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Abstract

We consider packet scheduling for the downlink in a wirelestvork, where each packet’s
service preferences are captured by a utility function thegiends on the total delay incurred.
The goal is to schedule packet transmissions to maximizeadta utility. In this setting, we
examine a simple gradient-based scheduling algorithnedatie U R-rule, which is a type of
generalizedcu-rule (Gep) that takes into account both a user's channel conditionderided
utility when making scheduling decisions. We study the @enfance of this scheduling rule for
a draining problem, where there is a given set of initial paskand no further arrivals. We
formulate a “large system” fluid model for this draining plerln where the number of packets
becomes large while the packet-size decreases to zero,iamé gomplete characterization of
the behavior of thd/R scheduling rule in this limiting regime. Comparison witimsilation
results show that the fluid limit accurately predicts theresponding behavior of finite systems
of interest. We then give an optimal control formulation fioding the optimal scheduling policy
for the fluid draining model. Using Pontryagin’s minimum npriple, we show that, when the
user rates are chosen from a TDM-type of capacity region[itierule is in fact optimal in
many cases. Sufficient conditions for optimality are alseegi Finally, we consider a general
capacity region and show that tii&R rule is optimal only in special cases.
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Communications, Control,and Computing, Monticello, IL.



. INTRODUCTION

Efficient scheduling algorithms are recognized as a key awmapt for providing high
speed wireless data services. A basic characteristic daflegs systems is that channel
quality will vary across the user population, enabling efi#éint users to receive data at
different rates. There has been much interest in “chanmare&l scheduling algorithms
that exploit these variations in channel quality to impreystem performance (e.g., [1]-
[13], [15]-[17]). An important consideration for such sdéing approaches is balancing
the over-all system performance with each user’s qualitgeavice (QoS) requirements.
For example, in a time division multiplexing (TDM) systenatitransmits to one user at
a time, the overall throughput is maximized by always trattsmy to the user with the
best channel. However, this approach can result in pooopeence for users with poor
channel quality. This problem is especially prominent iroa&-tier mobility environment
where channel conditions vary slowly with time. To addrdsssé considerations, various
“fair” scheduling approaches have been considered, sutiegsoportional fair algorithm
proposed for the CDMA 1xEV-DO system [18], [19]. Other apmbes for addressing
fairness include emulating the generalized processoimrgh&@GPS) model [3] or imposing
various “resource-sharing” constraints on the system.[12]

In this paper, we consider a utility-based scheduling fraork, where each packet has
a utility function (which can vary across packets) that aadies the benefit from receiving
the packet after a certain delay. The scheduling policy thgempts to maximize the
total system utility; in this way, the utility functions cdre used to balance fairness and
efficiency. We consider a simple gradient-based schedplatigy, which we call thel/ R
scheduling rule [16], [17]. Her represents the marginal utility associated with schedulin
the packet, and? is the achievable rate, which is related to the channel gdalThis
policy makes decisions based only on the instantaneouswvaltithese parameters, and
So requires no knowledge about the fading statistics or wma#ic.

We consider scheduling for the downlink of a single cell in emvironment where
the channel gain to each user is known and fixed over the toale-of interest. This
assumption is reasonable in a slow fading environment ang lmeaappropriate, for ex-
ample, for fixed wireless access or a broadband satellitersyNote that in this setting,
issues of “opportunistic” scheduling do not arise [12],][1)21]. One reason we focus

1The marginal utility can be interpreted as a "bid” price asflacts the urgency of transmitting the packet wibgn)

is a function of delay.
2We note however, that th€ R scheduling policy can be easily applied to a system with tiaging channels [16].



on this time-invariant model is that it highlights the pddsidisparity among users when
certain users’ channel conditions are consistently iofeid others. We have also shown
in [16] that the performance benefits of the? scheduling policy are the most prominent
in an environment with static channel gains. The basic modesidered here also applies
to scheduling in other multi-class queueing systems whefereht classes have different
service rates, for example, in a wire-line network wherdedént classes have different
packet lengths.

We analyze the performance of theR policy for a draining model, where there is an
initial set of packets to send, each with an initial delayd &m0 new arrivals occur. We
formulate a fluid limit for this problem, where the number witial packets increases, while
the packet size decreases to zero. A complete charactenizztthe performance of the
U R scheduler is given for the fluid system. We then consider fhignal scheduling policy
for a fluid system with two classes of users; this can be foatedl as a continuous-time
optimal control problem. Using Pontryagin’s minimum piiple, we show that in certain
cases thé/R scheduler is optimal, i.e. it maximizes the total utilityeVellso show that
the optimality of thel/ R rule depends in part on the underlying physical layer capaci
region. For a TDM type of capacity region, tfi&R rule is optimal for a broad class of
utility functions; for a general capacity region, the rule is optimal only in some special
cases.

The UR policy is equivalent to thegeneralizedcy (Gep) rule introduced by Van
Meighem in [22] for a single-server multi-class queueingteyn with general convex
delay costs$.In [22] it is shown that theGcp rule is asymptotically optimal in the heavy
traffic regime. The heavy traffic optimality of@cu rule for a system with multiple flexible
servers is shown in [23] under the assumption of “completeursce sharing”. Here we do
not consider the heavy traffic regime, but instead analyeg@éiformance and optimality of
this rule for the fluid draining problem previously discussA different fluid “rush hour”
model has been studied in [24]; the authors argue tlGitarule is often optimal in this
setting as well. Optimal control of fluid models for other gaag systems (typically with
linear costs) has also received some attention, e.g., [26].

We allow the utility to be an arbitrary concave decreasinmgfion of delay. In the special
case of linear utilities, thé/ R rule reduces to the well-knoweu-rule which is known
to be optimal in a variety of settings (e.g., [27]-[29]). Wiguadratic utilities, thé/ R
rule is equivalent to the “MaxWeight” policies studied in,[15], [25]. The “MaxWeight”

3A utility U that is a function of delay is equivalent to a delay cost-df.



scheduling rules are stabilizing policies in a variety dfiags, e.g. [1], [5] and also exhibit
several optimal properties in the heavy traffic regime [Z&gdveral other fair scheduling
approaches, such as the proportional fair rule, can be dieweerms of utilities that
depend on each user’s throughput averaged over a sufficienty period. In that setting,
algorithms similar to thé/ R rule can be used to maximize the total utility [7], [14].

The remainder of the paper is organized as follows. In Sgctvd describe the system
model and motivate thé' R rule. In Sect. Ill, we analyze the performance for a system
with K classes of packets, where each class is differentiatedsbytility function and
achievable transmission rate. We formulate a fluid limitd @haracterize the associated
performance. In Sect. IV, we extend our analysis to a lirgitsystem with an infinite
number of classes, i.e., we allow an arbitrary distributfon rates across packets. In
Sect. V, we present an optimal control formulation for firglithe optimal scheduling
policy given a TDM capacity region. For a broad class of gtifunctions, it is shown
that theU R rule is optimal. In Sect. VI, we consider the optimal scheuybolicy for a
general capacity region and give necessary conditionshi/t? rule to be optimal. We
observe that thé/ R rule satisfies those conditions only in special cases.

[1. UTILITY-BASED DOWNLINK SCHEDULING

We consider a basic model for downlink scheduling from a Isiigansmitter, such as
a base station in a cellular network or an access point in alegs LAN. We initially
consider a TDM system where the transmitter sends to one atsartime, as in the
CDMA 1xEV-DO standard [18], [20]. We also discuss the caseemghmultiple users
may be scheduled simultaneously and assigned rates deégfiny a given physical layer
“capacity region”. This can model systems such as CDMA 1XB¥{20] where a subset
of users are scheduled in each time-slot, and the availpbdading codes and transmission
power are then allocated among the scheduled users to die¢etineir transmission rates.
This could also model the case where the downlink is modeted &aussian broadcast
channel and any set of achievable rates in the broadcastityapegion can be used.

At any scheduling instanfy packets are queued at the base station waiting for transmis-
sion. In a TDM system, each packet associated with a transmission ratethat reflects
the corresponding channel quality to the intended receiMee scheduler decides which
packet to transmit based on the transmission rate, alorigthvt packet’s utility function,
and the current delay (see Fig. 1). The utility received hydsgg theith packet,U;(D;),
is a decreasing, concave function of its total delay(i.e., the packet’s sojourn time). Let
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Fig. 1. System Model withV packets.

W;(t) denote the waiting time of th&h packet at time. During each scheduling interval,
if the scheduler decides to transmit thth packet, then that packet is sent over the air
interface at ratdz,. For simplicity, each packet is assumed to contaibits including any
overhead. The goal is then to schedule the packets to maxitne average utility rate:

avg - lggof Z U (1)

where N(T') denotes the total number of packets served up to fimand D, represents
the total delay experienced by packet

We consider a simple gradient-based scheduling policys pblicy attempts to schedule
a packet from the class which results in the largest firseioahange in the total utility
rate. In a TDM system, if the scheduler transmits to ithepacket, followed by thegth
packet, the change in total utility is given by

AU ;= U (Wi(t) + ) + U;(W;(t) + £ + )
ApproximatingU;(-) by a first-order Taylor series arourﬂzfi( ) we have
AU = AUy = U(Wi(t) + Ui(Wit) & + U (W5(0) + U;W50) (% + & ).
Likewise, transmitting in the reverse order yields
AUji ~ AU = U(Wilt)) + Ui(Wi(t) (& + 4 ) + U3 (W5 (0) + Uy (W (1) &

Simplifying the preceding expressions gives the followsapeduling rule, which favors
packeti over packetj if AU, ; > AU, for j # i.
UR scheduling rule: Schedule usei* such that

i* = argmax |U;(W;(1))| R;, ()



where ties are broken arbitrarily.

Here we have used that sin€g(-) is decreasingl/;(WW;(t)) is negative.

In the general setting where multiple transmissions arewaltl, letr = {ry,...,ry}
be the transmission rate vector for all packets. A naturalegdization of (2) is for the
scheduler to choose a rate vectgrsuch that

Ui(Wi)

Tis (3)

I = arg max

=1
where ties are broken arbitrarily. The gktlenotes theéV-dimensional capacity region of
feasible rates. For a TDM scheme,

Cron 2 {{R1,0,...,0},{0, R,0,...,0},...,{0,...,0, Ry}} (4)

In this case, the rule specified by (3) reduces to (2).

1. K-CLASS SYSTEM
A. System Model

We consider a draining problem where a group of packets asept at timeg = 0
and no new arrivals occur. Each packet has a random initlayd&his could model a
system with batch arrivals, where the time between arrigadsifficiently long to drain the
previous batch. Each packet is associated with a randondgerhtransmission rate and
a utility function. The goal is to drain these packets whilaximizing the average utility
per packet.

We first consider a TDM system witR™ classes of packets; each class corresponds to
packets with the same feasible transmission rate and sereguirement$.Specifically,
fori=1,..., K, the base station can transmit claggackets with transmission rafte;.

We assume thak; > R, > --- > Ry and that these rates are fixed over the time horizon
of interest.

Initially assume there ar® packets in the system and no new arrivals occur. Each packet
is independently assigned to claswith probabilityp; (: = 1,..., K). Let N; denote the
number of class packets; this is a random variable with expected vak@V;| = p;NV.

“For the problem considered here all of the packets in a giless@an be directed to one user or several users with
similar channels/requirements.



The system is to be emptied by transmitting all of tNepackets. The time required to
drain the system with any work-conserving (non-idling) essthling rule is given by

K

N;L
Tr=) & )
i=1 "

This is independent of the order in which packets are semedever, the service order

does influence the delay incurred by the individual paclats, hence the derived utility.
We assume that each packet has an initial delay at time). This reflects the delay

experienced by the packets prior to timhe- 0 and could include, for example, the delay
incurred in forwarding the packet to the base station orggpeint. Foik =1, ..., N;, we
denote the initial delay of theth packet of class by IV, . (0). If this packet is transmitted
aftert seconds, then the total delay incurred is:
D; :Wik(0)+t+£,
: : R,
where L/R; is the transmission time.
The utility associated with each claspacket served is given by;(D; ;). The utility
per packet generated by a given schedule is

1 K N;
Uavg = N Z Z Uz(Dz,k:)

i=1 k=1

Notice that this depends on the initial delays for the packeteach class.

For a given initial delay distribution, a schedule of packetnsmissions is defined
to be optimal if it maximizes U,,,. Consider the special case whevgz) = —x for
i =1,..., K, and thus maximizind/,,, becomes equivalent to minimizing the average
delay per packet. In this case, the optimal schedule is ttstnét packets in decreasing
order of transmission rates; within each class, the ordevhith packets are transmitted
does not effect/,,,. This can be shown using a simple interchange argument.dJgxtose
that the utility U;(-) is strictly concave for each Then it can be shown that the optimal
scheduler transmits packets within each class in longastydirst order, i.e., iV, ,(0) >
W, 7(0), then packet: is transmitted before packét Therefore, in the following we will
only consider scheduling among the head-of-line packetiwiéach class. Even with this
characterization, there afg;_, (N‘Z}\% i) possible schedules from which to choose.

In the case of linear utilities, thE R rule becomes a type ef: rule; hence, we have

Proposition 1: If U;(z) = =gz fori=1,..., K and; > 0, then theU’ R scheduling
rule maximizes the utility per packet.



The proof of this result with zero initial delays is given Bg]. It is easy to show that
adding initial delays does not affect the scheduling denisi and that thé’ R rule is still
optimal.

B. Fluid Limit

To analyze the performance of scheduling policies for tlaening problem, we consider
a type of fluid limit for the system. In this section, we deberthis limit for an arbitrary
scheduling rule. In the next section, we consider the limgitiehavior of thé/ R scheduling
rule.

We scale up the number of packets and decrease the packetvhitee keeping a fixed
load (in bits)® Formally, we consider a sequence of systems indexed/ by 1,2,...; in
the Nth system there are initialliyv packets in total with packet length normalized so
that N L = 1.° With this scaling,T; in (5) will converge ttoi1 p;/ R; almost surely, by the
strong law of large numbers. As noted previously, the perforce of a scheduler depends
on the initial packet delays. For each classve assume thafz;}7° ; is also sequence of
i.i.d. random variables, with cumulative distribution functiandif) G;(w) = Pr(z; < w)
and probability density functiorp(d.f) g;(w). Let W; ,(0) = z; fori =1,..., N; i.e., the
initial delays for class packets in theVth system are set to be the filst components of
this sequence. For simplicity, we further assume that) > 0 if and only if w € [D!, D¥],
whereD! > 0 and D¥ < oo are lower and upper bounds on the initial delay, respegfivel

Let AV (t) denote the number of claggpackets remaining at timein the Nth system
(for a given scheduling policy), and let

fiN(t) = —

be the fraction of classpackets remaining at time Likewise, letr/¥ () denote the amount
of time in [0,¢) during which the transmitter serves packets from cliafetween times

5This can also be viewed in terms of the “usual” fluid scalingdaeuing systems, where time and space are linearly
scaled byN, and where asV increases, the number of initial packets also increases.
®There is no loss in generality in assuming that the prodvidt is normalized to 1. A system wittV L = ¢ with
c# 1 and rates{R; }1£,, can be easily shown to behave equivalently to a system With= 1 and rates{R; /c} <.
"This can be extended b/ < oo disjoint compact support rangé®'!, D¥*| U [D}2, D¥*2]U---U [D2M7D;‘M]. In
that case, treat this class &$ classes with the same transmission rate. The initial deigtyilsition for each sub-class
m then has suppoftD;™, D;™], m =1,..., M.



t andt + dt, the change inf (¢) can be bounded as
—lN (o) TN O -1 V0t - N _ [T+ 08) - TN O] + 1
N;ot - ot - N;ot '
(6)

For a finite N, the preceding quantities depend on the initial delays &ednumber of
packets in each class, and hence are random. For the saigegolicies of interest, we

assume that a& — oo, 7i¥(t) converges almost surely to a deterministic limitt).
As N — oo, L = 1/N — 0 and N;/N — p,;. Therefore, from (6) it follows that
fi(t) = limy_o f(t) exists and satisfies
filt +0t) — fi(t)  —[m(t + dt) — ()| R

Next, lettingét — 0, we havé

i) = -0 )
Di
whereq;(t) = 7;(t). Notice that bothf;(¢) andr;(¢) are monotonic functions dfand hence
the preceding derivatives exist except possibly on a setaafsure zero. At those values of
t wherer;(t) is not differentiable, we set;(t) to be the right derivative. Thereforg (¢)
is right continuous [31].

In the limit, the base station can transmit arbitrarily maackets in any time interval

[t,t+ dt), but only a finite fraction of the initial packets. The frawtiof unserved packets
in class: at timet € [0, 7y) is then given by:

fit)y=1- /t Mdr. (8)

0 Di

The quantityw;(¢) can be interpreted as the fraction of the base station’siress devoted
to class: packets at time. If «;(t) = 1, then only class packets are served. In general,
a;(t) can take on any value ifo, 1] and must satisfyy 7 a;(t) < 1 for each timet.
For a non-idling policy,>"% , a; = 1, for all t € [0, T}). At each timet, the scheduling
algorithm specifiesy;(t). Equivalently, for this limiting TDM system, we can view the
scheduler as selecting rategt) = «;(t)R; from the capacity region given bg;s =
{r : Zfil ;T = 1}. This is a K-dimensional simplex with corner points given by the set
Crpy defined in (4). This interpretation generalizes directlyotber capacity region§

8We use the notatiotf(x) to indicate the first derivative of with respect to its argument, |(§§
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as in (3). In this case the scheduler selects rates < C and the fraction of unserved
packets within each class evolves according/ o) = —"p—()

As an example of the preceding scaling, consider a TDM systém?2 equally-loaded
classesfy = p» = 1/2) using a round robin scheduling policy that alternates betw

scheduling clas$ and clas packets. In this case, for th€th system we have

t L t L
— 1 —SrlN(t)§<7+1>—.
<%+% )Rl mtwm )1

Hence, asN — oo, 7¥(t) converges tor(t) = 72, so thatas(t) = 722 and
_ _ R’
@(t) = 7 m-

Next, we turn to the packet delays in the limiting system. &agiven realization of
{W;x(0)},, let GN(w) denote the empirical distribution of the initial delays fgpe i
packets in theVth system, i.e.

_|{k < Ni: Wis(0) < w)

N; ’
where|X’| denotes the cardinality of the s&t As N — oo, the Glivenko-Cantelli theorem
[30] implies that almost surelyY (w) — G;(w) uniformly in w.

Let DY (t) denote the maximum delay of claspackets in theVth system at time. We
assume that under all scheduling policies of interest, gtack a given class are served
in the order of longest-delay-first. In that case,

GN(w)

(2

DY (t) = HY (f(t)) + ¢, 9)

where HY (f) = inf{w : G;(w) = f}. The first term in (9) corresponds to the maximum
initial delay of the remaining packets; the second termeasponds to the aging of packets
with time. It follows that in the limiting system, almost &ly we have

Di(t) = Hi(fi(1)) + 1, (10)

where H;(f;(t)) denotes the maximum delay of the remaining packets in théirign
system. IfG;(w) is strictly increasing oriD!, D¥], then H;(x) = G;'(w). Note that for
finite NV, the functionsz¥(f) and DX (t) are random quantities that depend on the initial
delay distribution. However, in the limiting system, thepeantities are deterministic.

In the Nth system, if thek?” packet of class is served at time;, then it receives a

utility U;(DN (t1,) + R%_). The average utility per packet can be written as

N 1 K N; N I
Uavg == NZZUZ [Dz (tk)—i—ﬁz] .

1=1 k=1
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As N — oo, we haveU? — U,,,, where

avg

Useg = Z; /0 Yl ORUL [D(0)] di.

C. Limiting Behavior of /R Scheduler

Next we characterize the limiting behavior of the? scheduling rule for a TDM system.
To simplify our analysis we focus on the case whire) is a decreasing concave function.
For the fluid system, the scheduling decision is charaddrizy the parameter;(¢) for
each class.

Let S(t) = {i: fi(t) > 0} be the set of non-empty classes, i.e., the classes with {sacke
remaining to be sent at time Define M;(t) = |U;(D;(t))|R; to be the decision metric
used by the scheduler for each class S(t). Among classes € S(t), the U R scheduler
transmits the Head of Line (HOL) packet of the class with treximum value of)M; ()
at each decision instant. We therefore have the follovitig) properties:

Property 1: If i ¢ S(t), thena,(t) = 0.
Property 2: Fori € S(t), a;(t) = 0 if there existsj # i such thath/;(t) < M;(t).

Fori ¢ S(t), i.e., classes which are drained at timeve will assume thab;(t) = D!+t,
which is a natural extension of (10). That is, the delay farssk formally continues to
increase after all class packets have been drained. Note that this does not affect any
scheduling decisions or performance, but will be usefulect®n V, where we formulate
a fixed terminal-time optimal control problem.

As an example, consider a system with= 2 andp; = p, = 1/2. Assume that both
classes have the same utility function, i&€,(D) = Us(D) = U(D), and that the initial
delays are uniformly distributed dm, 1], i.e., fori = 1,2,

w 0<w<l,
Gi(w) = (12)
1 w > 1.
In this case, (10) becomes

and thereforeD, (t) = —2a;(t)R; + 1, with D;(0) = 1 for i = 1, 2.
From Properties 1 and 2, we have
1 if Ml(t) > Mg(t) or fg(t) =0,
a(t) = ,
0 if My(t) < May(t) or fi(t) =0,
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and ay(t) = 1 — «a4(t). This specifies the scheduling rule except at those timebere
M, (t) = My(t), and f;(t) > 0 for i = 1, 2.

When multiple classes simultaneously have the maximumevafu/;, the fluid sched-
uler splits its resources among these. L¥t) be the set of non-empty classes that have
the maximum value of\/;, i.e.,

Q(t) ={ie S(t): M;(t) > M;(t) for all j € S(t)}.

The following theorem quantifies how resources are sharedngnthese packets when

Q)| = 2.
Theorem 1:Assume that for each=1, ..., K, U;(-) is concave. For any < T with
Q)] > 2, let {a;(t),7 € Q(t)} be the solution to:
: , (DR -
o) = =0 1010 (- [0 4 1) 7 = o) 13)
where K(t) is chosen to satisfy
> ait) =1. (14)
1€Q(t)

If a feasible solution exists, i.e0, < «; < 1 for all i € Q(¢), then the scheduler spends
fraction of time serving class packets.

Proof: Consider some timé, for which there are two classeés# j with i, 5 € Q(ty);
henceM;(ty) = M;(ty). Let {a; (o)} keqr denote the solution to (13) and (14) @t
Suppose that the actual fraction of resources devoted $sici ¢, is «;(to) > o (tg) > 0.
Since theU R scheduler is non-idling it must satisfy (14); so, there mmst a classj
such that; (o) < o} (to). SincelU (D) is concave{/(D) < 0 for all D > 0. Hence,M;(t,)
is decreasing imy;(t,) from (13). Therefore); (ty) — M;(to) < 0. SinceM;(ty) = M;(ty),
we havelM,(td) < M;(tJ). From Property 2 we have;(t;) = 0. This violates the right
continuity of «;(¢). A similar contradiction can be found i;(ty) < «a;(ty). Therefore
aZ(tg) must be optimalll

It can be shown that a unique solution to (13) and (14) alwayste Whether or not
this solution satisfie§ < «; < 1 for all i € Q(¢t) depends on the choice &f; (D), H;(f)
and R;. Given H;(f) and R;, we define a set of utility function§U;(D)}, i =1,--- | K,
to beregular if a feasible solution to (13) and (14) exists for aWwhere|Q(¢)| > 2. For
example, withK = 2, R, > R,, and uniform initial delays{/;(D) = Us(D) = —D", is
regular for3 > 1. In what follows, we will assume thgtlU;(D)} is regular unless stated
otherwise.
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For the 2-class example described previously with unifonitial delay distribution,
Theorem 1 states that for amysuch thatf, (t), fo(t) > 0 andU(Dy(t)) Ry = U(Dy(t))Ra,
the UR rule gives

ar(t) = U(Dy(£)) Ry — U(Do(t)) Ry + U(Do(t)) R2 s
1 0 (D (£) B2 + U(Ds (1)) 3 ’

andas(t) = 1 — ay(t).
We define

t" =inf(t: oy(t) >0) and 9 =inf(t: fi(t) = 0) (16)

That is, " is the time the server starts to serve clapsckets, and?"" is the time it takes
to drain all class packets.

Corollary 1: For regularU;(-), o;(t) > 0 for all ¢ € (¢, t4).

In other words, once the scheduler starts serving clgsackets, it continues to serve
this class until all class packets are drained. This follows from Theorem 1, which iegl
that once classjoins the active sef)(t), it remains inQ(¢) until time t2“. From Corollary
1, t2“ = inf(t >t : a;(t) = 0).

The initiation and termination times for clasgpackets,{t"}X and {t?“*}£ |, mark
2K eventS. Let t! <2 < ... < 2K denote the ordered list of these times, ité.= ti"
or to* for some: for eachk = 1,...,2K, wheret! = 0, andt** =T},

Define theupper envelopef {M;(t)}£, to be
M(t) = M(t), i€Q(t), fort=10,Ty). (17)

This is the value of the decision metric for the classes thatb&ing served. Notice that
tin and t* satisfy M (") = |U;(D¥ + )| R; and M (t*) = |U;(D! + t2“)|R;. This is
illustrated in Fig. 2, which shows an example of the upperetape M () versus time.
Also shown in the figure are the lines corresponding to thgekirpossible value dt/|R
for each class|U;(D¥ + t)|R;) and the smallest possible value @f|R for each class
(|U:(D! +1)|R;).X° The intersections of these lines witld (t) mark the timeg?” andto*,
i=1,2.

So far, we have characterized thie? rule given the decision metrigs/; (t)}X,. Next,
we determine how each decision metti¢;(¢) evolves witht. Recall thatQ(t) is the
set of non-empty classes receiving service at timeet Q(t) = S(t) — Q(t) be the set

°It is possible that some of these events coincide. In that,oc@s can order them arbitrarily.
011 Fig. 2 the curves are lines; this corresponds to quadtaiiities.
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Fig. 2. An example of the time evolution off (t), |U; (D} + t)|R;, and |U; (D! + t)| R; for a two-class system. The
intersections off/ (¢) with the other curves correspond to the tintes 0, t5", t9**, T}.

of inactive classes, which still have packets remaining @otdfansmitted at time. The
decision metrics and the upper envelope can be computedeigdrative procedure in
Fig. 3. The quantities in step (2.a) of the algorithm can bmmated directly from their
definitions. In step (2.d), the two terms in the minimum are $mallest® > t* and the
smallestt?** > t*. Given M (t), the system behavior is completely determined. Namely,
the event timegt*} are the intersections ¥/ (t) with |U;(D¥ + t)|R; or |U;(D! + t)|R;,
fori =1,---, K. The evolution of the decision metrics and service allacetibetween
successive event times is given by Theorem 1.

For the 2-class example with uniform initial delay disttiom the preceding procedure
gives:i) a;(t) = 1 for t € [0,¢5), ii) ay(t) is given by (15) fort € [ti", t9*!), andiii)
ai(t) = 0 for t € [t9“, Ty], wherety satisfiesU(1 + (1 — 2Rty R, = U(1 + ti*)R,.
Here, az(t) = 1 — a4(t). Also, from step (2.d) of the iteration, if < ¢ < ﬁ, then
9"t > i, otherwiset¢"! = ¢i* = 1/2R;.

D. Numerical ExampleU (D) = —D?*

In this section we illustrate the preceding analysis for wlasses, each with utility
function U(D) = —D” where 3 > 1. Note thatU(D) is concave. We also assume that
R; > R,.

From Theorem 1, during the period when the two classes araltsineously served
we havelM,(t) = M,(t), and M, (t) = M,(t). SubstitutingM;(t) = |U;(D;(t))|R; and
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1) Setk =1, =0.
2) While t* < T} do:

a) Calculate f;(t*) and M;(t*) and update S(t*), Q(t*) and Q(t*);

b) Set a;(t*) = 0 for i ¢ S(t*);

c) fQ(t) = {i}, seta;(t) = 1 and a;(t) = 0 for all j ¢ Q(t) for ¢ € (t*, tF+1) .
else if |Q(t)| > 2, calculate a;(t) for i € Q(t) and t € (t*, 1) from
Theorem 1;

d) Evaluate M (t) from (13) and (17) for ¢ € (¢*,#*+1), and compute

" = min [inf (¢ : M;(t) = M(t),7 € Q1)) ,inf (t: fi(t) = 0,Vi € Q(t))];

e) Setk =k + 1 and goto 2.

Fig. 3. Interative algorithm for calculating the decisiortnic trajectories.

U(D) = —D? into these expressions yields
DY (8)Ry = Dy ()R, (18)
and
DY7*(t)(—=a1Ry + 1)Ry = DJ*(t)(—aa Ry + 1) Ry, (19)
Combining these two relations, it is straightforward towhbat
(—oq Ry +1)° 'Ry = (—auRy + 1)’ 'R, (20)

independent of the current timeand delayD;(t). Solving (20) fora;(t) = 1 — as(t)

gives ) )

Rs \ 81 Ro \ -1

R—f) Ry — (R%) +1

1
Ry + (ﬁ—j) " Ry
which is independent of, i.e., the server is statically split between the two clas#es
b — oo, aq increases and approachgléf‘f—&. We therefore havé“;—; — ﬁ—j and the data
rate for each class is the same, i®(t)R; = 42l i = 1,2.
If we further assume a uniform initial delay distributiorr flooth classes given by (11),

and thatp; = p, = 1/2, thent’" satisfies

a;p(t) = < , (22)

(1 — 2Rt + P71 Ry = (14 )P Ry, (22)
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Fig. 4. Fraction of packets served over time with D) = —D? and uniform initial delays.

and so,

oo (%) (23)

1 .

As (3 — oo, t — 0. Hence, thel/ R scheduler becomes a round-robin scheduler, i.e., it
gives both classes the same data rate starting fremn.

Figure 4 shows the fraction of class 1 and class 2 packetedearg to timet with
U(D) = —D? and R, = 4 and R, = 3. In this casep(t) = %@;3. According to
Property 2, the scheduler first serves class 1 packets umot§i = % = 1/15.
Then the scheduler drains the two classes simultaneousyowi= 2/5 anda, = 3/5. At
% = 21/40, the scheduler finishes serving all the class 1 packets
and starts to serve only class 2 packets ufiti= 7/12 when all packets are drained. This
is represented by the solid lines, where the slope of eaehdintimet is «;(t)R;. The
dashed lines are from a sample run with= 25 packets.

A similar plot is shown in Fig. 5 witl/ (D) = —D*. The scheduler again initially serves
only class 1 packets, then statically splits its service katween the two classes until all
class 1 packets are drained, and subsequently serves asfy/Zlpackets. Comparing with
Fig. 4, the resource-sharing period in this case startgeeanhd lasts longer.

To study how well the asymptotic results predict the perfamoe of a finite system, we
simulated thé/ R scheduler for different numbers of packetg, The simulation results are
shown in Fig. 6, which shows sample values of the averaggyytiér packet for different

values of N. As expected, the variance of the utility decreases, anditiibes approach

time 9% =

the fluid limit as N increases.
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Fig. 5. The fraction of packets served over time with D) = —D* and uniform delays.
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Fig. 6. The average utility per packet for different realizatioridinite systems withN packets.

Next we compare thé/R scheduler with the “Maximum Rate (Mak)” scheduler,
which always schedules a packet from a class with the high@ssmission rate. Within
each class both schedulers transmit packets in the ordergddt-delay-first. The Mak
rule maximizes the aggregate data rate at any tinmit at the expense of increasing the
delay variance. Fig. 7 shows the aggregated utility vs. timder both the Maxk and
UR policies. TheUR rule generates greater average utility over all packets tha Max
R rule. Initially, the Max R scheduler generates higher utility since it serves onlgscla
packets at the higher rate. The Maxutility then drops below thé/R utility once the
longer delays experienced by class 2 packets dominate.

[V. EXTENSION TO CONTINUOUS RATE DISTRIBUTION

In the previous section, we characterized the behavior@t/R rule when each packet
is in one of a finite number of rate classes. We now relax thésiraption, and assume
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Fig. 7. The normalized aggregate utility over time for the MBxand U R rules.

that the rate for each packet is selected according to areanis distributionp(r). The
rates are still i.i.d. across packets and are independettieofnitial packet delays. For
a continuous rate distribution, the limiting system can b@wved as having an infinite
number of rate classes.

For simplicity, we assume that all packets have the samigytiihction U(D) and that
the ratep.d.f. p(r) has bounded support, i.e., there exi&t;, > 0 and R,,.. < oo such
that p(r) = 0 for any r < R,,;, or r > R,,... Each packet has a feasible ratand an
initial delay w, which are chosen independently wiphd.f's p(r) and g(w), respectively.
We still assume thag(w) > 0 is continuous and has compact support[h, D*].

Once again we consider a fluid limit in whidih — oo and L — 0 with NL = 1. With
probability one, the total time required to drain the limgisystem with any non-idling
scheduling rule is now given by

T, = / ) g 24)
Ronin T

Define f¥(t,r,dr) to be the remaining fraction of packets in th&" system with rate
7€ (r,r+0r), ie., AN (e 60)

t,r,or

fr(t,r,or) = NN, 7, 6r)°

where NN (t, r, §r) denotes the remaining number of packets with rate (r,r + dr) at
any timet. Let f(t,r) = limg, o limy_o fN(¢,7,dr); this can be viewed as the density
of remaining packets at time Following similar arguments as in Sect. 11I-B, this can be

shown to satisfy o)
al(T,r)r
flt,r)y=1 —/0 o) dr, (25)
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wherea(r,r) can be interpreted as the density of resources devoted t@tsawith rate
r at timet. In analogy with the finite-class scenario, for ang [0, 7}), this must satisfy

Rmaz
/ a(t,r)ydr =1 and  a(t,r) > 0.

Rmin
The longest delay for packets with ratas therefore given by

D(t,r)=H(f(t,r)) +1,

where H(z) = G~'(w) for strictly decreasing?(w), andG(w) = [ g(z)dx.

Again, let S(t) = {r : f(t,r) > 0} denote the set of non-empty rates at tima/\e
defineQ(t) = {r : a(t,r) > 0} to be the set of rates corresponding to users that are
actively served at time. Let M(t) = sup, [|U(D(t,r))|r] be the largest metric at any
t € [0, Ty). Notice thatM (0) = U(D") Rypa-

As in the finite-rate model, there are event times which gpoed to the start and end
of service for packets with the same rate class. Howeverthfercontinuous-rate model,
there are an uncountable number of such events corresgptodavery possible rate and
the active set)(¢) is no longer finite. Under our simplified assumptions thatpaitkets
have the same utility function and the same initial delayritlistion, the active sef)(¢) is
a closed interval. The next lemma specifig&,) for ¢, € [0,7}) given M(t), 0 < t < t,.

Lemma 1:Let r; satisfy M (to) =| U(D" +1t,) | r, andr, satisfy M (t,) =| U(D' +1t,) |
ry. At time ¢ty € [0,T}), the active seQ(t) = [min, "maz), Wherer,,, = max(Ruin, 71)
and g, = min( R0, T)-

Proof: By definition, ¢y is the service initiation time for packets with ratg hence
r € Q(t) if r, > R, Likewise,t, is also the service termination time for packets with
rater,, sor, € Q(t) if r, < Ryaz. Since| U(D“ +1to) | r is a strictly increasing function
of r, service of any packets with< r; cannot have been initiated for ahy ¢,. Similarly,
since| U(D' + t,) | r is also strictly increasing im, service to any packets with < r,
cannot have been terminated for any t,. ThereforeQ(t) = ["min, "maz). B

Lemma 1 implies that the starting service time for a packét water is earlier than that
for a packet with rate’ < r. Furthermore, packets with a higher rate are always deaplete
earlier than those with a lower rate. We emphasize that shisased on the assumptions
that all packets have the same utility function, the initlalays are chosen from the same
distribution, and the delays are independent of the trasson rates.

The next proposition specifies haW (¢) evolves with time.
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Proposition 2: Given M (t), 0 < t < t,, let a(r, ty) be the solution to

dM(t) e = U(D(ty,1)) ((—O‘(;%)T) H( f(to,r))+1) r

dt
= KO(tO)7 (26)

where K(ty) is chosen such that
/ a(r,tg)dr =1, forre Q(ty) andty € [0,T}). (27)
Q(to)

If a feasible solution exists, i.eq(r,ty) > 0 for all r € Q(ty), then the scheduler serves
associated packets with ratér, to)r.

The proof is very similar to that of Theorem 1, so we omit it.t&léhat the active set
Q(to) in (27) is in turn determined by Lemma 1. Solving the diffdi@nequation (26) in
Proposition 2, we can derive the trajectavi(t) for ¢ € [0,7}). The utility per packet (for
any scheduler) is given by

Rimas [T}
Uawg = / / a(t,r)rU(D(t,r))dt. (28)
Rpnin J0

A. Numerical Example

We give a numerical example to illustrate the precedingyamal Assume a ratp.d.f.
p(r) = Kr=3/2 for r € [1,10]. This corresponds to the situation in which the transmissio
rate is proportional to the received power, which is detagdifrom distance-based atten-
uation with a path-loss exponent of four, and the users ar®ramly distributed within
the unit circle. Let the initial packet delay be uniformlysttibuted on the intervdD, 1].
The utility function for all packets i¢/(D) = —1D>.

In this case, (26) becomes

(557 +)r= ot
and combining with (27) gives
WO | gty = Lo PO L (29)
dt e Jore p(r) /rdr
where, from Lemma 1,,;,, = max(1, Jf%oo)) and 7., = min(10, M%fo))-

Using (29) to calculate the upper envelopg(t) yields the curves shown in Fig. 8.
Fig. 8a shows how,,;, andr,,.. change over time. Initially, 7,,;, = "mmaz = Rimaz = 10.

"Note thatr,,;, andr,.. are parameters of the algorithm and correspond to the agivevherea®, i, and R,qx
correspond to the limits of the rate density.
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Fig. 8. (a) Range of active rates fromi» 10 rma.; (b) Decision metric envelop@/(t) vs. t.

As classes join service,,;, decreases while,,,. stays fixed. Att ~ 0.134, all packets
with rater = R,,.. = 10 are drained, and then,,,, starts to decrease. Whemn,;,
reachesR,,;, = 1, all rates have become active. Subsequently, stays at the minimum
while r,,., keeps decreasing until the terminal tirfig when all packets are drained and
Tomin = Tmaz = Rmin = 1. Fig. 8b shows howl/ (¢) evolves with time. The minimum
metric |U(D' + t)|Rpmin = t is also shown. Att = T}, the two curves merge, which
signifies that all packets are drained.

V. OPTIMALITY OF UR POLICY WITH TDM CAPACITY REGIONS

In this section, we discuss an optimal scheduling problemtte fluid system with a
TDM capacity region. For simplicity, we consider/a = 2 class system with transmission
rates R; and concave decreasing utility functiobs(D), for i = 1,2. The probability a
packet is assigned to clagss given byp;. We again assume that the initial delay for
classi packets is distributed on the intervidb!, D] according to the c¢.d.fG;(w), with
a well-defined inverse;(z). Without loss of generality, assume thaf (D;(0))|R; >
|U»(D4(0))| R, so thatt™™ = 0, i.e. the scheduler always begins by serving class 1 packets
Characterizing a scheduling policy is equivalent to spy&oif the functionsy, (t) andas(t)
for all ¢t € [0,7}). We want to choose these to maximize the total utility detive

Formally, this problem can be written as
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2

Ty

al(t),ag(t i—1
subject to: fi(t) = ———R;, i =1,2, (32)
ar(t) + anlt) = 1, (33)
a;(t) >0,i=1,2. (34)

This can be viewed as a continuous-time optimal control leral§32] with a fixed terminal
time T}, where the state i§(t) = (fi(t), f2(t)) and a(t) = (a1(t), a2(t)) is the control
variable. Here (31) represents the system dynamics, and§ass initial and final boundary
conditions for the state. The final stat¢ (1), f2(1})) is restricted to be on the line
fi(Tr) = 0. Any admissible controkx(¢) also results infy(7y) = 0. However, we do
not need to explicitly state this boundary condition. If we @iven f(t), then we can
computef,(t) and in particularf, (1) = 0 implies f»(7y) = 0. Hence the latter constraint
is not independent. Furthermore, we requirg) to be a right-continuous function. It can
be shown that an optimal control satisfying this assumpgixists*?

If all the packets in class are emptied at time < Ty, then for allt > t, we have that
a;(t) = 0 and f;(t) = 0. To see that this must hold in the preceding formulationgnot
that sincef;(f) = 0 and f,(T;) = 0, f;(t) = 0 for £ < t < T}, and from (31) and (34),
a;(t)=0fort <t <Ty.

The solution to this problem can be characterized using trgrifagin minimum prin-
ciple [32]. We first define the Hamiltonian for this problemhiah is given by

HE(D). alt). alt) = = Y aldR: [ini(t)) " %‘ﬂ

Di

whereq(t) = (q:1(t), g2(t)) is the co-state or Lagrange multiplier, ab(t) = H,(f:(t))+t.
Let *(t) be an optimal control and*(¢) the corresponding optimal state trajectory.
According to the Pontryagin minimum principle, there exiatq*(¢) such that

q'(t) = =VeH(E*(t), a*(t), q" (1)), (co-state equations) (35)

125ince the dynamics are linear and the feasible control smirigact, there exists an absolutely continuous solution,
(f1, f2), to this problem. From the dynamics, it can be seen fiamust be non-increasing. Letting;(¢) be its right
derivative gives a right-continuous optimal control.
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and
H (£ (1), a*(t),a"(t)) < H(£*(t), ee(t), a" (1)) , (36)

for all admissible controlgx().
For this problem, the co-state equations (35) are:

6:(t) = a; () RiU(Di () Hi(fi(t)), i = 1,2.

Furthermore, the final state conditions dictate thél’;) = 0 [33]. Let A;(t) = R, |U;(D;(t)) + q—t)]
for ¢ = 1,2. Then the Hamiltonian can be written as

H(E(1), a(t), p(t) = —Ai(t)an(t) — As(t) (1)

which is linear ino;(t). Hence, to satisfy (36), it follows that

10 At) > As(t)
0 if AL(t) < As(t)

aj(t) = (37)
andai(t) = 1 —aj(t). Let A(t) = Ai(t) — Aa(t). If A(t) = 0, then the problem is said to
be singular at timet. This means that (36) alone does not specify the optimalrcbrA
singular interval[t, t;] means that the problem is singular fordalh [t, t5], i.e.,A(t) =0
for all t € [ty, t5].

Lemma 2:During any singular interval, the optimal control must siti(15).
Proof: Notice that

AW = R [ini(t»m(w " qﬂ

_ R, {ini(t» [—Hi<fi<t>>“"(f)Rz- n 1] n “;ff)RiUi<Di<t>>Hi<fi<t>>}
= RU{(Di(t)) (38)
= —M;(t), (39)

which does not depend an (t). Furthermore, for alt € [t;,t,], it must be thatA(t) = 0.
Therefore, A, (t) = A,(t), i.e., RiU (D1 (t)) = RyUs(Do(t)). This corresponds to the
choice ofa(t) in (15). B
Therefore, the sign of\(¢) determines the optimal control at timeNotice thatA(¢) is
continuous and differentiable since both(¢) and A,(¢) are continuous and differentiable.
Lemma 2 implies that during any singular interval, the ojtistheduling policy behaves
like the UR rule. Recall from Section 3.3 that tHéR starts serving class 1 packets up
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to ¢, then serves both classes simultaneouslyff < ¢ < min {t5*, t¢*!}, and finally
devotes service to the remaining class unti 7;.** To show that thé/ R rule is optimal
for all t € [0,T}), we still need to show tha) A(t) is unique;ii) A(t) > 0 for ¢ € [0,£5"),
A(t) = 0 for t € [, min{#g" 5*}), and A(t) < 0 for t € [£5%, Ty) (if 5% < #5*) or
A(t) > 0 for t € [t5, Ty) (if 15 < 9%); andiii) ti* = ¢in, $9ut = #9ut and g™ = 5™,

In the following, we assume thdt, (D) andU,(D) are decreasing, strictly concave in
D, and that they are regular (see Section 3.3) for the giveayddistributions and rates.
We first show in Lemma 3 that for such utility functions,Af(¢) is non-increasing on an
interval where it is strictly positive, then it must be stifcdecreasing on this interval.
Next, in Lemma 4, we show that if\(¢) is non-increasing, then th&R rule must be
optimal. Finally, in Theorem 2, we give a condition on thdittifunctions under which
the UR rule is optimal. The proofs are given in the Appendicies.

Lemma 3:Let ] = [a,b) be a half-open interval such thatt) > 0 forall ¢t € I. If A(¢)
is non-increasing, i.eA(t) < 0 for all ¢ € I, then for regular utility functionsA(t) < 0
forall ¢t € I.

Lemma 4:For regular utility functions, ifA(¢) < 0 for all ¢ € [0, Ty], then theU R rule
is optimal.

Theorem 2:Assume that the utility functions satisfy the following chtion for all
to > 0:

If R,UL(Dy(ty)) = RoUi(Ds(ty)), then for alls > 0,

I) RlUl |:H1 (fl(to) - %S) + to + S:| > RQUQ(DQ(t()) + S);
and ||) RlUl(Dl(tQ) + S) < RQUQ [HQ (fg(to) R28> +to + S} .

 p2

Then theU R rule is optimal.

Recall, f;(ty) = Gi(D;(to) — to) is the fraction of class packets remaining at time,
whereG;(w) is the c.d.f. of the initial delay distribution for clagsThe left-hand (right-
hand) side of condition) is the value ofM (ty + s) (Ms(ty + s)) if the scheduler serves
only class 1 packets from timg to ¢, + s. Conditionii) is the analogous relation if the
scheduler serves only class 2 packets.

Corollary 2: With a uniform initial delay distribution for each class,etb’ R rule is
optimal in the following cases:

BEither of these intervals may have measure zero, e.g., WHes ¢$*t.

¥Which class remains depends on whicht®f' andt$“! is smaller. This in turn depends on the utilities and delay
distributions. IfU; (D) = U2(D) and D} = D}, then for Ry > Ro, t§** < t$**, and so class 2 is the remaining class.
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(1) U(D)=-D?with 3>1andR; > R, > 0.
(2) U(D)=1- P wherek > 0 is a constant ande; > R, > 0.
(3) U(D) is concave and?; > R, > 1.

VI. OPTIMALITY FOR NON-TDM CAPACITY REGIONS

In this section, we consider the optimality of th&R rule for a more general 2-user
capacity regiorC that is a compact, convex and coordinate cofveubset ofR? . For an
arbitrary capacity region, we defid€ to be the set of Pareto dominate rates, ez, dC if
and only ifr € C and there is no othar € C such that’ > r. (All vector inequalities are
component-wise.) We say théthas a strictly convex boundary if for any pairr’ € 6C,
ar+ (1 —a)r’ € oC for anya € (0,1). One example of a capacity regiGnwith a strictly
convex boundary is the achievable rate region for a Gaudsi@adcast channel. A rate
vectorr = (ry,ry) is defined to be in thénterior of §C if r € 6C andr > 0, i.e. both
users receive a positive rate.

With such a capacity region, th€ R scheduling policy selects a rate vectdt) =
(r1(t), r2(t)) at each time such that

2
r(t) = arg rEEaCXZ; \U;(D;(t))]rs. (40)

Note that with the preceding assumptions, this optimizapimblem always has a solution
r € §C, and if C has a strictly convex boundary, then the solution is unidige.a given
capacity region(, at each time, the solution to (40) depends only on the rati¢t) =
1{]1((%(& If C has a strictly convex boundary, then given any peiim the interior of6C
there is a unique value of the ratid(¢) for which r is the solution to (40).

The corresponding optimal control problem in this settiagiven by:

2
mln T
iy [

i=1
7“2(

£i) +1]| at (41)

s

subject to: fi(t) =

fZ(O) — l,ande(Tf) — 0, \V/Z — 1,2,
r(t) €C

BA setx C RY is said to becoordinate convexf x € X implies thaty € X for all y such that0 <y < x.
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Here, the time to drain the systeffy, is generally not the same for all non-idling scheduling
policies. Therefore, this is not a fixed-terminal time pesh| rather, the terminal state is
specified.

The Hamiltonian for this problem is given by

H(E(t),x(t),a(t)) = —Ai(t)r(t) — Aa(t)r2(t),
where 4;(t) = Us(D;(t)) + 22 and the co-state satisfigs(t) = rU;(D;(t))H;:(fi(t)).

qi
Pi
Therefore, the optimal controt;(¢), satisfies

r*(t) = arg I?Eacx(—Al(t)rl — Ay(t)rs), (42)

for each timet. As for (40), this always has a solution that liesd@, and if C has a
strictly convex boundary, then (42) has a unique solutiorech timet; i.e. there are no
singular intervals.

In the case wher€ has a strictly convex boundary, the following propositianeg a
necessary condition for th& R rule to be optimal.

Proposition 3: If the capacity regio has a strictly convex boundary, and at time 0,
the solution to (40) is in the interior @fC, then a necessary condition for theR rule to
be optimal is that there exists a constdatsuch that thé/R rule gives

Ur(Dy(t)) = KUy (Ds(t)) (43)

for all t € [0, T%|.

The proof is given in Appendix IV. At = 0, the solution to (40) depends only on the
utilities through the ratid/(0) = %. The assumption that the solution to (40) is in
the interior of )C and thatdoC is strictly convex implies that there is only one value of
V(0) that will give this solution. This proposition then saysttitae U R rule is optimal
if and only if the U R scheduler gived/(t) = K for all t. This implies that thé/ R rate
allocation is fixed for all timeg. We also note that the same proof applies if only a portion
of C' is strictly convex, as long as the solution to (40) is in theeiior of this region at
t=0.

As an example, consider a system with uniform initial delapg0, 1] for each class,
and U;(D;) = w,U(D;), 1 = 1,2, whereU(D) is the same for both classes and is a
class dependent weight. In this case

Ul(Dl(O)) . wlU(l) w1

UQ(DQ(O)) ng(l) Wa
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so that at time = 0, (40) corresponds to maximizing the weighted sum ratg-(+ wors)
for the two classes. If the maximum weighted sum rate is aellieat an interior point
of 6C, then according to Prop. 3, for tHéR rule to be optimal, it must givé), (t) and
Ds(t) that satisfylU (Dy(t)) = “2U(Daft)) for all ¢. Since the utilities are the same, this
implies thatD,(t) = D,(t) for all ¢, and sof;(t) = f»(t), or equivalently
L
poop
wherer; andr, are the rates that maximize the weighted sum rate for the seosuln

(44)

other words, the line; = Z—;’f’g must intersectC' at the point that maximizes the weighted
sum rate. For a given capacity region and utility weightss tmplies that there is only

one particular ratio op; andp, for which theU R rule might be optimal, and this ratio

must be “matched” to the utility weights.

Proposition 3 provides a necessary condition for &h& rule to be optimal. We have
not shown sufficiency of these conditions in general, but are show this in the following
special case¥.

Proposition 4: Assume both classes have uniform initial delays[@ri] and the same
utility function. If the necessary conditions in Propositi3 are satisfied, then tHéR rule

is optimal in the following cases:
1) The rates selected by ttiéR scheduler satisf% =22=1

p2
2) The utilities are affine, i.el/(D;) = a — bD, for some constants andb > 0.
The proof is given in Appendix V. This can be generalized te thse where the initial
delays are uniform on any intervaD,,;,,, D....]; the first condition then becomépiils =
2= Dmax - szn

P2

VIlI. CONCLUSIONS

We have presented an analysis of a simple scheduling rule fdownlink wireless
data service, which takes into account the utility derivieif each scheduled packet. To
maximize the first-order change in utility, the schedulesades the packet with the largest
product of marginal utility and achievable rate. By assigndifferent utility functions
across users, the scheduler can account for both relatferpnces and channel conditions
across users.

The difficulty is that the problem is not jointly convex in tieentrol and state variables, which precludes appealing
to standard sufficiency results.
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We studied the performance of this scheduler for a fluid dngirmodel where the
utility is a function of delay. Assigned to each packet araratial delay and rate, which
are chosen independently from the corresponding distabsit In this setting we are able
to derive a differential equation, which describes how ddiiag resources, or the total
service time, is split among the remaining packets as tirngrgsses. The performance with
a continuous rate distribution across packets is evaluayeetending the corresponding
analysis with a discrete rate distribution. Performancasuees such as average utility and
delay can be explicitly computed, and a comparison with &tian results shows that the
limiting analysis accurately predicts the performance witdisize systems of interest.

We next looked at the optimal scheduling policy for a systeith o classes of users.
We formulated this as an optimal control problem in which tigective is to maximize
the total utility per packet. Using Pontryagin’s minimuminmiple, we showed that for
a system with a TDM capacity region both the optimal and the scheduling policy
must be exactly the same whenever the service time is spiiteem the two classes.
For a general utility function, the way in which the optimahsduler alternates service
between the two classes may differ from ttiéz rule. However, we specified conditions
on the utility functions, which guarantee that this ordell wé the same, so that tHéR
rule is optimal. These conditions apply for many utility @ions of interest. We also
considered the optimal scheduling policy for a non-TDM aafyaregion with a strictly
convex boundary. In that case, we showed that much strowgelitoons are needed for the
UR rule to be optimal. We provided necessary conditions fas thibe true and discussed
some simple cases where these conditions are also sufficient

In this work, we have not considered dynamically changingneiels and retransmis-
sions, which arise in mobile wireless data systems. THe rule can, in principle, be
modified to take these additional features into accountoéiased modeling and perfor-
mance issues are topics for further study.

APPENDIX |

Proof of Lemma 3:Assume that for a given intervdl = [a,b) as in the lemmaA(t) is
non-increasing o and there exist$; € I such thatA(t;) = 0. According to (37), the
optimal control isa;(t;) = 1 and ay(t;) = 0. We will show that this choice ofy, (t;)
implies that there exists & € I such thatA(t,) > 0, creating a contradiction.
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If «;(t1) fraction of resources is devoted to serving class 1 packethave

A(tl) = M2(t1) — Ml(tl)

) p | = iy (Dat)) Ry |~ Ea(fule)) 22

b1 D2

= Ur(D1(t)) Ry |—Hi(fi(t)) Ry +1].

Taking the derivative with respect to,(¢1), and recalling thatv(t;) = 1 — a4(t1), we
have

d?(itll) _ _Ul(Dl(tl))Hl(fl(tl))g — UQ(DQ(tl))Hz(fQ(tl))% >0,  (45)

sinceU;(-) is concave and7;(-) is increasing. Letvi(t;) be the solution tA(t;) = 0,
which corresponds to the split given by Theorem 1. Siti¢e) is regular, for|Q(t)| = 2
(i.e., both classes are being served) we must ha\e,) < 1. Therefore, from (45),
A(t;) > 0, and sinceA(t) and A(t) are both continuous, for a small enou@h we must
have A(t; + 6t) > 0 andt, = t, + 0t < b. [ |

APPENDIX I

Proof of Lemma 4let t* = inf{¢t : A(t) < 0}. From Lemma 3A(¢) must be strictly
decreasing fot € [0,*). Since A(t) = M,(t) — My(t), we havelM, (t) > Ms(t). Hence,
both the optimal scheduler and theR rule schedule class 1 packets foe [0,t%).

At t*, A(t*) = 0 (otherwise class 1 packets would never be scheduled), dhdr ei
A(t*) < 0 or A(t*) = 0. For the first case (see Fig. 9 (c))\(t) < 0 for all t € (t*,Ty).
Therefore, the optimal scheduler serves only class 2 pad&et < (¢*,7y]. This implies
that class 1 packets must be drained at titeThe U R rule is equivalent to the optimal
scheduler since both switch to serve class 2 packets at the 8met* = t}* = p, /R;.

For the second case, ik(t*) = 0 only at the isolated time* (see Fig. 9 (b)), then
A(t) <0 for all t € (t*,Ty], and the preceding argument again shows tha tRerule is
optimal. Now suppose that a singular interval exists whiefe) =0forallt e [t* s] asin
Fig. 9 (a). From Lemma 3 = inf{t : A(t) = 0}, and therefore¢* = t*. Lemma 2 then
states that thé/ R scheduler is optimal fot € [t*,s), wherea(t) is chosen according
to (15). Fort > s, A(t) < 0, so that all class 1 packets must be served at tifniee.,
s = 19", and fort € [s, T}), both the optimal scheduler and theR rule schedule class 2
packets only. [ |
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Fig. 9. Possible behaviors @k(t) vs. t. (a) showsA(t) = 0 and A(t) = 0, for t € (t*,s) (a singular interval); (b)
showsA(t*) = 0 and A(t*) = 0 (no singular interval); and (c) shows(t*) = 0 andA(t*) < 0 (no singular interval).

APPENDIX |11

Proof of Theorem 2First we show that conditiong§ andii) jointly imply that the utility
function is regular. Given a timg, such thatR, U, (D, (ty)) = RoUs(Dy(to)), let Di(to +
s) = Hy (fl(to) — —s) +to+ s, for s > 0, and letD(to + s) = Ds(to) + s. Similarly,

let D%(to + S) = Dl(to) + s, and D%(to + S) = H, (fg(t()) — —S) + to + s. Next, define
@1(t0 + S) = RlUl(D%(to + S)) — RQUZ(DZ(tO + S)),

and
@2(t0 —+ 8) = RlUl(D%(to + 8)) — RQUQ(D;(tO -+ S))

Note that®,(¢y) = O3(ty) = 0. Conditioni) in the Theorem states thét; (to + s) > 0
for all s > 0. Therefore,

% = RyU1(Dy(to)) {1 - Hl(fl(to))fj — RolUs(Ds(ty)) > 0. (46)
Likewise, from cz):r:ditiorii),

% _ Ry0y(Dy(to)) — Ralla(Da(to)) |1 - H2(f2(t0))§22] -0, (a7)
Let o be the SOTL:JtSion to _
Ra(Di(a) [1 = ) 2] - RallaDatio) 1 - i pteay =0 —
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Comparing (46), (47), and (48), it follows that (48) must &éav unique solutior] that
satisfied) < aj < 1. Therefore, the utility function satisfying conditionandii) is regular.

Second, we show that tHéR rule is optimal for anyl/ (D) satisfying the two conditions.
First recall that by assumption,

A(0) = Uy(D1(0)) Ry — Us(D5(0)) Ry < 0, (49)

which implies that the/ R scheduler begins serving class 1 packets at (. Let t; =
inf{t : A(t) > 0}, where if A(t) < 0 for all ¢, thent, does not exist. If; does not exist,
then A(¢) is non-increasing and the desired result follows from Lemn@herefore, we
assume that, exists in the following. From (49) and the continuity Af(¢), it follows
that if ¢, exists thenA(t;) = 0.

First, we show that it; exists then it must be thak(¢;) = 0. Assume that this is not
true, so that eitheA\(¢;) > 0 or A(¢;) < 0.

If A(t;) > 0, then it follows thatA(¢) > 0 for all ¢ € [0,¢,], and so, the optimal
scheduler would serve only class 1 packets for @l|0,¢,]. However, ifa;(t;) = 1, then
from conditioni), it follows that bothA(t) > 0 and A(t) > 0 for all t € (t,, T]. But this
implies thatA(t) > 0 for all ¢t € [0,T}], which cannot be true, since the class 2 packets
are never served.

Next consider the case, whefg(t;) < 0. That impliesa;(¢,) = 0, and from condition
i), it follows that bothA(t) < 0 and A(t) < 0 for all + € (t;,Ty]. This, however,
contradicts the definition of;.

ThereforeA(t) > 0 for all t < t;. Lett, = inf{t : A(t) = 0}. Fort < t;, A(t) <0,
and soA(t) = 0 for all t € [t,, ], and from Lemma 3A(t) < 0 for all ¢ < t,. It follows
that both theU’R rule and the optimal policy both schedule only class 1 pacKetring
0,%]. Also, the interval(t,, t,] is a singular interval, and so by Lemma 2 both policies
are the same during this interdlWe have shown that until timg both theUR and
optimal policies are the same. For any ¢;, again using conditiomn), it can be seen that
A(t) > 0, and so the optimal policy schedules only class 1 packetss,Th= ¢5**, and
so theU R policy is optimal. [

APPENDIX IV

Proof of Proposition 3:Assume that thé/ R is optimal and that at = 0 the solution to
(40) is in the interior ofsC. Under thelU/ R rule, the delays and hence the rali¢t) vary

"Once again one of these intervals may have measure zero.
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Fig. 10. Example trajectories ak(t) vs. ¢ with A(tl) = 0: (a) showsA(¢1) > 0; (b) showsA(t1) = 0; and (c)
showsA(t1) < 0; Both cases (a) and (b) result in contradictions and so camoeur. Case (b) may only occur if

ty = t5vt,

continuously witht. Therefore, there must exist some time 0 such that the solution to
(40) is in the interior ofiC for all ¢ € [0,%). If the UR rule is optimal, then (40) and (42)
must have the same solution (with the appropriate co-stati@hles). Since the capacity
region has a strictly convex boundary, it follows that we trhuesve
Ui(Di(t)) _ Us(Da(t))
Ai(t) As(t)
for all ¢ € [0,%). From their definitions, it can be seen that for 1,2,
Uz(Dz(t)) d (1)
— =] (D (t .
Aw a0
Therefore, there must exist some constantsuch that for allt € [0, 1),

In <U(D1(t)) + ‘-’1(t)) ~In (U(D2(t)) + C"Z(t)) ~ K.

D1 D2

(50)

It follows that

WDND+m@=w”<WDﬂ»+%®)

D1 D2
for all ¢ € [0, 7). Differentiating and simplifying give® (D, (t)) = e’ U(Dy(t)), or V(t) =

eK' = K for all t € [0,%). To summarize, we have shown that if theR rule is optimal,
thenV (t) = K for someK > 0 for all ¢ € [0,7). Again appealing to continuity, it follows

that V' (¢) = V(0), which corresponds to an interior point &, and thereforé = 7;. B
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APPENDIX V

Proof of Proposition 4:Assume that we have a system where both classes have uniform
initial delays and the same utility function, and assumé tha rate allocation under the
UR rule satisfies the necessary conditions in Prop. 3.(kgtr;) be the resulting fixed
rate allocation under th& R rule. From the discussion following Prop. 3, it follows that
these rates maximize the sum capacity and must satisfy (44).

Consider the following optimal control problem:

2

. mln / Ter fi(t) (51)

subject to: fi(t) = —”(t), i=1,2,
Di
fi(0)=1,andf;(Ty) =0, Vi=1,2

r(t) €C

Notice that this is the same as (41), except for a differefgative function. The solution
to this problem is characterized by the following lemtfa.
Lemma 5:The solution to (51) is given by;(t) = r; for all ¢
Proof: The Hamiltonian for (51) is given by
2

H(f(t), I‘(t), q(t)) — Z T;kfz(t) . Qi(t)

i=1 i

’I“Z‘(t),

and the co-state equations are
%(t) = —7“:,
for ¢ = 1, 2. Therefore an optimal rate allocation for (51) must satisfy
-1t

max Z 4i(0 ri(t), (52)

r(t)eC

for all ¢. Consider setting;(0) = r;. Recalling that; satisfies (44) and maximizes the
sum-rate, it follows that the corresponding solution to)([B2-(t) = (r},r;) for all time ¢.
So, this choice of the co-state and the corresponding ds#tisfy the necessary conditions
for optimality. Furthermore, in (51) both the objective ahe dynamics are jointly convex
in (f(t),x(¢)), which implies that the necessary conditions are also serfitid34]. u

8Note this lemma only applies under the current assumptidnsniform initial delays, the same utility for both
classes, and that the rate allocatiofi, 3) under thel’ R rule satisfies the necessary conditions.
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Continuing with the proof of Prop. 4, let"(t) = 1— ;—t fori = 1, 2. Consider any other
feasible rate allocation(t) = (r1(t),r2(t)), and letf;(¢) be the corresponding fraction of
remaining packets under this policy. Uet(t) = fi(t) — f7(t), so thatr;(t) = r — pihi(t).
Sincer(t) is feasible, it must be that;(0) = h;(Ty) = 0 for i = 1,2. The total utility

under this rate allocation can be bounded as follows:
2

/0 f [—znaw(ﬁ(w +1)

i=1

= [ =300t = )0 + ) + )

> /0 - D (rF = pihul®) U0+ 0+ U (1) + Oma(0)] d,
_/TfZT:U(f:( 1) dH/ Zpl ; t) + 1) dt (53)
- [T oo onwa | TfZPz MOV ) + Ohi(e)dt

where we have used the fact thétD) is concave. In (53) we have bounded the total
(negative) utility under the rate allocatieiit) by four terms, the first term being the value
obtained from thé/ R policy. To complete the proof, we will show that the remagnthree
terms are all greater than or equal to zero. We consider tbecases in the Proposition

dt

separately.
Case 1. ot = ;—‘; =1
In this case,f;(t) = —1 and sof;(t) + ¢ = 1 for all t and for each class Therefore

the termsU (f7(t) +t) and U(f;(t) + t) in (53) are constants for afl For the second

term in (53) we then have
2

/szpz i t)+t)dt = U(l)Z( i/on hi(t)dt)

1=1

1) Zpi (hi(Ty) — hi(0))
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Likewise, for the fourth term in (53) we have

/szpz OV E) + )b sz ([ mohco )

1) sz(hz(i}))2 — (hi(0))*
= 0.

Finally, for the third term in (53) Lemma 5 states that the dixate allocation(r;, r5)

minimizes (51) over all feasible rate allocations. Frons thifollows that
2 2

— /OTf erU(fi*(t) +t)hi(t) dt = (=U(1)) /OTf Zr;hi(t) dt > 0,

and so the third term in (53) must be non-negative, which detap the proof for the first
case.

Case 2. U(D) =a—bD
In this casel/(D;) = —b is a constant; therefore we can use the same argument as in
the first case to bound the fourth term in (53). For the secenu in (53), we have

Tf Tf *
/Zpu t)+t)dt = /Zpu {a—b(l—itﬂ)]dt

bi

_ ;pi [(a —b) /OTf ho(t) dt — b (1 - ;_) /OTf hi(t)tdt}
_ 22: (—b(pi — ) /O v hi(t)tdt) (54)
— Z ( (r; — pi) /OTf hi(t) dt) , (55)

where (54) follows by the same argument as in case 1, and ¢8bE from integrating
by parts and using the fact thaf(0) = h,(7) = 0. Combining this with the third term in
(53) yields the ternd fOTf Zlep,-h,-(t) dt = y. Since% = ;_2 it follows that the fixed rate
allocation(rj, r5) also minimizestTf Zle pifi(t) dt over all feasible rate allocations, and
soy > 0. The desired result for case 2 then follows. [ |
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