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Abstract— We consider a distributed power control scheme
in a Spread Spectrum (SS) wireless ad hoc network, in which
each user announces a price that reflects his current interference
level. Given these prices, we present an asynchronous distributed
algorithm for updating power levels, and provide conditions
under which this algorithm converges to an optimal power
allocation. We relate this algorithm to myopic best response
updates of a fictitious game, and characterize the algorithm’s
convergence using supermodular game theory.

I. INTRODUCTION

Power control is a basic technique for mitigating interfer-
ence in wireless networks that enables efficient use of available
spectrum. In ad hoc networks power control is complicated
by the lack of centralized infrastructure, which necessitates
the use of distributed approaches. In this paper, we consider
distributed power control for SS ad hoc wireless networks,
where each transmitter spreads its power over the available
bandwidth and all interference is treated as noise. We focus
on a model where the users receive a variable transmission rate
that depends on their received signal-to-interference plus noise
ratio (SINR). Our objective is to find distributed mechanisms
for coordinating the users’ power levels and optimizing overall
performance, measured in terms of total network utility.

We consider a power control scheme in which the users
exchange “price” signals that indicate the cost of received
interference. Pricing mechanisms for allocating resources in
networks has received considerable attention for both wire-line
(e.g. [1]) and wireless networks (e.g. [2]–[4]). The problem
here differs from much of the previous work because, due to
interference, the users’ objective functions are coupled with
each other, and the overall network objective is not concave in
the allocated resource (transmit power). Also, in most previous
work, prices are Lagrange multipliers for some constrained
resource such as power or bandwidth; here the prices reflect
the interference or externalities among the users instead of a
resource constraint. Our model is similar to [5], which also
considers combined power and rate control for a SS ad hoc
network. The power adaptation in [5] solves a similar problem
to that considered here using gradient updates. Instead, we
consider an approach based on supermodular game theory [6],
which allows for different utility functions and appears to have
faster convergence.

A variety of game-theoretic approaches have been applied
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ork resource allocation (e.g., [7]). Supermodular game
in particular, has been used to study power control in
]. Our approach differs from those in that (i) we focus
d hoc instead of a cellular network; (ii) we consider
ent functional form for the utilities, and (iii) we do
ectly model the problem as a non-cooperative game.
, the users voluntarily cooperate with each other by
ging interference information. We introduce a fictitious
nd apply a strategy space transformation to view this
m as a supermodular game. Other work on power
in CDMA cellular and ad hoc networks includes [9]–
much of this work, a transmission is assumed to be

ful only if a fixed minimum SINR requirement is met.
true for fixed-rate communications. However, this is
case for “elastic” data applications, in which users

pt their transmission rate. In this paper, we focus on
te-adaptive users, where the goal of power control is
imize total network performance instead of guarantee
ence margins for each user.

II. SYSTEM MODEL

onsider a snap-shot of an ad hoc network with a set
, ...,K} of distinct transmission pairs. Each pair con-
one dedicated transmitter and one dedicated receiver.

an represent a particular schedule of transmissions
ined by an underlying routing and MAC layer protocol.
l use the terms “pair” and “user” interchangeably in the
the paper. Each user k transmits an SS signal spread
e total bandwidth of B Hz. Over the time-period of
we assume that the channel gains of the transmitter-

r pairs are fixed. The channel gain between user k’s
tter and user j’s receiver is denoted by hkj . Note that
ral hkj �= hjk, since the latter represents the channel
tween user j’s transmitter and user k’s receiver. An
e of a network with four users (pairs of nodes) is shown
1.

value of the transmission by user k ∈ K is characterized
lity function uk (γk), which is an increasing and strictly
e function of the received SINR,

γk (p) =
pkhkk

n0 + 1
B

∑
j �=k pjhjk

, (1)
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Fig. 1. SS ad hoc network of four users (pairs of nodes). Tk and Rk denote
the transmitter and receiver of user k, respectively.

where n0 is the background noise power and p =
(p1, · · · , pK) is a vector of the users’ transmission pow-
ers. The users’ utility functions are coupled due to mutual
interference. An example utility function is a logarithmic
utility function uk (γk) = θk log (γk), where θk is a user
dependent priority parameter. For low SINR, a user’s rate
is approximately linear in SINR; in this regime, the utility
is therefore proportional to the logarithm of the rate. In the
high SINR regime, the logarithmic utility approximates the
Shannon capacity log (1 + γk) weighted by parameter θk.

The power control problem is to specify the vector of
transmission powers, p, where each user k must also satisfy
an individual transmission power constraint, pk ∈ Pk =[
Pmin

k , Pmax
k

]
, where 0 ≤ Pmin

k ≤ Pmax
k . From a network

perspective, the objective is to maximize the total utility
summed over all users, i.e.,

max
{p,pk∈Pk,∀k∈K}

utot (p) =
K∑

k=1

uk (γk (p)) . (P1)

As a baseline, first consider the case where the users
do not exchange any information and simply choose their
transmission powers to maximize their individual utilities. As
in [9], this can be modeled as a non-cooperative power
control (NCPC) game, GNCPC = [K, {Pk} , {uk}] , where
the players correspond to the users in K; each player picks
a strategy (transmission power) from the strategy set Pk =[
Pmin

k , Pmax
k

]
and receives a payoff uk (γk).

In this game, a power profile, p = (p1, ..., pK), is a vector of
the users’ transmission powers. The power profile of user k’s
opponents is defined to be p−k = (p1, ..., pk−1, pk+1, ..., pK),
so that p = (pk; p−k). User k’s best response is

Bk (p−k) = arg max
pk∈Pk

uk (γk(pk, p−k)) ,

i.e., the value pk that maximizes uk (γk (pk, p−k)) given a
fixed p−k. A power profile p∗ is a Nash Equilibrium (NE)
of the NCPC game if it is a fixed point of the users’ best
responses, i.e. uk(γk(p∗k; p∗−k)) ≥ uk(γk(p′k; p∗−k)) for any
p′k ∈ Pk and any user k.

Since each user’s payoff uk (γk (pk, p−k)) is strictly in-
creasing with pk for fixed p−k, and there is no penalty for
high transmission power as long as pk ∈ Pk, it is easy to
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K ) , i.e., each transmitter uses its maximum

This solution can be far from the socially optimal
, which maximizes the total utility.

ough uk (γk) is strictly concave in γk, the objective
lem P1 may not be concave in p. However, it is easy
y that any local optimum, p∗ = (p∗1, ..., p

∗
K), of this

will be regular (see page 309 of [14]), and so must
the following KKT necessary conditions:
a 1 (KKT necessary conditions:): For any local opti-

lution p∗ of Problem P1, there exist unique Lagrange
ier vectors λ∗ = (λ∗

1, ..., λ
∗
K) and µ∗ = (µ∗

1, ..., µ
∗
K)

at for all k ∈K,

(γk(pk,p−k))
∂pk

+
∑
j �=k

∂uj(γj(pj ,p−j))
∂pk




∣∣∣∣∣∣
p=p∗

= λ∗
k − µ∗

k,

(2)
Pmax

k ) = 0, µ∗
k

(
Pmin

k − p∗k
)

= 0, and λ∗
k, µ∗

k ≥ 0.

πj (pj , p−j) = −
∂uj

(
γj (pj , p−j)

)
∂Ij (p−j)

, (3)

j (p−j) =
∑

l �=j plhlj is the total interference received
r j (before bandwidth scaling). Here, πj (pj , p−j) is
nonnegative and represents user j’s sensitivity to its
interference level, i.e., how much its utility would

e if the interference is decreased by one unit. This
tly incorporates user j’s utility information, i.e., the
the utility (e.g., larger θk) the larger is πj (pj , p−j).
3) , condition (2), for all k ∈ K, can be written as

γk(pk,p−k))
∂pk

)∣∣∣
p=p∗

−
∑
j �=k

πj

(
p∗j , p

∗
−j

)
hkj = λ∗

k − µ∗
k.

(4)
me each user j announces πj (= πj (pj , p−j)) as a
at he charges other users for generating interference,
t users are price takers (i.e. each user regards other

prices as constants). Condition (4) is then a necessary
ficient optimality condition for the problem in which
er k specifies a power level pk ∈ Pk to maximize the
function,

k, p−k;π−k) = uk (γk (pk, p−k)) − pk

∑
j �=k

πjhkj , (5)

ng fixed p−k and π−k (i.e., each user is a price taker and
any influence it may have on these prices). The surplus
an be viewed as user k’s utility minus a payment to the
sers in the network due to the interference it generates.
yment is its transmit power times a weighted sum of
sers’ prices, with weights equal to the channel gains
n user k’s transmitter and the other users’ receivers.
yment can be interpreted as a Pigovian tax [15].

ASYNCHRONOUS DISTRIBUTED PRICING (ADP)
ALGORITHM

pricing interpretation of the KKT conditions motivates
lowing asynchronous distributed pricing (ADP) algo-



rithm, in which users iteratively update their price announce-
ments and transmit power decisions in an attempt to achieve
a solution that satisfies Lemma 1. For each k ∈ K, define a
power update function1

Wk (p−k, π−k) = arg max
p̂k∈Pk

sk (p̂k, p−k;π−k)

=


 pk

γk (p)
gk


pk

(∑
j �=k πjhkj

)
γk (p)







Pmax

k

Pmin

k

,

and a price update function

Ck (p) = −
∂uk (γk (p))

∂Ik (p−k)
=

∂uk (γk (p))

∂γk (p)

(γk (p))
2

Bpkhkk

,

where pk/γk (p) is independent of pk, and

gk (x) =




∞, 0 ≤ x ≤ u′
k (∞) ,

(u′
k)

−1
(x) , u′

k (∞) < x < u′
k (0) ,

0, u′
k (0) ≤ x.

The ADP Algorithm is then specified as follows (where t−

denotes the time immediately before t):

1.) Initialization: at t = 0, each user k ∈ K chooses some
initial power pk (0) and price πk (0).

2.) There are 2K sets of infinite positive time instances Tk,p

and Tk,π , k ∈ K, at which each user k updates power
pk (t) and price πk (t) as follows

pk(t) = Wk

(
p−k(t−), π−k(t−)

)
, if t ∈ Tk,p, (6)

πk(t) = Ck

(
p(t−)

)
, if t ∈ Tk,π. (7)

Note that a user need not update his power and price at the
same time. The asynchronous update is important in practice
because it may be difficult to coordinate different users in the
network to update their strategies in a synchronized manner.

This algorithm is distributed in nature not only because of
the distributed generation of powers and prices by users, but
also because each user needs to acquire limited information.
Specifically, to implement the power and price updates, each
user k only needs to know: (i) its own utility uk, SINR γk

and channel gain hkk, (ii) the “adjacent” channel gains hkj

for j ∈ K and j �= k, and (iii) the price profile π. By
assumption each user knows its own utility. The SINR γk

and channel gain hkk can be measured at the receiver and
fed back to the user. Measuring the adjacent channel gains
hkj can be accomplished by having each receiver periodically
broadcast a beacon; assuming reciprocity, the transmitters can
then measure these channel gains. Note that the adjacent
channel gains account for only 1/K of the total channel
gains in the network; each user does not need to know the
other gains. The price information could also be periodically
broadcast through this beacon. Each user announces a single
price that is used by all interfering transmissions, so that the
number of prices scales linearly with the size of the network.
Also, numerical results suggest that there is little effect on

1Notation [x]b
a

denotes max {min {x, b} , a}.
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te the set of fixed points of the ADP algorithm by

ADP = {(p,π) | (p,π) = (W (p,π) ,C (p))} , (8)

W (p,π) = (W1 (p−1, π−1) , . . . ,WK (p−K , π−K))
p) = (C1 (p) , . . . , CK (p)).
a 2: A power profile p∗ satisfies the KKT conditions

lem P1 if and only if (p∗, C (p∗)) ∈ FADP .
proof relies on the strict concavity of uk (γk) . Fur-
re, if the objective function of Problem P1 is strictly
e in p (or some monotonic transformation of p), then
T conditions become necessary and sufficient for the
optimal solution to Problem P1, and the ADP algorithm
reach that point if it converges. In general, Problem P1
t be a concave maximization problem, so that the ADP
m may reach a locally optimal point (or saddle point)
lem P1.2

CONVERGENCE ANALYSIS OF ADP ALGORITHM

is section, we characterize the convergence of the ADP
m by viewing it in a game theoretic context. We first
r a game similar to the NCPC game, except now each
k’s strategy includes specifying both a power pk and
πk to maximize a payoff given by the surplus in (5).

here is no penalty for user k announcing a high price,
e shown that each user’s best response is to choose a
ough price to force all other users to stop transmission.
certainly not a desirable outcome and suggests that the
hould be determined externally by another procedure.
ad of the preceding game, we consider the follow-
titious Power-Price (FPP) control game: GFPP =
FC,

{
PFW

k ,PFC
k

}
,
{
sFW

k , sFC
k

}]
, where the players

the union of the sets FW and FC. FW = {1, ...,K}
ctitious power player set, in which each player chooses
r pk from the strategy set PFW

k =
[
Pmin

k , Pmax
k

]
.

{1, ...,K} is the fictitious price player set, in which
ayer chooses a price πk from the strategy set PFC

k =
. Here π̄k = sup

p
(−∂uk (γk (p)) /∂Ik (p−k)) , which

e infinite for some utility functions. A player k ∈ FW
s a payoff

W (pk, p−k;π−k) = uk (γk (p)) −
∑
j �=k

πjhkjpk, (9)

layer k ∈ FC has a payoff

sFC
k (πk;p) = −

(
πk +

∂uk (γk (p))

∂Ik (p−k)

)2

. (10)

yoff sFC
k is defined so that the optimal strategy πk =

∂Ik. The players’ best response functions are then

(p−k, π−k) = Wk (p−k, π−k) ,∀k ∈ FW, and(11)

BFC
k (p) = Ck (p) ,∀k ∈ FC. (12)

urse, no algorithm that relies only on first-order information can be
d to converge to a global or even local optimum if the optimization
is non-concave.



In the FPP game, each user k ∈ K in the original ad hoc
network is split into two fictitious players, one in set FW who
controls power pk and the other one in set FC who controls
price πk. Although users in the network cooperate with
each other by exchanging interference information (instead
of choosing prices to maximize their surplus), each fictitious
player in the FPP game is selfish and maximizes its own payoff
function. In the rest of the paper, a “user” refers to one of the
K transmitter-receiver pairs in set K, and a “player” refers to
one of the 2K fictitious players in the set FW ∪ FC.

It follows from (11) and (12) that the ADP algorithm ((6)
and (7)) can be interpreted as if the players in the FPP game
employ an asynchronous myopic best response (MBS) updates,
i.e. the players update their strategies according their best
responses assuming the other users’ strategies are fixed at the
time of the updates. It is known that the fixed points of MBS
updates are the same as the NEs of a game (see Lemma 4.2.1
in [6]).

Lemma 3: (p∗,π∗) ∈ FADP if and only if (p∗,π∗) is a
NE of the FPP game.

It follows that proving the convergence of MBS updates
of the FPP game are sufficient to prove the convergence of
the ADP algorithm to a solution of KKT conditions. We next
analyze this convergence using supermodular game theory [6].

We first introduce some definitions3. A twice differentiable
function f has increasing differences between variables (x, t)
if ∂2f/∂x∂t ≥ 0 for any feasible x and t.4 A game G =
[K, {Pk} , {sk}] is supermodular if for each player k ∈ K,
the strategy space Pk is a nonempty and compact subset of R,
the payoff function sk is continuous in all players’ strategies,
and sk has increasing differences between player k’s strategy
and any other player’s strategy. Several important properties of
supermodular games are summarized in the following theorem.

Theorem 1: In a supermodular game G = [K, {Pk} , {sk}],
(a) There exists a NE. In case of multiple NEs, there is a

smallest one and largest one (component-wise).
(b) If the users’ best responses are single-valued functions,

and each user k starts from the smallest (largest) element
of the strategy space Pk and uses MBS updates, then
the strategies monotonically converge to the smallest
(largest) NE.

(c) If each user k starts from any feasible strategy and uses
MBS updates, then the strategies will eventually lie in
the set bounded component-wise by the smallest and
largest NE. If there exists a unique NE, then the users’
strategies globally converge to that NE from any choice
of initial strategies.

Properties (a) follows from Lemma 4.2.1 and 4.2.2 in [6];
(b) follows from Theorem 1 of [10] and (c) can be shown by
Theorem 8 in [16].

Next we show that by an appropriate strategy space trans-
formation, certain instances of the FPP game are equivalent

3More general definitions related to supermodular games are given in [6].
4If we choose x to maximize a twice differentiable function f (x, t) , then

the first order condition gives ∂f (x, t) /∂x|x=x∗ = 0, and the optimal value
x∗ increases with t if ∂2f/∂x∂t > 0.
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ider a network with only two users. There are four
in the corresponding FPP game, two in FW and two in

rst, we check whether the FPP game is a supermodular
It is obvious that each user k ∈ FW has a nonempty
mpact strategy set, and so does each user k ∈ FC if

. This bounded price restriction is not satisfied with
tilities such as uk(γk) = θkγα

k /α with α ∈ [−1, 0),
k = θkγα+1

k / (pkhkkB) is not bounded as pk → 0.
er, since no user would transmit with zero power at the
erwise the payoff is −∞), we can bound πk by a large
that would never be reached by the ADP algorithm.

ould not impact any of the users’ choices, and so not
any of these results.

remaining increasing difference condition for the play-
off functions does not hold with the original definition

egies (p,π) in the FPP game. For example, from (9),
∂pk∂πj = −hkj < 0 for any j �= k, e.g. a higher price
e other users to decrease their powers. However, if we

π′
j = −πj and let each user j ∈ FC choose a π′

j from
tegy set [−π̄j , 0] , then ∂sFW

k /∂pk∂π′
j = hkj > 0,

W has increasing differences between the strategies)
(or equivalently (pj ,−πj)). If we can redefine users’

es so that each player k’s payoff function has increasing
ces between his transformed strategy and any other

s transformed strategy, then the transformed FPP game
supermodular.
min
k = min{γk(p) : pj ∈ Pj ,∀j ∈ K} and γmax

k =

k(p) : pj ∈ Pj ,∀j ∈ K} for all k ∈ K. Also
Gk (γk) = −γku′′

k(γk)/u′
k(γk). Then, an increasing

ictly concave utility function uk (γk) is defined to be

pe I if Gk (γk) ∈ [1, 2], ∀γk ∈
[
γmin

k , γmax
k

]
;

pe II if Gk (γk) ∈ (0, 1], ∀γk ∈
[
γmin

k , γmax
k

]
.

term Gk (γk) is called the coefficient of relative risk
n in economics [15] and measures the relative concave-
uk (γk). Many common utility functions are either
or Type II. Examples of Type I utility functions
uk (γk) = θk log (γk) and θkγα

k /α with α ∈ [−1, 0).
les of Type II utility functions include θk log (γk),
1 + γk), 1 − e−θkγk (with θk < n0/ (Pmax

k hkk)) and
with α ∈ (0, 1]. The logarithmic utility function is

pe I and II.
pe I utility function is “more concave” than a Type
Namely, an increase in one user’s transmission power
induce the other users to increase their powers (i.e.,
/∂pk∂pj ≥ 0 for j �= k); a Type II utility would have
osite effect (i.e., ∂2sFW

k /∂pk∂pj ≤ 0 for j �= k). The
spaces must be redefined in different ways for these

es of utility functions to satisfy the requirements of a
odular game.



Proposition 1: The FPP game for a two-user network
is a supermodular game in the transformed strategies
(p1, p2,−π1,−π2) if both users have Type I utility functions.

Proposition 2: The FPP game for a two-user network
is a supermodular game in the transformed strategies
(p1,−p2, π1,−π2) if both users have Type II utility functions.

The proof of these propositions consist of checking the
increasing differences conditions for each player’s payoff
function. These results along with Theorem 1 enable us
to characterize the convergence of the ADP algorithm. For
example, if the two users have Type II utility functions (and
π̄1, π̄2 < ∞), then FADP is nonempty. In case of multiple
fixed points, there exist two extreme ones

(
pL,πL

)
and(

pR,πR
)
, which are the smallest and largest fixed points in

terms of the strategies (p1,−p2, π1,−π2). That is, for any
fixed point (p∗,π∗), p∗1 ∈

[
pL
1 , pR

1

]
and p∗2 ∈

[
pR
2 , pL

2

]
. Simi-

lar relations hold for the prices. If users initialize (p (0) ,π (0))
at

(
Pmin

1 , Pmax
2 , 0, π̄2

)
or

(
Pmax

1 , Pmin
2 , π̄1, 0

)
, the power and

prices converge monotonically to
(
pL,πL

)
or

(
pR,πR

)
,

respectively. If users start from arbitrary initial power and
prices, then the strategies will eventually lie in the space
bounded by

(
pL,πL

)
and

(
pR,πR

)
. Similar arguments can

be made with Type I utility functions with the corresponding
strategy transformation. Transforming the FPP game into a
supermodular game shows that the ADP algorithm is a stable
feedback mechanism in the sense that the changes in powers
and prices reinforce each other until a fixed point is reached.
Convergence of the transmit powers under both types of
utilities is illustrated in Fig. 2.

L

R

Points Set
Fixed

ADP trajectories

0 11
max

2
max

2

p

p

P

P

Initializations

p

p

ADP trajectories

L

pR

Initializations

p

Points Set
Fixed

0 11
max

2
max

2

p

p

P

P

Fig. 2. A two-user network with Type I (left) or Type II (right) utility
functions. ADP trajectories illustrate the monotonic convergence of the
transmit powers. (Convergence of the prices is not shown here.) Here we
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1
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2
= 0.

B. K-user Networks

Proposition 1 can be easily generalized to a network with
K > 2 users:

Corollary 1: For a K-user network, if all users have Type
I utilities, then GFPP is supermodular in the transformed
strategies (p,−π) .

In contrast, the transformed strategy used in Proposition 2
cannot be applied with K > 2 users while assuring that the
increasing differences property holds for every pair of users.

With logarithmic utility functions, it is shown in [5] that
Problem P1 is a strictly concave maximization problem over
the transformed variables yk = log pk. In this case Problem P1
has a unique optimal solution, which is the only point sat-
isfying the KKT conditions. Thus, GFPP has a unique NE
corresponding to this optimal solution, and the ADP algorithm
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ces. With some minor additional conditions, the next
tion states that these properties generalize to other Type
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osition 3: If for all k ∈ K, Pmin
k > 0, and Gk (γk) ∈

r all γk ∈ [γmin
k , γmax

k ], where [a, b] is a strict subset
], then Problem P1 has a unique optimal solution to
the ADP algorithm globally converges.

V. CONCLUSIONS

ave presented a distributed power control algorithm for
eless ad hoc networks. Each user announces a price,
is associated with the KKT conditions for the total
maximization problem. This leads to an asynchronous
and price adaption algorithm, which requires only local
dge of channel gains by each user. By interpreting
orithm as myopic best response updates of a fictitious
onvergence can be proved with an appropriate strategy

rmation using supermodular game theory. For users
garithmic utilities, the algorithm globally converges to
que socially optimal solution.
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