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Abstract—Motivated in part by the success of WiFi, there has
been much interest in opening up new “prime” bands of spectrum
for unlicensed use. Such bands can lower the cost for new wireless
service providers to enter a market. The increased competition
could in turn improve economic welfare. However, the openness of
such spectrum can also lead to it becoming over congested, which
in turn could deter investment. Indeed, a recent paper shows
that due to the risk of congestion, only a single service provider
may invest in a given unlicensed band and charge monopoly
prices. However, that paper considers only a single band of
unlicensed spectrum. In this paper, we consider investment and
competition when there are multiple unlicensed bands available.
In such a setting, each service provider could either invest in a
single band or spread its investment over multiple bands. We
consider a two-stage game for such a setting, in which firms first
decide investment levels and second compete for customers by
announcing prices for their service. The equilibria and resulting
welfare of this game are characterized.

I. INTRODUCTION

Due in part to the scarcity of wireless spectrum and the
success of WiFi, there is much interest in expanding the
amount of unlicensed spectrum. In particular, there has been
interest in opening up “prime” spectrum with better propaga-
tion characteristics for unlicensed access, which would enable
unlicensed providers to serve a larger number of customers per
access point. Indeed, the TV white spaces in the U.S. are an
example of one such band that is now available for unlicensed
use (though only in areas where incumbent TV stations are
not present) [1].

A leading argument for unlicensed spectrum is that not
requiring expensive licenses will lower the barrier to entry
and thus increase competition, benefiting consumers and the
overall economy. However, though licenses are not required,
firms still must invest in infrastructure to offer services. The
openness of an unlicensed band can also lead to the band
becoming over congested if too many firms invest. However,
the risk of this occurring could also deter firms from investing
or instead could motivate them to invest in better technology.
The goal of the paper is to study such issues when there are
multiple bands of unlicensed spectrum available for firms to
invest in.

Our approach in this paper is based on the model in [3] and
[4], which study models for investment and price competition
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in a single band of unlicensed spectrum. This in turn was based
on [2], which adapted models of competition with congestible
resources from the economics literature and operations litera-
ture (e.g., [5], [6]) to study price competition with a single
band of unlicensed spectrum, assuming all investment was
sunk. Related models have also been applied in [6], [7] to
study price competition with shared spectrum.

In [3] and [4], investment and price competition was mod-
eled as a two-stage game among a set of wireless service
providers (SPs). The SPs first simultaneously make investment
decisions and then compete for customers by announcing
service prices. The main result of [3] and [4] is that with
a single band of unlicensed spectrum in many cases the only
(pure strategy) equilibria of this game is for only one SP to
invest and to charge monopoly prices. In other words, making
a band open does not necessarily lead to greater competition.

In this paper, we generalize [3] and [4] by considering
models where there are multiple bands of spectrum available
and a service provider must decide how much to invest in each
band as well as what price to charge for service in that band.
This is of interest both because in practice there are multiple
bands of unlicensed spectrum available and having such bands
may allow multiple providers to enter the market, for example
by different providers deciding to invest in different bands.
Indeed, our analysis will show that such equilibria are possible.
However, we will also show that there may also still be
equilibria in which a single monopolist emerges.

The rest of the paper is organized as follows. Our model
is described in Section II. We then begin by studying the
investment and pricing decision that a monopolist would make
given two bands of spectrum. Following this we consider the
problem when there are multiple competing SPs in Sections IV
and V. Finally, we conclude in Section VI.

II. MODEL

A. A Two-stage Game

As in [3], we consider a two-stage investment and price
competition game where SPs first invest in their service and
then compete for the same pool of customers by announcing
prices. For most of the paper we assume that there are N
SPs in the market who may invest in two bands of unlicensed
spectrum, denoted by A and B, though most of the results



can be generalized to more than two bands. The SPs simulta-
neously invest in the first stage, where IAi and IBi denote the
investment by SP i in band A and B, respectively. In particular,
each SP i can choose to not invest at all, to invest in only one
of the two bands, or to spread their invest across both bands.
After making their investment decisions, each SP i announces
prices, pAi and pBi , respectively, for their service in band A and
band B. Note we allow the SPs to announce different prices
in each band and thus view each band as offering a distinct
service. For each SP i, its ultimate goal is to maximize its
total profit, fi, which is the difference between revenue and
expenses across the two bands, i.e.,

fi =
∑

K∈{A,B}

fKi =
∑

K∈{A,B}

pKi x
K
i − cIKi .

Here, xKi is the number of customers the ith SP serves in band
K (where K ∈ {A,B}). We call a SP is active in band K if
IKi > 0. If an SP is inactive in band K, i.e., IKi = 0, then its
profit in band K is zero.

1) Supply: As in [3] customers select bands based on not
only the announced prices but on the quality of service they
can obtain in each band. We model this via a congestion cost
for the customers of SP i in band K, which is given by
g(xK , IKi ,W

K), where xK =
∑

i x
K
i , is the sum of xKi , the

customers served in band K by SP i, and WK is the bandwidth
of that band. In general g will be increasing in xK , the total
traffic of all SPs, reflecting the fact that the unlicensed band
is shared by all SPs. Further we assume that g is decreasing
in Iki and WK . Hence, for each SP, more investment lowers
the congestion its customers experience thus allowing it to
charge higher prices or serve more customers. For this paper
we consider the specific example where g(xK , IKi ,W

K) =

g( xK

IKWk ). An example of this for a single band is shown in
Fig. 1. Further, for the case where the two bands have the
same bandwidth, we set WK = 1 to simplify our notation.1

2) Demand and Equilibria: Customers select a single
SP and band from which to receive service (or choose
not to be served). Given the announced prices, p =
(pA1 , p

A
2 , ..., p

A
N , p

B
1 , p

B
2 , ..., p

B
N ), and congestion costs based

on investment, I = (IA1 , I
A
2 , ..., I

A
N , I

B
1 , I

B
2 , ..., I

B
N ), from all

SPs, each customer chooses the one SP in one band with the
smallest delivered price, which is the sum of announced price
and congestion cost each customer experiences from that SP
in that band. Hence, for SP i, its delivered price in band K is
given by pKi + g(xK , IKi ,W

K) (again see Fig. 1).
We assume a unit mass of customers whose demand is given

by a downward sloping function D(p) with inverse function
P (q). That is up to a mass of q customers are willing to pay de-
livered price P (q) for the service. Generally we assume P (q)
is concave and decreasing. Each customer is infinitesimal so
that a single customer has a negligible effect on the congestion
in any band. Hence, given the investment and price of every
SP, (I,p), the demand vector x = (xA, xB), is assumed to

1It can be seen that from the following that this assumption is without loss
of generality if we appropriately adjust the investment cost c of each SP.

satisfy the following Wardrop equilibrium conditions [9]:

pKi + gi(x
K) = min

i∈N
(pKi + gi(x

K)), for i ∈ N with xKi > 0,

pKi + gi(x
K) = P (X), for i ∈ N with xKi > 0,

pKi + gi(x
K) ≥ P (X),∀i ∈ N.

Here X =
∑

K∈A,B x
K and gi(xK) = g(xK , IKi ,W

k). These
conditions specify that the delivered price of all SPs serving
customers are equal and no greater than P (X). A (Nash)
equilibrium of the overall game is one in which the customers
are in a Wardrop equilibrium and no SP can improve their
profit by changing either their investment or price.2 Further,
to ensure that equilibria exist we make the assumption that if
one SP announces a zero price in a band for which another
SP is announcing a strictly positive price, then the former SP
will serve zero customers.

At an equilibrium, the welfare obtained by the xth customer
is the difference between the delivered price it pays and the
amount it is willing to pay, given by P (x). The total consumer
welfare is the integral of this over all customers. The total
welfare of the market is the sum of the consumer welfare and
the SPs’ profits.

B. Investment in a Single Band

The next lemma summarizes some results from [3] for the
same investment and pricing game with a single unlicensed
band and congestion cost g( x

Ii
).

Lemma 2.1: Given two SPs competing in a single band
with investment vector (I1, I2) and price vector (p1, p2), in
equilibrium, the following conditions hold: (i) If I1 = I2,
then p1 = 0, x1 > 0, p2 = 0 and x2 > 0. (ii) If I1 > I2 > 0,
then p1 > 0, x1 > 0 and p2 = 0, x2 = 0.

This lemma shows that the only profitable way for a SP to
invest and offer service is if it invests more than its competitor.
Indeed, it follows that if an equilibrium exists in the overall
game, then it must be one in which a single SP invests and
acts as a monopolist.3

Here, we differ from [3] in that there are two bands of
spectrum available and each SP can invest in one or both
bands. Assume there are two SPs in the market, then it follows
directly from Lemma. 2.1 that if both SPs invest in the same
band, then only the one with the larger investment can make
a profit. Hence, such an investment profile will never exist in
equilibrium. However, now the two SPs can each invest in a
separate band, in which case this lemma does not apply.

C. Discussion

Before continuing we briefly discuss some of the assump-
tions in our model. No fixed cost was associated with invest-
ment, i.e., there is only the variable costs associating with
improving the service quality of an SP’s customers. Adding a

2More precisely we consider subgame perfect Nash equilibria so that for
any fixed investment profile, the SPs all charge prices which are an equilibrium
of the corresponding pricing sub-game.

3Under some additional conditions given in [7] it is shown that such an
equilibrium does exist.
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Fig. 1. Illustration of two-stage investment game with single SP and single
band.

fixed cost per band, could incentivize providers to only invest
in one band (to reduce their fixed costs). We did not adopt such
a model as we wanted to isolate how the competition among
providers affected each SP’s investments. In addition, we did
not model any economies of scale that a provider might have
either within a given band or across bands, i.e., the marginal
cost for investment is constant. Again this enables us to focus
on how competition affects a SP’s investment decisions in a
simple setting.

The congestion cost we consider, i.e., g( xk

Ik
i
Wk ), is one

where each SP’s investments reduce the congestion seen by
their own customers, but do not effect the congestion of
other SPs’ customers; for example this could model an uplink
scenario where a SP invests in adding sectors at its access
points. As discussed in [4], there are several other ways that
investment could be modeled in terms of how investment
decisions affect the congestion costs for users of each SP.
The results we obtain from this paper also hold for some of
these other modes, but the details are omitted due to space
considerations.

III. MONOPOLY INVESTMENT WITH TWO BANDS OF
SPECTRUM

In this section, we consider a monopoly scenario, i.e., only
one SP exists in the market. Given two bands available, the
monopolist can choose to invest solely in either band or in
both. To maximize its profit, it solves:

max pAxA + pBxB − c(IA + IB)

subject to pA + g(xA/(IAWA)) = P (xA + xB),

pB + g(xB/(IBWB)) = P (xA + xB),

0 ≤ xA, xB ≤ 1,

IA, IB ≥ 0.

This problem can be re-written so that if the monopolist
uses a given band, its investment decision in that band is
simply to maximize the term ∆(x/(IW )) = g(x/(IW )) +

(c/W )((IW )/x). Let t = x/(IW ) , then ∆ can be re-written
as

∆(t) = g(t) + c/(Wt).

We can then view the monopolist as optimizing over the prices
(or equivalently the x values) and the t-values for each band.
Further, if it invests in a given band then the optimization over
t is simply given by solving ∆∗ = mint≥0 ∆(t), which is a
convex problem for our model. The solution to this problem
depends on the bandwidth W . Next we consider two cases for
these parameters: one where they are the same for each band
and one where they are different.

A. Two Homogeneous Bands

If the two bands have the same bandwidth, i.e., WA =
WB = 1, then if the SP invests in both bands, each band will
have the same value of ∆∗. Hence, its profit optimization can
be written as :

max (P (xA + xB)−∆∗)(xA + xB)

subject to 0 ≤ xA, xB andxA + xB ≤ 1.

Letting x = xA +xB , then it can be seen that this problem is
equivalent to solving

max (P (x)−∆∗)x

subject to 0 ≤ x ≤ 1.
(1)

This problem has a strictly convex objective function and a
convex, compact constraint set and so has a unique solution,
given by solving the equation P (x)′x+P (x) = ∆∗(t∗), where
x is the total customers served. Then the investment can be
found by solving xA/IA = xB/IB = t∗ and xA + xB = x.
Note that these equations have multiple solutions. For exam-
ple, the SP could divide the traffic evenly between the two
bands, yielding IA = IB = x/2t∗. If the SP invests in only
one band, e.g., band A, then its optimization is again given by
(1), where now x denotes the traffic served in the one band
the SP invested in.

Clearly this has the same solution as in the two bands case.4

An illustration of these two equilibriums is shown in Fig. 2.
Moreover, since the total customers served are the same, it
follows that consumer welfare and social welfare are identical
as well, as summarized next.

Lemma 3.1: With two homogeneous bands, a monopolist is
indifferent between investing in one band or investing in both
bands; moreover, both result in the same consumer welfare
and social welfare.

B. With Two Heterogeneous bands

In this section we assume that WA > WB . For each band
K, let

∆K(t) = g(t) + c/(WKt),

4One might wonder why the single-band result does not follow directly
from the multi-band result by letting xB and IB go to zero. However not
that the reformulation using ∆ only applies for IB > 0 and so this limiting
case needs to be treated separately.
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Fig. 2. Illustration of the investment game with single SP and two bands.
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Fig. 3. Equilibrium of two SPs investing in one separate band.

and let ∆∗K = mint≥0 ∆K(t), which as before gives the
monopolist’s optimal investment if it uses band K. Since
∆K(t) is convex, the solution to this minimization is given
by the first order optimality condition: g′(t)t2 = c/WK . From
this it follows that the minimum value t∗K is decreasing in W k.
It follows that

∆∗K = g(t∗K) + g′(t∗K)t.

As g(t) is convex and increasing in t, ∆∗K(t∗) is also an
increasing function of t∗. Using the fact that t∗K decreases
with WK , it follows that the band with larger value of WK will
always yield a smaller value of ∆∗K and thus the monopolist
will always obtain a larger profit by investing in that band
over investing in the other band. Similarly, this will always be
more profitable than investing in both bands.

Lemma 3.2: With two heterogeneous bands, a monopolist
will only invest in the band having the larger bandwidth.

IV. DUOPOLY INVESTMENT GAME

In this section, we consider a scenario with two SPs and
two identical bands. From Lemma. 2.1, we know that with a

single band only one SP can be active in any equilibrium. This
is true for two-bands as well. With this restriction there are
two possible types of equilibria. In one type, each SP invests
in a different band and the two SPs compete. In another type
of equilibrium, a single SP invests in both bands and acts
like a monopolist. The next theorem shows that both types of
equilibria may exist.

Theorem 4.1: In a duopoly investment game with two ho-
mogeneous bands, there are only two types of equilibria that
may exist: one where each SP invests in a different band and
one where a single SP invests in both bands. The first type of
equilibrium always exists; a sufficient condition for the second
type of equilibrium to exist is if

P (x∗) ≤ ∆∗,

where x∗ is given by finding the value of x such that P (x) =
g(x/IM ) with IM being the monopolist investment level.

Proof: We begin with the existence of the first type of
equilibrium in Theorem. 4.1. In equilibrium, suppose SP 1
invests IA1 in band A and announces price pA1 serving x1

customers with profit f1 while SP 2 invests IB2 in band B
and announces price pB2 serving x2 customers. To show this
is an equilibrium, consider a deviation in investment by SP
1, with SP 2’s investment strategy fixed. Suppose that SP 1
deviates by investing a total amount I1, which is divided into
αI1 and βI1 for band A and B respectively, where α+β = 1.
Suppose after doing this SP 1 serves xA1 and xB1 customers in
equilibrium (for the pricing subgame), with xA1 + xB1 = x̃1.
Then the new firm profit, f̃1, for SP 1 is given by

f̃1 = P (xA1 + xB1 + x̃2)(xA1 + xB1 )− [g(
xA1
αI1

)xA1

+ g(
xB1 + x̃2

βI1
)xB1 ]− (α+ β)cI1.

(2)

Here, x̃2 is the traffic SP 2 serves in the new equilibrium of
the pricing sub-game. As in equilibrium, x1 > 0, thus we have

f̃1 < P (x̃1 + x̃2)x̃1 − [g(
xA1
αI1

)xA1 + g(
xB1
βI1

)xB1 ]− cI1

≤P (x̃1 + x̃2)x̃1 − g(
xA1 + xB1
(α+ β)I1

)x̃1 − cI1

=P (x̃1 + x̃2)x̃1 − g(
x̃1

I1
)x̃1 − cI1

≤f1.

(3)

The first inequality follows since dropping SP 2’s traffic only
reduces the congestion cost, the second inequality is shown in
the appendix, and the final inequality follows since for f1 to
be an equilibrium it must be that it maximizes SP 1’s profit
given that it invests only in band A (given SP 2’s strategy is
fixed).

The above shows that SP 1 will have no incentive to shift its
investment from the conjectured equilibrium. The same goes
for SP 2. Thus each SP investing in one separate band is an
equilibrium as shown in Fig. 3.



Next we turn to the second type of equilibrium where only
one SP, e.g., SP 1, is active and invests in both bands, for
example by investing IM/2 and serving xM/2 customers in
each band. If this was not an equilibrium then SP 2 would want
to enter the market and compete with SP 1 in one (or both)
of the bands). From Lemma 2.1 it follows that SP 2 would
need to invest more than SP 1 in one band (i.e., more than
IM/2). Once, it does this, since SP 1’s investment is sunk, the
resulting price competition would drive SP 1’s price to zero,
meaning that the delivered price can be no more than P (x∗)
as defined in this theorem. Furthermore, SP 2’s revenue for
each user served can not be more than the difference between
the delivered price and ∆∗, where ∆∗ is calculated as in the
monopoly case. It follows that if ∆∗ > P (x∗) such a deviation
will not be profitable and SP 2 would not enter the market.

The next result shows that when the congestion cost is
linear, i.e., g(x/I) = x/I , both types of equilibria exist.

Theorem 4.2: In a duopoly investment game with two ho-
mogeneous bands, if the congestion is linear, then both types
of equilibria always exist.

The proof of this is shown in the Appendix.
An example of the firms’ profits, customer welfare and

social welfare for both types of equilibriums are shown in
Fig. 5, where both congestion cost and inverse demand are
linear, i.e., g(x/I) = x/I and P (x) = 1−x. As the marginal
investment cost c grows, all of these welfare measures decrease
for both equilibria. The corresponding equilibria investment
levels, customers served and prices are shown in Fig. 6. In the
monopoly case, when c is zero, the monopolist will invest
as much as possible to get the maximum profit which is
capped at 0.25 due to assumed demand curve (and the fact
that only a single price is used). However, in the duopoly
case, when c is zero, i.e., there is no investment cost, each
SP’s investment are interestingly capped by 1.3 and the total
profit gained is capped by 0.15 which is significantly lower
than the monopoly case. However, this drop does not benefit
the customers when c = 0, i.e., both equilibria have the same
consumer welfare. What is happening in the duopoly case
is that the threat of competition prevents the the SPs from
investing too much even though there is no cost for investment.
In particular it can be seen that if the SPs invested an arbitrarily
high amount, this would be then become a classic Bertrand
model and neither provider would get any profit. In Fig. 5,
although the duopoly case provides more consumer welfare
when the marginal investment cost is small (but not zero),
the consumer welfare for the monopoly case goes above the
duopoly case when the investment cost becomes large. Also
in Fig. 6, with large marginal cost c, the monopolist will serve
more customers than in the duopoly scenario while asking a
price close to 1/2. However, the price goes to zero for the
duopoly case.

When two service providers invest in two heterogeneous
bands with different bandwidths, the equilibria will highly
depend on the available bandwidths in both bands and the cor-
responding marginal investment cost for SPs, c. For instance,
given linear demand and congestion costs as P (x) = 1 − x
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Fig. 4. Comparison of the two-stage game in case of monopoly and duopoly.
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Fig. 5. Welfare analysis in duopoly game w.r.t. investment marginal cost c
where B1 = B2 = 1.

and g(x/I) = x/(WKI), with two different bandwidths, WA

and WB , there is no investment when both the marginal
cost and bandwidth ratio exceeds 1, i.e., c/WA > 1 and
c/WB > 1. If both ratios are under 1/4, then there exists an
equilibrium where both service providers invest in separate
bands. However, when one band has large bandwidth and
marginal cost ratio while the ratio for the other one is small,
i.e., c/WA < 1 and c/WB > 1, only one service provider
will invest in band A and the other service provider will not
invest, leaving band B empty.

V. MULTIPLE SPS AND SPECTRUM BANDS

In this section, we consider a setting when there are n
identical bands available with n SPs. Extending our previous
results, there exists one equilibrium where each SP invests in
one band where no two SPs invest in the same band. In that
case, each SP i (i=1,2,...,n) solves the following optimization
problem:

max pixi − cIi
subject to pi + g(xi/Ii) = P (x1 + x2 + ...+ xn)

0 ≤ xi ≤ 1, Ii ≥ 0,∀i.



0.2 0.201 0.202 0.203 0.204
c

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

c
 

 
Duo:total investment
Duo:total customers
Duo:price
Mon:investment
Mon:total customers
Mon:price

Fig. 6. Comparison of the two NEs in duopoly game w.r.t. investment
marginal cost c.

x* 

g(x*/IM) 

   P(x) 

g(2x/I1) 

price 

customers(x) 

g(2(x-x1)/IM) 

∆1
∗ 

∆2
∗ 

Fig. 7. Illustration of an equilibrium with multiple bands.

Again the number of customers each SP serves satisfies

P (x1 + x2 + ...+ xn) + P ′(x1 + x2 + ...+ xn)xi = ∆∗.

This equality holds for any SP which shows that all of them
serve an equal number of customers, i.e, x1 = x2 = ... = xn.
For each SP, the firm profit can be written as fi = (P (x1 +
x2 + ...+ xn)−∆∗)xi = −P (nxi)x

2
i , which decreases with

n. Thus although more bands are available, each firm gains
less profit with more SPs active in the market. We summarize
the result in the following lemma.

Lemma 5.1: When n SPs are active with n identical bands
of spectrum, each SP’s profit decreases with n.

Similar to the two-band case in the previous section, there
can exist another equilibrium where only one SP is active
across all bands, and in fact there can be other equilibria where
some SP’s are active on disjoint subsets of the bands, and
others are inactive. For two symmetric bands, we showed that,
a sufficient condition for such an equilibrium to exist is that
for any active band P (x∗) ≤ ∆∗, which ensures that no other
SPs have an incentive to enter the market. This condition holds

here as well as shown below. 5

Lemma 5.2: With n symmetric bands of spectrum, there
exists an equilibrium where only one firm enters the market
if the following condition holds:

P (x∗) ≤ ∆∗

where x∗ satisfies P (x∗) = g(x∗/IM ) and ∆∗ =
mint g(t) + c/t.

This can be derived the same way as in the two-band case.
Note that the condition in the Lemma does not depend on
n. This is because for any n an optimal investment of a
monopolist that uses n bands is to invest equally in all n bands
and serve the same traffic in each. For the given congestion
cost, the monopolist can make the same profit by investing n
times that amount in one band and serving all the traffic in
that band. Hence, the amount a monopolist will invest does
not vary with the number of bands n and neither does the
minimum delivered price it can offer given that investment,
which is P (x∗).

VI. CONCLUSIONS

In this paper, we analyzed a two-stage investment and
pricing game with multiple bands of unlicensed spectrum.
Given two identical bands, we showed that a monopolist
would be indifferent between investing in one band or both.
When faced with competition, two different types of equilibria
can emerge - one in which different SPs invest in different
bands and one in which a single SP invests in both bands
and acts as a monopolist. The former generally yields higher
consumer welfare, but smaller firm profits and overall welfare,
though interestingly for large investment costs the monopolist
equilibrium may yield higher consumer welfare.

One direction for future work is to consider different models
for how investment effects congestion costs as in [4]. Another
direction is to consider multiple rounds of investment (as a
repeated game). In this case new strategic interactions are
possible, such as a firms over investing in one stage to prevent
another firm from entering at a later stage.
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APPENDIX

A. Proof for Section III-B

In Sec. III-B, to maximize the firm profit, we obtain the
following equation by plugging in the first two equality
constraints into the objective function,

f = P (xA + xB)(xA + xB)− xA(g(
xA

IAWA
) +

cIA

xA
)

− xB(g(
xB

IBWB
) +

cIB

xB
)

= P (xA + xB)(xA + xB)− xA(g(
xA

IAWA
) +

c

WA

IAWA

xA
)

= − xB(g(
xB

IBWB
) +

c

WB

IBWB

xB
)

(4)

It follows that to maximize the profit, the monopolist needs
to minimize ∆ = xK(g( xK

IKWK ) + c
WK

IKWK

xK ), where K ∈
{A,B}.

B. Proof for Section IV

Lemma A.1: Assume the congestion costs function g(y) is
increasing, convex, then the following result holds,

g(
x1

αI
)x1 + g(

x2

βI
)x2 ≥ g(

x1 + x2

I
)(x1 + x2),

with α+ β = 1.
To see this, we first let f(x) = g(x/I)x. It follows that

g(xA1 /αI)xA1 = αf(xA1 /α) and g(xB1 /βI)xB1 = βf(xB1 /β).
Also it can be shown that f(x) is convex in x given the convex-
ity and monotonicity of g. Hence, αf(xA1 /α) + βf(xB1 /β) ≥
f(xA1 + xB1 ). This completes the proof of the lemma.

C. Proof for Theorem 4.2

It has been shown that the monopoly equilibrium exists
under the condition that P (x∗) ≤ ∆. To see the linear
congestion satisfies this, it is sufficient to show g(x∗/IM ) ≤
∆, i.e., x∗/IM ≤ ∆. In the monopoly equilibrium, the
investment and number of customers have the property that
xM/IM = t∗, where t∗ is the minimizer for g(t) + c/t.
It follows that t∗ satisfies g′(t∗)t = c/t, i.e., g(t) = ∆/2.
Given that the monopolist invest in IM while serving xM
customers, it follows that g(xM/IM ) = ∆/2. Since g(x/I)
is linear, we have that g(2xM/IM ) = ∆. Let x∆ be the
number of customers that satisfies P (x∆) = ∆. Thus to show
g(x∗/IM ) ≤ ∆, it is sufficient to show that g(x∆/IM ) < ∆.
In other words, xM > x∆/2. We will show that this is true

due to the optimization objective of the monopolist. By plug-
ging in the constraints and taking derivative of the objective
function, it follows that P (xM ) + P (xM )′xM = ∆. Given
that ∆ = P (x∆), we have P (xM ) + P (xM )′xM = P (x∆).
Due to the concavity and monotonicity of the inverse demand
function P (x), it follows that xM ≥ x∆, which establishes
the needed inequality.


