
IPDirect: 91%
IPCG: 88%
Active: 79%
Any: 94%
- CPU time

Robustness
- Auto: 91%
- IPDirect: 91%
- IPCG: 88%
- Active: 79%
- Any: 94%
Other problem classes

<table>
<thead>
<tr>
<th>Prob class</th>
<th>InteriorCG</th>
<th>InteriorDirect</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncon</td>
<td>Newton-CG</td>
<td>Newton</td>
<td>Newton-CG</td>
</tr>
<tr>
<td>Non. Eq.</td>
<td>Powell-dogleg</td>
<td>Newton</td>
<td>?</td>
</tr>
<tr>
<td>Least Sq.</td>
<td>Levenb-Marq.</td>
<td>Gauss-Newt</td>
<td>?</td>
</tr>
<tr>
<td>Bound Con</td>
<td>Interior-iterative</td>
<td>Interior-direct</td>
<td>Gradient projection</td>
</tr>
<tr>
<td>Equal Con</td>
<td>SQP-iterative</td>
<td>SQP-direct</td>
<td>SQP-iterative</td>
</tr>
<tr>
<td>LP</td>
<td>Interior-iterative</td>
<td>Interior-direct</td>
<td>simplex</td>
</tr>
<tr>
<td>QP</td>
<td>Interior-iterative</td>
<td>Interior-direct</td>
<td>SLQP</td>
</tr>
</tbody>
</table>
Second Derivative options

- **Exact** 2nd derivatives
- **Quasi-Newton**
 - SR1 (dense)
 - BFGS (dense)
 - Limited memory BFGS (large-scale)
- **Hessian-vector products** (InteriorCG/Active)
 - exact Hessian-vector products
 - via finite-differencing of gradients
Second Derivative options

-548 small-med. probs -fevals

Robustness:
Exact: 92%
FD: 92%
BFGS: 89%
SR1: 88%
LBFGS: 87%
Second Derivative options

- 548 small-med. probs
- CPU time

Robustness:
Exact: 92%
FD: 92%
BFGS: 89%
SR1: 88%
LBFGS: 87%
Feasible Option

- By default constraints may be violated during optimization process
- **Feasible option**: enforces feasibility with respect to inequalities given initial point satisfying inequalities
 - Only available for InteriorCG
- **Honor bounds**: special case of feasible option
 - Available for all algorithms
Crossover/Warm Starts

HS66

Solve 1: KNITRO/InteriorDirect (11 iterations)

c1 = 6.0105e-09 lambda1 = 0.665464
c2 = 1.92786e-08 lambda2 = 0.2
c3 = 0.184127 lambda3 = 2.1702e-08
c4 = 1.20217 lambda4 = 3.28748e-09
c5 = 3.32732 lambda5 = 6.03145e-10
Crossover/Warm Starts

HS66

Solve 2: KNITRO/Active (3 iterations)

c1 = 0 lambda1 = 0.665464

\(c2 = 4.44089e-16\) lambda2 = 0.2

\(c3 = 0.184126\) lambda3 = 0

\(c4 = 1.20217\) lambda4 = 0

\(c5 = 3.32732\) lambda5 = 0
Infeasibility detection

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dir</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>104</td>
<td>6</td>
<td>9</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>87</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>CG</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Act Set</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>32</td>
<td>28</td>
<td>27</td>
<td>18</td>
<td>202</td>
<td>10</td>
<td>22</td>
<td>31</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Future Work

- More work on crossover, adaptive rules, automatic tuning
- Mixed Integer NLP
- MPECS
- Preprocessing NLP’s
Interfaces/Partners

- AMPL
- GAMS (beta release, official release coming soon)
- Frontline Systems (Excel interface)
- NEOS (free version used via internet)
- Tomlab (Matlab interface)
- Callable library (C/C++/Fortran API)
 - Artelys (Europe) www.artelys.com
 - Ziena (US and non-Europe)

www.ziena.com/knitro.html (student version)
www.ece.northwestern.edu/~rwaltz