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Abstract

When transmitting stochastically arriving data over fading channels there is an inherent
trade-off between the required average transmission power and the average queueing delay
experienced by the data. This trade-off can be exploited by appropriately scheduling the
transmission of data over time. In this paper, we study the behavior of the optimal power-delay
trade-off for a single user in the regime of asymptotically small delays. In this regime, we first
lower bound how much average power is required as a function of the average queueing delay.
We show that the rate at which this bound increases as the delay becomes asymptotically small
depends on the behavior of the fading distribution near zero, as well as the arrival statistics. We
characterize this rate for two different classes of fading distributions, one class that requires
infinite power to minimize the queueing delay and one class that requires only finite power. We
then show that for both classes, this rate can essentially be achieved by a sequence of simple
“channel threshold” policies, which only transmit when the channel gain is greater than a given
threshold. We also consider several other transmission scheduling policies and characterize their

convergence behavior in the small delay regime.
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. INTRODUCTION

In many wireless communication scenarios energy management is an important issue
for reasons such as reducing the size and cost of communication devices and/or extending
a device’s usable life-time. Examples range from communication satellites to micro-
sensors. Often, the required transmission power is one of the main energy consumers
in a wireless devices; consequently, there has been much interest in approaches for
efficiently utilizing this resource. A basic technique for accomplishing this is through
transmission power control, i.e. adapting the transmission power over time in an attempt
to not use any more energy than needed to communicate reliably. With data traffic, in
addition to adjusting the transmission power used to send each packet of data, energy
efficiency can be further improved by adjusting the transmission rate or equivalently the
transmission time per packet, for example, by using adaptive modulation and coding.
Such approaches exploit the well-known fact that the required energy per bit needed
for reliable communication is decreasing in the number of degrees of freedom used to
send each bit; for fixed bandwidth, the available degrees of freedom increase with the
transmission time. In a fading channel, another benefit of adapting the transmission rate
and power is that it enables the transmitter to be “opportunistic” and send more data
during good channel conditions, which again reduces the required average energy per
bit.

Recently, a number of energy-efficient transmission scheduling approaches have been
studied including [1]-[15]. In these approaches transmission rate and/or power are ad-
justed over time based in part on the offered traffic as well as any available channel
state information. In each case, the goal is to effectively balance some cost related to
packet delay (e.g. the average queueing delay or a deadline by which all packets must
be transmitted) with some cost related to power or energy (e.g. the total energy over a
finite horizon or the long-term average power). Clearly, there is a fundamental trade-off
between such concerns, i.e., packet delay can be reduced by transmitting at a higher rate,

but this requires more energy per bit.
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Fig. 1. System Model.

In this paper, we re-visit the basic model for transmission scheduling over a fading
channel from [15]. In this model, data randomly arrives from some higher layer appli-
cation and is placed into a transmission buffer as shown in Figure 1. Periodically, some
data is removed from the buffer, encoded and transmitted over the fading channel. We
focus on the case where each codeword is sent over a fixed number of channel uses,
but different codewords may be of different rates. After the codeword is received, it is
decoded and passed to the corresponding higher layer application at the receiver. The
transmitter can vary the transmission power and rate based on both the channel state and
the buffer occupancy. As in [15], we consider the optimal power/delay tradd2off)).

This characterizes the minimum long-term average power under any scheduling policy as
a function of the average queueing delay, for a given arrival process and channel fading
process. If the traffic arrives at an average rateddbits per second, then for a stable
system, the long-term average energy per bit is givenPbyD)/A, i.e., P*(D) also
reflects the minimum energy per bit needed for a given average delay. For any system
where the channel and arrival processes are not both constgid,), will be a strictly
decreasing and convex function bX In [15], the behavior ofP*(D) was studied in the
asymptotic regime of large delays (low power). In this regime, it was shownARhdD)

approaches a limiting value gP(A) at rate of©® (%) Here, we use the following



notation to characterize the asymptotic behavior a fundgign asxz — z*:

e g(x) =O(f(x)) if limsup,_, . ‘\giz))i < 00,
o g() = Q(f(x)) if limsup,_,. L8] < o0, and
o g(x) =O(f(2)) if g(x) = O(f(x)), andg(z) = Q(f(z)).

In [15] it was also shown that, this rate can be achieved with a sequence of “buffer

threshold policies” whose only dependence on the buffer occupancy is via a simple
threshold rule. Moreover, this weak dependence on the buffer occupancy is required for
a sequence of policies to be order optimal (i.e., have the optimal convergence rate).
Here, we focus on the behavior of the power/delay trade-off in the asymptotic regime
of small delays (high power). Specifically, we study the optimal rate at which the average
delay decreases to its minimum value as the average power increases. The analysis of
the large delay asymptotics in [15] is based, in part, on using large deviation bounds on
the buffer occupancy, which are asymptotically tight for large buffer sizes. In the small
delay regime, these bounds are not very useful and we instead take a different approach
to analyze the system. We show that, in this regime, the optimal power/delay trade-off
behaves quite differently from the large delay regime. In particular, the convergence rate is
shown to depend strongly on the behavior of the fading distribution near zero. We focus
on two broad classes of channels: one class (“type A channels”) that requires infinite
power to minimize the queueing delay, and one class (“type B channels”) for which the
gueueing delay can be minimized with finite power. These classes include most common
fading models, such as Rayleigh, Ricean and Nagakami fading. For each class, we first
lower bound the convergence rate in the small delay regime that can be achieved by
any transmission policy. We then show that this bound is achievable for both classes
of channels when using a sequence of “channel threshold policies.” These are policies
under which the transmission rate only depends on the channel gain through a simple
threshold rule. This demonstrates an interesting duality with the large delay regime,
where instead buffer threshold policies were order optimal. For a type A channels, we

then show that an even simpler fixed-rate channel threshold policy is also order optimal,



where this policy does not depend at all on the buffer occupancy. However, such policies
are not order optimal for the type B channels. Finally we consider two sequences of sub-
optimal policies fixed power policiesindfixed water-filling policieswhich also have no
dependence on the buffer occupancy. These are shown to not have optimal convergence
rates for either type of channel.

The outline of the rest of the paper is as follows. In Section Il, we discuss the problem
formulation in more detail and given some preliminary results. In Section Ill, we give
lower bounds on the optimal convergence rate. In Section IV, we analyze several optimal
and sub-optimal sequences of policies. We conclude in Section V. Most of the proofs

are given in the appendices.

Il. PROBLEM FORMULATION

We next give a more precise description of our model for the system shown in Figure 1.
First the fading channel model is described. The channel is modeled as a discrete-time,
block-fading channel with additive white Gaussian noise and frequency-flat fading [16],
[17].! Over each block ofN consecutive channel uses, the channel gain stays fixed.
Let v/H, denote the magnitude of the complex (base-band) channel gain durimghthe
block and©,, denote the phase. L&,, = (X,,1,..., X, n) andY,, = (Yo1,...,YonN)
be vectors inC" which denote, respectively, the channel inputs and outputs oveitithe

block. These are related by:
Y, = \/H,e "X, +Z,. (1)

Here the additive nois&,, is a complex, circularly symmetric Gaussian random vector
with zero mean and covariance matrix/, where! denotes aV x N identity matrix.
Furthermore, the sequend&,,} is independent and identically distributed (i.i.d.). The
sequence of channel gaingl/, }, are also modeled as a sequence of random variables;

for simplicity, we assume that these are also i.i.d., which is appropriate when the time

IMost of the following will also generalize directly to a frequency-selective, block fading channel.



for one block of N channel uses is on the order of one coherence-time. Far, &ll, is
assumed to take values i = R*™ and have a continuous probability density function
fu(h) and probability distributior¥; (h). For simplicity, we assume thgi; (h) > 0 for
all b > 0, which is true for most channel models of interéthis implies thatFy (k)
is strictly increasing ovefH{. We assume that both the transmitter and receiver have
perfect channel state information (CSi)., during thenth block, both the transmitter
and receiver know the value @f,, and©,,. Since both the transmitter and receiver know
0, we will ignore it in the following.

To model the buffer, we consider a discrete-time “fluid” buffer model in which time
is slotted and the length of each time-slot corresponds to a blodk channel uses.
Let A,, be the number of bits that arrive between timendn — 1, and letS,, be the
buffer size at the start of theth time-slot. Denote by/,, the number of bits removed
from the buffer at the start of each time-slot, encoded and transmitted over the fading
channel during the time-slot. This is a fluid model because we do not restrict the amount
of “bits” that arrive to or are removed from the buffer during a time-slot to be an integer.

The resulting buffer dynamics are given by:
Sn+1 = maX{Sn + An+1 - Unv An—i—l}y (2)

which ensures that the arriving datd,( ;) waits in the buffer for at least one time-

unit. The buffer size is assumed to be infinite and we denote the buffer state space by
S = R*. We consider the case where the arrival procgds} is a sequence of i.i.d.
random variables taking values in a compact4et [a,,in, ¢ma:] C RT with probability
distribution F'4(a). Here,a,,., anda,,;, are, respectively, upper and lower bounds on the
amount of data that can arrive per time-unit. This process is assumed to be independent
of both the channel fading process and the noise processd letE(4,) denote the

expected amount of data that arrives per time-slot.

2This can be relaxed to assuming thfath) > 0 in some small interval0, €).



We assume that for the transmitter to reliably transmit at a ratelofs per channel
use during a given time-slot requires a received signal-to-noise ratio (SNR) given by a

function S(r). The main example we will consider is where
S(r)y=2"—1, (3)

which is the received SNR required for the Gaussian channel in (1) to have a capacity of
r bits per channel use. More generally, the following analysis will hold for any function
S(r) that satisfies the following regularity property:

Definition 1: A SNR functionS(r) is regular if S(r) is increasing, differentiable, and
strictly convex withS(0) = 0, S’(0) > 0, andlim, ., S'(r) = 00.3

In addition to (3), most practical modulation and coding schemes will satisfy this
definition (e.g., see [4]). During a time-slot when the channel gain, ithe received
SNR is given by2Z, whereP is the transmission power. Thus, the required transmission

power to send; bits during this time-slot is given by
2

P(h,u) = %S(U/N). 4)
In the case of (3), this becomes
Pl =% (24 1) ©)
,U - h )

which is the minimum power required so that the mutual information rate per channel
use during the given block is equal tgN. Provided thatV is large enough, this choice

will give a reasonable indication of the power needed to reliably transmit atuydte

One may question the reasonableness of modeling the required power using (5) when
we are analyzing the performance of a system in the regime of small delays, since to
communicate reliably at rates near capacity typically requires the use of long codes and
subsequently long delays. The main justification for this is that we are measuring delays

on the time-scale of the queue dynamics in 2; within each time-unit of this model, we

*We use the standard notatigi to denote-L f.



assume that there are still be enough degrees of freedom available in each time-slot to
use sophisticated coding and approach capacity. Indeed, in many recent wireless systems
data is transmitted in radio link control (RLC) blocks on a time-scale of 2-5 msec, using
a bandwidth a 1-5 MHz; this results in on the order1660 channel uses per block.

Let 1 : S x H — R denote a stationary (Markov) transmission policy that indicates
U, at any timen as a function ofS,, and H,,. Under such a policy{S,} will be a

Markov chain. Under policy:, we define the time-average transmission power to be

Pr = timsup S B(P(Hy, (S0, ).
=1

m—0o0

We also define the time-average delay to be,

DF = limsupi Z @

m—oo 1M
n=1

Assuming that{5,} is ergodic, it follows that that”* = Eg yP(S, H) and D* = £2,
which is equal to the average queueing delay by Little’s law. Here and in the following,
given an ergodic proces$ X, }, we denote byX (without an index), a random variable

with the corresponding steady-state distribution. For a given channel and arrival process,

the optimal power/delay trade-off;*(D), is defined by
P*(D) = inf{P* : ;1 such thatD" < D}.

This will be a decreasing and convex function ©fas shown in Fig. 2. A — oo,
P*(D) converges to an asymptotic value/fA) at a rate of (3 ) [15]. The asymptotic
value, P(A) corresponds to the minimum power required to send at averageArate
ignoring any delay constraints. Whét(h, «) is given by (5), this is the minimum power
so that the channel hastaroughput capacityof A/N bits per channel use [18].

We note that in the above definition we restricted our attention to stationary, Markov
policies. More generally, one can consider transmission policies that depend on thg time
as well as the past history of buffer and channel statesy,j.e- u(n, s1,...,Sn, b1, ..., hy).
However, in terms of defining*(D) such policies are not needed [15]. In other words,

P*(D) also characterizes the performance that can be obtained by any such policy.
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Fig. 2. Examples of the optimal power/delay trade-Bff(D) for two different channels. In the type A channel, the

optimal power grows without bound as the delay approaches 1. In the type B channel the optimal power converges to
the limit of P*(1).

In the following it will also be useful to define the optimal delay/power trade-off by
D*(P) = inf{D" : i such thatP" < P}.

Clearly, if P*(D) is strictly decreasing, the®*(P) will simply be its inverse. Given the
above model of the buffer dynamics, all data must spend at least one time unit in the
buffer, henceD*(P) > 1 for all P. The only way thatD*(P) = 1 is if the transmitter

used a policy such that(S,,, H,) > A, for all n, i.e. every bit is transmitted the time-slot
after it arrives. The minimum power required by such a policy is given by

P (1) =EsgP(H,A).

Assume that the arrival rate is constant, i%.= A for all n, and thatP(h,u) is given

by (5). In this caseP*(1) represents the minimum power needed for the channel to have
a delay-limited capacityof A/N bits per channel use [19].
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Depending on the fading distributio®*(1) may or may not be finite. In particular,

note that since the arrival and channel processes are independent,
1
P*(1) = 0°Ey (E) E4S(A/N).

From this it follows that for any bounded arrival proce$s;(1) is finite if and only
if Eg (%) < oo. Therefore, every fading distribution can be classified as follows: a
distribution is defined to haveositive delay-limited capacityf E;; (+) < oo; otherwise,
the distribution is said to haveero delay limited capacity

In the following, we will often place further restrictions on the behavior of the fad-
ing distribution near zero. In particular, we will consider the following two types of
distributions:

Definition 2: A channel is defined to be ¢fpe Aif H,, has a finite mean anfl;(0) >

Definition 3: A channel is defined to be d&fpe Bif H,, has a finite mean anfi; (h) =
©(h") ash — 0 for some~y > 0.

For example, in a Rayleigh fading channg}(h) is an exponential distribution with
fu(0) = ﬁ; hence, this is a type A channel. A Ricean fading channel is also a type A
channel. A Nakagami fading channel will be of type A if the Nakagami fading figure,
is less than 1. It will be type B whem > 1; in this casey = m — 1. A Rayleigh channel
with m > 1 independent diversity branches will also be of type B with- m — 1, when
either selection diversity or maximal ratio combining are used. It can be seen that a type
A channel will always have a zero delay-limited capacity, while a type B channel will
always have a positive delay-limited capacity.

There are several properties of these channels we will use, we state these in the
following two lemmas. The first lemma bounds the rate at which the channel gain’'s
distribution function goes to zero ds— 0.

Lemma 1:As h — 0, for a type A channelf;(h) = ©(h) and for a type B channel,
Fy(h) = ©(h7T).
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This follows directly by writing Fy(h) = foh fu(h)dh. For a type A channel, we
also use that the densitfiy (k) is continuous, thusfy(h) > 0 for all » within some
sufficiently small neighborhood df.

For a given fading densityfy(h), defineG(h) by

G(h) = /hoo ZfH(B) dh.
As h — 0, G(h) — E (%), which is infinite for any channel with zero delay-limited
capacity. The next lemma characterizes how fast this quantity increases in the case of
type A channels.
Lemma 2:Let fy(h) be a type A fading density. Given arty > 0, then there exists
a finite constant\/, such that for allh < A,

G(h) 2 Ml In (%) + MQ,

where M, = inf{fy(h)|h < h;} . Likewise, these exists a finite constaht, such for
all h < hy,
G(h) S Ml In (%) + MQ,

where M, = sup{ fu(h)|h < hy} . Furthermore, fof, small enough)/; will be strictly

positive.

The proof is given in Appendix |. This implies that for a type A chanidélh) grows
like In (+) ash — 0.

For either type of channel, 1€~ (z) denote the inverse of the functi@i(k). Since,
by assumptionfy(h) > 0 for all h > 0, G(h) will be strictly decreasing and approach
zero ash — oo. For a channel with zero delay-limited capacity,/as> 0, G(h) — oo,
and soG~'(z) is defined for allz € [0,0). For a channel with positive delay-limited

capacityG(0) = E (+) is finite; in this caseG~'(z) is only defined forz € [0, G(0)].

[11. L OWER BOUNDS ON THE OPTIMAL CONVERGENCE RATE

In this section, we lower bound the asymptotic behaviodf P) in the regime of

small delays (high powers). We first give a lower bound o P) that becomes tight



12

as P — P*(1). This bound holds for any channel distribution and arrival statistics that
satisfy the previous assumptions. We then examine this bound for type A and type B
channels and use this to bound the rate at whitiiP) approaches 1 as the average
power increases t&@*(1).

For any P < P*(1), D*(P) satisfies the following lower bound:

Proposition 1: Consider a system with a regular SNR functistyr). For any P <

P(1), * S'(0) B P
D*(P) —12> Fy Km) ¢ <02EA(S(A/N))>} '

Note that the quantity*E 4S(A/N) is the value ofP*(1) for a channel in which?,, =

1 for all n. In a channel with positive delay limited capacity, this satisfi A;((Q/N) =

G(0), and so forP = P*(1) this bound is tight, i.e. it is equal to zero. Likewise, for

a channel with zero delay limited capacity; (1) = oco. Hence, asP? — oo, the bound
approaches zero and is once again tight.

To prove this proposition, we consider a “fictitious system” which is identical to the
original system except that here all arriving data can be transmitted after waiting for 2
time-units without requiring any power (recall that all data must wait at least one time-
unit). However, to transmit the data after one time-unit still requires the same power as
in the original system. Therefore, the maximum delay in the fictitious system will be
no more than 2 time-units. LeD(P) be the minimum average delay in this fictitious
system under any transmission policy with average power no greaterth@rearly, for
the same arrival and channel processes, we must ham < D*(P) for all P. We will
bound D(P) and use this relationship to derive the desired lower boundtiP).

Under the assumption that all arriving data leaves after 2 time-slots, the buffer dynamics

in the fictitious system can be written as
Sn—i—l = maX(An - Un + An-‘,—la An+1)-

Also, at each timen an optimal policy will setU,, < A,, since any other data in the

buffer will leave the system anyway without requiring any power. Therefore, an optimal
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policy for the fictitious system can be expressed as function of the current channel state,
H, and the number of arrivald,,. It follows that D(P) is the solution to the following

optimization problem:

1
inimize 1 + —E A—C((H,A))*
minimize 1+ = A {(A—((H, A)"}

subject toEy 4P(H,((H,A)) < P
C(ha)>0, VheHacA

Here the objective function correspond to the expected number of packets in the system
under the policy((-, -) divided by the average arrival rate, which by Little’s law is equal
to the average delay. Note, we have also used the fact that the arrivals are i.i.d. This is

equivalent to finding a policy(-, -) that solves:

maximizeEy 4((H, A)
CHXA—RT

2

subject toﬂEH,A%S(C(H, A)/N) < P
0<(¢(h,a)<a, VheH,acA.

It can be seen that the constraints are convex and that the objective in lingdr, ir).
From the first order optimality conditions for this problem, it follows that the optimal

policy, *(h,a) is given by
¢*(h,a) = min {N1/1 (%) ,a} , (6)

where) > 0 is a Lagrange multiplier chosen to satisfy the average power constraint and
Y(xz) = min{r > 0: 5(r) > x}. Note that for a regular SNR functio/(r) is strictly
increasing and>’(0) > 0. Thus for allz > S’(0), ¢ (z) will be the inverse ofS’(r), and

for all x < 57(0), () = 0. This implies that there exists a lower channel threshold,
hr = AS'(0)o?/N, (7)

such that for allh < hy, ¢*(h,a) = 0. Likewise, for a regular SNR functiony’(z)

grows without bound as increases, and so for each € A, there exists an upper
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channel threshold,
hy(a) = AS'(a/N)o? /N, (8)

such that for allh > hy(a), ¢*(h,a) = a. Note that these thresholds only depend on the
average power constraint through the Lagrange multipller8s P is increases will
decrease and therefore so will and iy (a).

Under this policy, the resulting power allocation can be written as:

0, if h<hp,
P(h,¢*(h,a)) =< 28 (¢ (X4)), if hy < h < hyla), 9)
S (a/N), if h> hy(a).

For example, in the case whefgh,u) is given by (5), then the power allocation in (9)
can be written as

if h<hy,

2

o if hy <h < hy(a), (10)

>z <

P(h> C*(h7 a)) =

(29N —1) if h> hy(a),
which corresponds to the the well-known “water-filling” power allocation [20] whenever
h < hy(a); for h > hy(a), the transmitter inverts the channel to transmit at the constant

rate a. An example of this power allocation is shown in Figure 3

Using (9), the average power under poli€y(-, -) satisfies

2

Amag hu(a) 52 © 5
r- | (/ TS (w(3%)) dFu(h) + gsm/zv)dFH(h)) AFs(a)

hy (a)

Amin

Amax oo 2
> / / 7 $(a/N) dFy(h), dFa(a)
Amin hy(a) h

Z G(hU(amax))UQEAS(A/N).
Equivalently,

-1 P
hU<ama:r) > G (m) ) (11)

where we have used thét(h) is strictly decreasing irh.
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Fig. 3. Example ofP(h,(*(h,a)) from (10); shown here are two curves corresponding the power allocation as a
function of the channel gain for two different valueswith a1 < a2. The corresponding thresholds, andhy (a)

are also indicated.

Recall that the policy in (9) achieves(P) — 1. Therefore,

- 1
DP)—-1=—=
(P)-1=

= % (Pr(H < hy)A+Pr(H > hy)Ega (A= C(H,A)"|H > hy))

Ema(A— ¢ (H,A)"

> Pr(H < hyp)

= Fy(he)

= Fy (%hU(am(zm)) :

Here, we have used thatl — (*(H, A))" is always non-negative and is equal Aofor
H < hy, and we also used the definitions fof and iy (a) in (7) and (8).
Combining (11) and (12) and recalling th&}; (k) is decreasing, we get the bound in

Proposition 1.
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So far we have given a bound on the delay that is asymptotically tight a® the
P*(1). In the next two corollaries we will use this bound to bound the rate at which
D*(P) approaches its asymptotic limit of 1 for both type A and type B channels.

Corollary 1: For a type A channel, a® — oo, D*(P) — 1 = Q (e~F), for any
a > (02 fu(0)EA(S(A/N))) .

The proof is given in Appendix Il. The result of this corollary can equivalently be
expressed in terms of the power/delay trade-off, i.e. for a type A chattiél)) =
Q (In(55)) asD — 1. Note that in this case the constanis not needed.

D
Corollary 2: For a type B channel with parameter- 0, asP — P*(1) (from below),

LJ'_]‘
D*(P)—1=Q ((P*(l) —py= )
The proof is given in Appendix Ill. Notice that the expone%fwﬂ—l is decreasing iny,

and so this bound will approachslower in channels with larger values of

V. OPTIMAL AND SUB-OPTIMAL SEQUENCES OFTRANSMISSIONPOLICIES

In the previous section we used the poli¢yh, a) for the fictitious system to bound
the optimal delay/power trade-off for the original system. Notice that for any power
P < P*(1), the expected transmission rate under the policyh, a) will be less than
the average arrival rate, i.e. this policy will not stabilize the actual system and will result
in unbounded delays. In this section, we study the performance obtained by several
different types of policies that result in finite delays in the actual system. We then study
the behavior of sequences of these policies as the average delays approach 1. First we
consider a class of “channel threshold” polices in which the average power approaches
P*(1) as the delays approach 1. For type A and type B channels, we then show that a
sequence of these policies can achieve the same rate of convergence as the bounds given
in Corollaries 1 and 2. It follows that these bound are tight and that these simple policies
achieve the optimal convergence rate. We then consider a class of “bounded rate” policies
which also exhibit optimal performance for type A channels, but not for type B channels.

Finally, we consider two other sub-optimal policies which do not depend on the buffer
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size.

A. Channel Threshold Policies

The first type of policies we consider aohannel thresholdolicies in which the
transmitter only transmits when the channel gain is greater than a given threshold; when
this occurs the transmitter empties the buffer. More precisely, we define a pglicy
H x S — R to be a channel threshold policy with threshalg,> 0, if

S, if h > hk7

,uhk(h‘a S) =
0. if h<hy

For a given channel threshold poligy, let ¢, = Pr(h < h;) denote the probability that
the channel gain is below the threshold. Also, let

S, = Ean (s (%;A» ,

where A" = (A4,..., A,) denotes a sequence aofi.i.d. random variables, each with
distribution F4(a). Forn = 1,2,..., %, represents the the expected received SNR
required to transmit all the data that arrives durimgime-slots. The average power
and delay under such as policy is bounded in the following Proposition, whose proof is
given in Appendix IV.

Proposition 2: Let i, be a channel threshold policy with threshalg then

qk
1—611@7

Dte —1 =

and for a regular SNR function,

P < 6%G (E:q (1— )% >,
with equality if the right-hand side is finite.

We define adecreasing sequencef channel threshold policie$ux|k = 1,2,...}

to be a sequence where the associated thresliglderm a decreasing sequence with
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limy_. Ay = 0. Clearly, ask increases, the average delay will decrease With — 1
ask — oo. Next, we characterize the rate at which this converges as a function of the
average power for a type A and B channel. For this we make one additional assumption
on the SNR functiorS.

Definition 4: A regular SNR functionS(r) hasexponentially bounded growihthere
exists non-negative constant$ and x such that for all- > 0, S(r) < M«".

For example, wherb(r) is given by (3), it satisfies this definition with/ = 1 and

r = 2. For such a SNR function, then for all=1,2,..., we have
¥, < Mgmme/N = prgn (12)

Corollary 3: For a type A channel, if the SNR function has exponentially bounded
growth, then for any decreasing sequence of channel threshold pdligiesas K — o,
P — o0 and D* — 1 = O (exp(—aP)), for any o < (02 fz(0)E4S(A/N)) ™",

The proof is given in Appendix V. Recall that in Corollary 1, we showed hgtP) —
1 = Q(exp(—aP)) for any a > (02 fg(0)EaS(A/N))~!. This corollary implies that a
sequence of decreasing channel threshold policies are nearly order optimal in the sense
that we can find policies whose exponentare arbitrarily close to the bound in Corollary
1. If instead, we consider the power/delay trade-off, then this corollary implies that for
)) In other

words, in terms of the power/delay trade-off, these policies are order optimal. Therefore

any decreasing sequence of channel threshold poligies= O (111 (ﬁ
in the small delay regime, the optimal convergence raté’dfD) for type A channels

is © (In (555)) - Note that this is a much faster rate of change thanthdehavior in

the large delay regime.

For type B channels we have:

Corollary 4: For a type B channel with parameter> 0, if the SNR function has
exponentially bounded growth, then for any decreasing sequence of channel threshold
policies {y.}, as K — oo, P* — P*(1) and D** — 1 = O <(P*(1) — P“k)%j .

The proof is given in Appendix VI. Comparing the result of this corollary to the bound

in Corollary 2, it follows that for a type B channel, decreasing sequences of channel
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threshold policies are order optimal. Therefof#;(P) — 1 = © <(P*(1) — P)WTH> as

P — P*(1) from below. EquivalentlyP*(1) — P*(D) = © ((D - 1)#) asD — 1. As

noted in Section III?%1 is decreasing and approachess~ increases. For example, these
results imply that in a Rayleigh fading channel as the number of independent diversity
branches are increased (leading to larger valueg,ab*( P) will approach 1 at a slower
rate. For a large number of diversity branches, the rate will be approximately linear in

P*(1) — P. Of course,P*(1) also decreases with additional diversity branches.

B. Policies with bounded transmission rates

Under a channel threshold policy, since the transmitter empties the buffer whenever the
channel gain is greater than the threshold, the required transmission rate in a time-slot
can be arbitrarily large. In this section, we look at a sequence of policies with bounded
transmission rates. Such a policy may be of interest in a system with a limit on the peak
transmission rate; for example, such limits may be due constraints on the available coding
and modulation schemes. Next, we consideunded rate channel threshold policies
where the maximum available transmission rate is limiteddQ,, + J)/N for some
small valued > 0. In such a policy, the transmitter once again only transmits when the
channel gain is larger than a threshdlgl However, given that the channel is greater
than this threshold, these policies €&t = A, + 9, i.e. they transmit at most,,,,, + 0
bits, resulting in the desired maximum transmission rate. We denote such a policy by
or(h,a), i.e.

at6 i h>hy
qbk(ha a’) =
0, if 1< hy.

Note that these policies do not base the transmission decision orHgrand S,,, but can
be viewed as using the past history$f andU,,. As noted in Section I, we permit such
a dependence though it is not needed for an optimal policy. Cleary,/iV < A, + ¢

then there is not enough information in the buffer to transmit. In this case we can assume
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the transmitter sends extra “dummy” bits. This is clearly a poor choice from the view of
saving power, but is sufficient for our purposes.

As in Section IV-A, we again consider a decreasing sequence of poligigé =
1,2,...}, where the thresholdg, form a decreasing sequence withy,_., oy = 0. We
first show that for a type A channel, such a sequence is also order optimal. In other words,
for type A channels, having a bounded transmission rate, does not effect the achievable
rate thatD*(P) converges to 1. However, for type B channels, such a sequence cannot
achieve the optimal convergence rate beca®&ewill not converge toP*(1) ask — oo.
This illustrates a basic difference between channels with positive and zero delay-limited
capacity.

For these results, we will use the following lemma which gives upper and lower bounds
on the average buffer delay under any policy for which— A,, is an i.i.d. sequence.
This is the clearly the case with a bounded rate channel threshold policy,(§ineed,,
depends only orf/,, at each timen.

Lemma 3:For any policy whereA,, = U, — A,, is an i.i.d. sequence, the average

buffer occupancy is bounded by

E{([=A]")*} i _ 04
ER) - SES A< gRay

where[—A]* = max(—A,0) and o3 is variance ofA,,.

Let Z, = S, — A,, andA,, = U, — A,.. The queue dynamics in (2) can then be
rewritten as
ZnJrl = (Zn - An)Jr;

where by assumptiofiA, } is an i.i.d. sequence. Therefof&, } is a Lindley process as
is the delay in a continuous-time GI/G/1 queue. The bounds in Lemma 3 are essentially
the same as Kingman’s upper and lower bounds on the average delay for such a GI/G/1
system [21].

Using this lemma, we have the following result for a type A channel. Note that here

we do not require the SNR function to be exponentially bounded.
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Proposition 3: For a type A channel, l€ito, } be a decreasing sequence of bounded rate
channel threshold policies. Then/as~ oo, P% — oo, andD? —1 = O (exp(—aP?%)),
for any o < (025 (0)E4{S(A/N)})~".

The proof is given in Appendix VII. This implies that for type A channels, bounded
rate channel threshold policies can achieve the same order of convergence as a channel
threshold policy, which we have seen is essentially order optimal.

Next, we define dixed-rate, channel threshold polidaé(h) to be a policy that transmits
at a fixed ratei/N, whenever the channel gain is greater thanand sends nothing oth-
erwise. This differs from the previous bounded rate policies in that here the transmission
rate does not depend oth,. The following corollary of Proposition 3 gives a bound on
the rate of convergence for such policies, when a,,..

Corollary 5: For a type A channel, Ie{g?)k} be a decreasing sequence of fixed-rate,
channel threshold policies with > a,,4,. AS kK — o0, P% — oo and D% — 1 =
O(exp(—aP%)) for any o < (02 f(0)S(a/N))~ .

The proof is given in Appendix VIII. In this corollary the constraint on the parameter
a will be smaller than in Proposition 3, unless the arrival process is constanti-e. A
for all n.) Thus in general this bound does not imply than these policies are order optimal
in terms of the delay/power trade-off. However, in terms of the power/delay trade-off, we
can again ignore the parameter so that these policies are order optimal in this sense.
Notice that these policies do not depend on the buffer occupancy at all; this illustrates
another significant difference between the small delay and large delay regimes; in the
large delay regime some buffer dependence is required for any order optimal policy [15].

Next we turn to type B channels. Notice that for a type B channel or any other channel
with a positive delay-limited capacity, a decreasing sequencgspf of bounded rate

channel threshold policies, with a fixed parameter 0, will satisfy

lim P% =B,y P(H,A+68) > P*(1).

k—o0

Therefore any such sequence is clearly not order optimal in the small delay regime. The

problem here is that in the small delay limit the power wasted on transmitting extra
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“dummy” bits becomes significant for type B channels, while we could ignore this in
type A channels.

A better approach for such channels is fasncreases to reduce both the channel
thresholdh, as well as the parametér = 6, with lim,_.., 0, = 0. In this way as
k — oo, P?* — P*(1). However, as the following proposition states, such a sequence
of policies still do not achieve the optimal convergence rate for type B channels. Here,
for simplicity, we restrict ourselves to the case whéke) is given by (3).

Proposition 4: For a type B channel with parameter> 0 and S(r) given by (3), let
¢r be a decreasing sequence of bounded rate channel threshold policies with decreasing
parameters,, whered, — 0. If as k — oo, P% — P*(1) from below, thenD? — 1 =
QO ((Pr(1)—Po)7).

The proof is given in Appendix IX. Note that sinee> 0, % will be strictly less than
the optimal exponent ofj—l given by Corollary 2, and so any decreasing sequence of
bounded rate channel threshold policies will not be order optimal for type B channels.
This illustrates a basic difference between type A and type B channels and suggests that

there is a larger class of order optimal policies for type A channels.

C. Sub-optimal policies

In this section, we consider two simple policies and show that they have suboptimal
convergence rates for type A channels (these policies are also clearly sub-optimal for
type B channels as they will not even convergetq1)). Throughout this section, we
will only consider the case wher€(r) is given by (3).

First, we considefixed powerpolicies which do not depend on the buffer state. By
this we mean a policy in which the transmitter uses a fixed powein each slot and
so transmitsu bits, where P(h,u) = F,. Once again, if there are fewer thanbits
available, we assume that the transmitter sends extra dummy bits. We denote such a
policy by v (h), so that for allh € H,

vi(h) = N log (1 + %) , (13)
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where we have used th&lr) is given by (3). Using such a policy, the average power
is clearly equal taP;.

Consider a sequence of fixed power policigs,}, where ast increasesp,, increases,
with lim,_.., P, = oco. For such a sequence of policies it is also clear that the average
delay will decrease withk. The next proposition shows that in the limit, the average
delay approaches the minimum value Igfhowever, the rate of convergence is much
slower than the optimal rate ekp(—aP) for a type A channel.

Proposition 5: For a type A channel, lefv,}, be a sequence of fixed power poli-
cies with limy,_..c P, = co. As k — oo, D" — 1 = O ((logPx)™) and D" — 1 =
Q ((Pelog P)™Y).

The proof is given in Appendix X. In this proof we again use Lemma 3 to upper and
lower bound the average delay under a fixed power policy. Notice that the upper bound of
(P log P,)~! is much slower than the optimal convergence ratexgf(—«a P) obtained
by a channel threshold policy, i.e. fixed power policies are not order optimal in the small
delay regime.

The second class of sub-optimal policies we consider are a sequence of “fixed water-
filling” policies. By this we mean policies that use a water-filling power (and rate)
allocation, once again independent of the buffer state..l,ét) denote such a policy,

where

0, if h <2,
wi(h) = *

Nlog (&¢), otherwise.
Here ¢, denote the “water-level” used by the policy; this is chosen to satisfy a given
average power constrainB~+. To maximize throughput, for a backlogged system, it is
well-known that this is the optimal power allocation [22]. Also in the large delay regime,
the order optimal buffer threshold policies in [15] are based on a water-filling power al-
location. However, as stated in the following proposition, a water-filling power allocation

with no buffer dependence is not optimal in the small delay regime. Furthermore, this
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type of policy can not achieve a convergence rate faster tidng P)~!, which is the
same as the bound for a fixed power policy in Proposition 5.

Proposition 6: For a type A channel, lefw,} be a sequence of fixed water-filling
policies withlimy,_.., P** = co. As k — oo, D —1 = O ((log P**)~"), andD“» — 1 =
Q ((P*xlog Pr)71).

A sketch of the proof is given in Appendix XI.

V. CONCLUSIONS

In this paper we have analyzed the optimal power/delay trade-off for a single user
fading channel in the regime of small delays and large power. In this regime, the optimal
trade-off was shown to strongly depend on the behavior of the fading distribution near
zero. We focused on two broad classes of fading channels. For “type A’ channels where
the fading density is strictly positive at zero, the average delay was shown to decrease at
a rate of©(e~°") as the average power increases, whelis a parameter that depends
on the arrival statistics and the fading density at zero. For “type B” channels, where the
fading density approaches zero likgh?), the average delay was shown to decrease at
a rate©((P*(1) — P)WTH) as the average power approacti€g1), the minimum power
required to achieve the minimum delay. In both cases, a simple channel threshold policy
was shown to be order optimal. For type A channels we also showed that a “bounded rate”
policy is also essentially order optimal; however, such policies are not optimal for type
B channels. Finally, we showed that a “fixed power” policy and a “fixed water-filling”
policy are not order optimal for either channel.

Here we have focused on a single user communicating over a memoryless fading
channel with only a long-term average power constraint. Potential directions for future
work include relaxing these modeling assumptions, for example considering multi-user
systems or channels with memory. Another possible direction is to consider models with
imperfect channel knowledge, in which case outages may occur requiring data to be

retransmitted.
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APPENDIX I

Proof of Lemma 1We give a proof for the lower bound; the upper bound can be

derived in the same manner. Fbr< h;, we have
hi

1 <
G(h) > —Mldh+/ — fu(h) dh
h W h

h t
1

> Mi1n(h) ~ () + [ fu(h) dh

h
1
= M1 In (—) + MQ,
h
where,

<1
ht
1
e T

1
< MiIn(hy) + —.
hy
Here we used that fok > £, 3 < hit From this it follows that{ M| < co. Also, from
the continuity of f;;(h), it follows that for h; small enough)/; must be greater than 0.

APPENDIXII

Proof of Corollary 1:From Lemma 1, for a type A channdly(h) = ©(h) ash — 0.

Using this in the bound from Proposition 1, we have

D(P)—1=0 (G‘l (UQEA(;A/N)))) '

To complete the proof we will bound the rate at whi&h'(z) approaches zero as— oo

for a type A channel. Let = G~'(z), so thatz = G(h). Pick some constari;, > 0
such thatM; > 0 in Lemma 2. Asz increasesh decreases to zero. Thus there exists

somez’, such that for allke > 2/, h < h;. And so, from Lemma 2, for alt > «/,

1
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Equivalently, forx > 2/,

hzexp<—ﬁl+%>.
This implies thatG~—'(z) = Q (e */*1) asz — oco. Combining this with the above
we have that a® — oo, D*(P) — 1 = Q (e=*F), wherea = (M;0?E4(S(A/N))) ™"
Finally, we note that in the above bountlj = inf{fx(h)|h < h} < fx(0) and can be
made arbitrarily close to this value by choosiligsmall enough. This gives the desired
lower bound ona. Notice that if f5 (k) is increasing atv = 0, then we can choose
a = (62fg(0)EA(S(A/N)))""; otherwise,o can be made arbitrarily close to this value,

but not equal to it. [ |

APPENDIX I

Proof of Corollary 2: This proof follows a similar argument as in Corollary 1. In this
case, since the channel is of type A, then from Lemma 1, we havé'thaf) = © (h7*1).

Therefore, combining this with Proposition 1 gives us,
P ’Y+1
D*(P)—1=Q - : 14
) ((G (szsam) ) 4
Let h = G~(x), so thatr = G(h). Define,G(h) = G(0) — G(h), so that
h
_ 1 - -
G = [ = fuli)di
o h
and note that for a type B channel this integral will be finite. By assumptig}) =
©(h”) ash — 0. From this it follows thatG(h) = ©(h?) ash — 0. Therefore,

)

2=

Gl z) =0 ((G(O) )

asx — G(0). Combining this with (14) yields

D(P)_l_Q<(G<O)_J2EA(S(A/N))) ) (15)
Finally, using thatP*(1) = G(0)c*E4(S(A/N)), we have
P P*(1) - P
00 - sy~ (P ) OO

Substituting this into (15), the desired bound follows. [ |
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APPENDIX IV

Proof of Proposition 2:Consider a given channel threshold poligy. Under this
policy, each time-slot can be classified as either a feasible time-sléf (if h,) or a
non-feasible time-slot (ifd < h;).* Let T,, denote the number of time-slots between
the (m — 1)th andmth feasible slot, i.e. if thém — 1)th feasible time-slot occurred at
time n, then themth feasible time-slot is at time + 7,,. Let forn =1,2,..., let M,
denote the number of feasible time-slots that have occurred up to and including.time
Then{M,} is a renewal process and,,} is the sequence of inter-renewal times. For
a channel threshold policy the inter-renewal times will be geometrically distributed with
E(T,) = ﬁ which is finite for allg, > 0. We next calculate the average delay and
average power for such a policy using renewal-reward theory [23].

To calculate the average delay, define a rew&rgd to be the sum of the buffer
occupancy between the: — 1)th andmth renewals, i.e. if thém —1)th renewal occurred

at timen, then

n+Tm

Ry= Y5

l=n+1

= (Tm)An-‘rl + (Tm - 1)An+2 + e An—i—Tm-

From renewal-reward theory it follows that the average buffer occupancy under policy

L, is given by SHr = %, where

(1 —q)?

Therefore,S# = (1j‘
ar)

and so by Little’s law,D# = ﬁ or equivalentlyDms — 1 =

- as desired.
—4k

“Note a slot may be feasible and still result in no transmissions if the queue is empty.
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Next we calculate the average power. First note th3tjf, ¢/ '(1 — @)%, = oo,
the desired bound is trivially true. Therefore, we assumeYhdt, ¢f ' (1 —q) %, < oo
in the following. In this case, we show that the given bound is met with equality. Now
define a reward®,, to be the power used at the end of the¢h renewal period, so that

pre = 2= Using that the arrival process and channel gain are independent we have

EP,, = Er, (E(P,|T)))

=Er,, (Eyarm (P(H, Ay + -+ Ag,)|H > hy,, T,))

2 1
Er, (EH,ATM (%S (NAl Foet ATm> ‘H > hk,Tm))

By assumption this is finite, so we can apply the renewal-reward theorem. Dividing by

ET, = ﬁ the desired expression follows. [

APPENDIXV

Proof of Corollary 3:Let {1} be a decreasing sequence of channel threshold policies,

and letS(r) be exponentially bounded by/x". From Proposition 2, the average delay

FH(hk
1—

Fy(hy) = ©(hk) ashy, — 0. Therefore, there exists constadts > 0 and K; > 0 such
that for all £ > K,

for each policyy;, satisfiesD# —1 = , and from lemma 1, for a type A channel,

DM — 1< Myhy,. (16)

From Proposition 2, the average power of poligy can be bounded by

Pre < g? (Z g (1 — g% > . @an
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The final term in this bound satisfies

Zq (1 —q)%n —(1—qk)<21+q2q22)

n=2

<(1—a) <21 . Z(%@") ,

L —
wherei = x%e=/N  Here we have used the bound in (12) for efighn > 2. Ask — oo,
it can be shown that the right-hand side of this bound converges .tdt follows that
for any > > ¥, = E,S(A/N), there exists ds, such that for allk > Ko,

Zq (1— g%, <%

Also, from Lemma 2, for alk > K5,

G(hy) < My In (i
hy,

> + My,
whereM; = sup{fu(h)|h < hy} > fu(0). Using these in (17), we have that for> K,
P < 025 (N () + 1)

or equivalently,
hi, < My, exp (—0415“’“) ,

where M, = exp( f) anda = (¢2M,S;)~!. Combining this with (16), we have that
f0r k 2 maX{Kl,Kg},

DFe — 1 < MyM,, exp (—ozp“’“) )

Hence,D** — 1 = O (exp (—aP**)), wherea < (o2 f4(0)E4S(A/N))~" and can be

made arbitrarily close by choosing, large enough. [ |
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APPENDIX VI
Proof of Corollary 4:Let {1} be a decreasing sequence of channel threshold policies,
and letS(r) be exponentially bounded by/x". Once again, from Proposition 2 and
Lemma 1,Dm — 1 = £l — g(p7*!) ask — oo. Therefore, there exists positive

1—qg
constants\/,; and K; such that for allk > K,

DHe — 1 < Myh?™. (18)

Also, using Proposition 2,
P*(1) — P" > ¢*%,G(0) (Zq (1 —qp)X )

= 0’251<G(0) - G(hk)) + qx0 Z G(hk — 0 G hk (Zq 1 — Qk ) .

As in the proof of Corollary 2, leti(h) = G(0) — G(h) so that

P*(1) — Pr 5 a0 S1G (hy,) B o?G(hy) (ZZOZZ q};‘_l(l — qk)En)
G =TT G Gl -9

As shown in the proof of Corollary 2, for a type B chani&lh,) = ©(h)) ashy — 0.
Using this and that,, = @(hZ“), it follows that ask — oo, the right-hand side of (19)

converges tar2Y;. Here, as in the proof of Corollary 3, we have used that the SNR
function is exponentially bounded to bound the last term in (19). Therefore, there exists
positive constants)/,, and K, such that for allk > K,, P*(1) — Pre > My(hy)?, or
equivalently,
hi < (M,P*(1) — P) "
Combining this with (18), we have that for all > max{ K, Ky},
_ a4l

Dt —1< Mde (P*(1) — Pr*) 7,

which implies thatD#: — 1= O ((P*(1) — P**) "), as desired. n
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APPENDIX VII

Proof of Proposition 3:Let {¢,} be a decreasing sequence of bounded rate channel
threshold policies with a fixed parameter> 0.

The average power of such a policy is given by

_ 1 [(A+6
PP =FE, {EH (&ES (T) ‘ H > hk,A)}

()

whereq, = Pr(H < h;). By a similar argument as in the proof of Proposition 1, it can

be shown that a®?* increases,
hy = O (WWR) , (20)

wherea = (02K1]EA {S (45) >_1 and K, is the constant from Lemma 2. This satisfies
a < (02fy(0)E4 {S (A/N)})~" and can be made arbitrarily close by choosihgmall
enough.

Next we bound the average delay using Lemma 3. Applying Little’s law to the upper

bound from this lemma, we have

2

Do — 1< 25 21
= 5(EA)A (21)

Evaluating (21) for policyp, yields,

po 1< 1™ 0) (6 + 20A) + qp A% — gp(A)?
- 2((1 = gr)0 — (gx) A)(A)
From this it can be seen thd®? — 1 = O(q) as ¢. — 0. Also, from Lemma 1,
ax = O(hy,). Hence, combining these with (20), we hatsé* — 1 = O (exp(—aP?")).

APPENDIX VIII

Proof of Corollary 5:Let {qu} be a decreasing sequence of fixed rate, channel threshold

policies with parameted > a4,
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Following the same argument as in the proof of Proposition 3, we have

pir = 2 S g Gy,
I —q
and so,
hy = O (e—ap“”“) , (22)

wherea < (02f5(0)S(a/N))~" and can be made arbitrarily close.

To bound the average delay under poligy, let ¢, be a related bounded rate channel
threshold policy with the same threshald and with parametef = @ — a,,,.. Consider
a fixed sample path of arrivals and channel stdtgs /,}. Then for alln, q?k(hn) >
or(hn,a,). From this it follows that the buffer occupancy under the fixed rate policy is
always less than or equal to the buffer occupancy under the related bounded rate policy.
Therefore, we have

D% —1< D% —1=0(q),

and soD? — 1 = O(exp(—aP%)) as desired. |

APPENDIXIX

Proof of Proposition 4:Let {¢,} be a decreasing sequence of bounded rate channel

threshold policies with decreasing parametgrsandlim,_.., 6, = 0. Then,
A+ 5k)

PH(1) — P% = o®Ey (%) EAS(A/N) — 02G(h)ES (
— 0?G(h)E4S (A ;5’“) o (%) [EAS (A ;5’“) _E.S (AN)}

= 02G(hy)EAS (A ;5"’) —o’E <%) EAS(A/N) (25N —1)

In the last step we have used that by assumption = 2" — 1.
From this it follows that a necessary condition f8f* to approachP*(1) from below
is that ask — oo,
(2‘5k/N — 1) = O(G(hy)). (23)
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In other wordsd, must decrease fast enough, or the resulting sequence of policies will
require too much power. Note th&’/ — 1) = ©(d;) ask — oo, and for a type B
channel,G(h;) = © ((qk)ﬁ) Therefore, (23) is equivalent to
6= 0 ((@)7). (24)
For any sequence of policies, that satisfy (23)/tas oo,
P'(1) = P* = O (G(h))
=0 (G (Fy'(aw))
=0 ((%)ﬁ> )
where in the last step we used Lemma 1 for a type B channel. Equivalently,
= ((P() - P) 7). (25)

Next we lower bound the average buffer delay under such a policy. For this we use
the lower bound from Lemma 3 and Little’s law, which yields
Duk - 1 2 E(A%)Qk -
2[(1—qu)or — qxA] A

If ¢, andJ, satisfy (24), then it follows that a& — oo,

DM—1:Q«%V%)
Finally, combining this with (25), we have
pre—1=q((P(1) - P*)7),

as desired. ]

APPENDIX X

Proof of Proposition 5First we prove the upper bound”* —1 = O (@) Under a

fixed power policy,U, is a function only ofH,,. Hence {U,, — A, } is an i.i.d. sequence
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and so Lemma 3 applies. Using the upper bound from this lemma, along with Little’s

law gives us that , ,
Duk -1 S _ T4 - UVk(H) —,

wheres?} ando? ) are respectively the variances dfand vy (H). Here we have used

that U, and A,, are independent under a fixed power policy.

Under a fixed power policy, using (13), the expected transmission rate is given by

Ey{ve(H)} = Ey {Nlog (1 + Tj’“) } ,

which is increasing with?, at a rate of©(log(F)).

Next we consider the varianoef,k(H). It can be shown that a8, increases, the variance
is increasing. However, asymptotically the variance is bounded, as stated in the following
lemma.
Lemma 4:Under any fixed power policyy,
N

2 2
Tun(H) S 5 log(H)»

wherea} ; is the variance of the random variabites(H).
To see this note that

1 .

o = 3Ema (v(H) = vi(H)),

where H is another random variable, independent /6f and identically distributed.
Substituting the expression fof, (k) from (13) yields

1 14 L
2 _ = B o2
Ty (H) = QEFLH {Nlog (1 N ka ) } .

(e

As P, — oo this converges to

N H
EEH,I? {lOg (E)} = %Ufog(H)v

as desired. Also, it can be shown that for a type A chanijgl,;, < cc.
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Continuing with the proof of Proposition 5, it follows that

DY —1 < Mf _
Ep{vi(H)} — A
1

where M; = 55 (02 + Jop, ) is @ constant depending on the arrival and channel

statistics but not ork.

Finally, sinceEy {v(H)} increases at rat®(log P;), the desired upper bound of
O ((log P)~*) follows.

Next we consider the lower bound for the convergence rate of a fixed power policy.
This follows from using the lower bound from Lemma 3. Using this lemma, the average

delay under the policy; is lower bounded by

w1 Ena (A - m(H)))
D S i)} - 4)

Once again the denominator will increase at r@tgog(7;)). To bound the numerator,

we use Markov’'s inequality which states that for any 0,
Eua{((A—vk(H))")’} > Pr(A — v(H) > €)e’.

Using (13),

2(9(A—¢)/N _
Pr(A—Vk(H)Ze):Pr(H§0(2 7 1>)
e

Amax 2 2(0,76)/]\7 -1
:/ Pr(HSU( iz )) dFA(a).

k

Choosing some < a,,../2, this quantity can be bounded by

Prla- (i) =0z [ (1< A 2 aruo

2(9e/N __
> Pr (H < w) Pr(A > 2e)
k

= Fy (%]:_1)) Pr(A > 2e).

Amaz

From Lemma 1, it follows that for a type A channel,

Pr(A— v (H) > ¢)=© (é)
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ask — oo. Finally, combining these results we have that: — 1 = Q ((P;log P,)™")

as desired. ]

APPENDIX XI

Proof (sketch) of Proposition 6This proof follows a similar argument as the proof
of Proposition 5, and so we only give a sketch of the main argument{Lgt be a
sequence of fixed water-filing policies, such thaktas oo, the water-level, (and hence
the average power) increases to infinity. First, using similar arguments as in the proof
of Lemma 2, it can be shown that under a fixed water-filling policy, the average power
P, increases liked(¢;) ask — oo.

As in the proof of Proposition 5, we use the bounds from Lemma 3 to bound the
average power. In this case, it can be shown that the average transmissit@ip fatg,H))
increases liked (/) ask — oo. As in the proof of Proposition 5, it can again be shown
that the the variance:;ik(H) is bounded. Finally to derive the lower bound, we again
boundE 4 5 ((A — wx(H))T)? using Markov's inequality and then show that fosmall

enoughPr(A —wi(H) >¢€) =0 (é) Combining these the desired bounds folloull
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