
Spot Markets for Spectrum Measurements
Arnob Ghosh

Industrial Engineering Dept.
Purdue University, West Lafayette IN

ghosh39@purdue.edu

Randall Berry
Dept. of Electrical and Computer Engineering

Northwestern University
rberry@ece.northwestern.edu

Abstract—The recent framework for spectrum sharing in
the 3.5 GHz band allows for Environment Sensing Capability
operators (ESCs) to measure spectrum occupancy so as to enable
commercial use of this spectrum when federal incumbent users
are not present. Each ESC will contract with one or more
Spectrum Access Systems (SASs) to provide spectrum occupancy
data. Commercial firms using the band will in turn contract with
a SAS to determine when it can access the spectrum. Initially,
the decisions of which ESC and SAS to partner with will likely
be based on long-term contracts. In this paper, we consider
an alternative framework, in which an ESC sells its spectrum
management information via a spot market so that from period-
to-period a commercial user can select a different ESC from
which to acquire spectrum measurements. We develop a game
theoretic model to analyze such a market and show that using
such a spot market may better enable multiple commercial firms
to operate in a given spectrum band. We also show that this
increased competition may not benefit consumer surplus unless
firms adopt a non-stationary strategy profile.

I. INTRODUCTION

Recently, the U.S. FCC has finalized plans for the Citizens
Broadband Radio Service (CBRS) [1]. These plans enable
commercial users to use the 3.5GHz band (3550-3700 MHz)
when incumbent users (e.g., federal users and fixed satellite
users) are absent. Accessing this band in a given location is
to be controlled by one or more Spectrum Access Systems
(SASs), which are geographic databases that contain infor-
mation about the locations and spectrum utilization of users
of this spectrum. It is envisioned that in many areas, multiple
companies will operate approved SASs.1 Companies wishing
to offer service in that band must then register with one
SAS. Additionally, each SAS can utilize an Environmental
Sensing Capability operator (ESC). An ESC will deploy a
network of sensors to detect the presence (or absence) of
federal incumbent users, enabling firms to better utilize the
spectrum than would be possible under more conservative
exclusion zones. Again multiple ESCs may operate in a given
location.2

An interesting feature of the CBRS ecosystem is that there
are multiple levels of competition that may emerge. At one
level, one or more ESCs may compete to sell their spectrum
measurement data to different SASs. Different SASs may in
turn compete to sell their service to different firms seeking
to utilize the spectrum. Finally, these end firms may compete
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1In the first round of applications, six different companies requested FCC
approval as SAS operators [2].

2In the first round, three different ESCs were approved by the FCC [3].

with each other to offer wireless services to end users. Here,
following [4]–[6], we consider a reduced model of such an
ecosystem in which ESCs seek to sell spectrum measurements
to Spectrum Access firms (SAs) who in turn serve end users.
In particular, we do not explicitly model the SAS tier. One
can view this as a model in which either the ESC and SAS act
as a single company or one in which a SA represents a SAS
operator that directly serves many small customers. For such
a reduced model, [4]–[6] studied the resulting competition in
a static model, i.e., in a model where each SA needed to select
a single ESC to use over the time period of interest. In this
paper, we consider an alternative market structure in which
ESCs sell their measurements via a spot market, so that an SA
may dynamically change which ESC it purchases spectrum
measurements from over time. Our goals are to understand the
potential economic impacts of such a market structure. Would
this improve consumer welfare? Would it result in more or
less competition? Would promoting such a market be a useful
policy to adopt?

We adopt a model similar to that in [4]–[6] in which two
SAs in a given area compete to serve a common pool of end
users using a shared band of spectrum (e.g. this could model
the Generalized Authorized Access (GAA) tier in CBRS).
At each time-period, to serve customers an SA must first
purchase spectrum measurement data from an ESC. In [4]–
[6], this ESC selection was a one-time static decision. Here,
instead of a long term contract, we consider a scenerio in
which the ESCs sell their information in a spot market. To
model a spot market, we first consider the case in which each
SA adopts a stationary randomized strategy that specifies the
probability of it acquiring information from any of the ESCs
in the market at each time period. We also allow for the
possibility that a SA may opt to not obtain any information
with a non-zero probability at a given instance of the market.
If a SA does not obtain information from any of the ESCs,
we assume that it can not offer service to the customers.
Compared to the static case, in [4]–[6], allowing for such
randomized strategies significantly complicates the analysis
as the resulting profit functions are non-convex in the ESC
selection probabilities. We subsequently also consider non-
stationary strategies by viewing the SAs as playing a repeated
game.

Given the SA’s ESC selection strategy, the two SAs in turn
compete to serve end-users. To model the competition among
the SAs we adopt a similar framework as that used in [7]–[14]
to study competition among wireless service providers using



unlicensed and/or licensed spectrum. This in turn is based
on models used to study price competition with congestible
resources (e.g. [15], [16]). As in these models, we assume
that there is a continuum of non-atomic users who in turn
select a SA based on the expected payoff of the service.
The payoff of service in a given time-slot is given by the
difference between the value obtained from service and the
sum of the announced service price and a congestion cost
that increases in the number of users using the shared band
of spectrum (modeling the quality of service received by the
users). During times when a SA is unable to serve customers
(due to not obtaining information or due to the spectrum not
being available) the value its customers receive is zero. The
expectation is then taken over time and depends on the SA’s
ESC selection strategy and the information obtained from the
ESCs. Users then seek to subscribe to the SA offering them
the largest expected payoff. Here, we assume that the pricing
and user subscription decisions are done on a slow time-
scale and so model these as static one-shot decisions. One
motivation for this is that due to the larger size of the market
for end users, having a spot market for wireless service may
be more challenging. Also, this is in-line with current practice
in which users make long-term decisions on wireless service
providers.3

We analyze the resulting multi-stage game and seek to
characterize its sub-game perfect equilibria, Assuming that the
SAs adopt stationary ESC selection policies, we show that
the resulting (second stage) price competition has a unique
equilibrium that we characterize (Theorem 1). Using this, we
then turn to study the first stage ESC selection policy. Our
analysis shows that there is no equilibrium where both the
SAs obtain information from the same ESC with probability
1 (Theorem 2). When there is only a single ESC in the market,
we show that the only equilibrium that is possible is where one
of the SAs obtains information from the ESC with probability
1, and the other SA (say, k) obtains information with some
probability less than 1 (Theorem 3)). The probability that
SA k obtains information decreases as the users’ valuations
increase and may be zero in some cases. Note that for the
static market studied in [4], [5], it was shown that multiple
SAs will not ever enter a market if there is a single ESC. In
contrast, in our spot-market setting both the SAs can co-exist,
though, one of the SAs may opt to not obtain information
with a non-zero probability. In other words, a spot market can
help to encourage competition in the SA tier of the market.
However, our analysis also reveals that the end user’s do not
benefit from this increased competition. Even though multiple
SAs may exist in the market, the user surplus is always zero.
If we allow for non-stationary strategies this may change.
Namely, we shown that in an infinitely repeated game, there
exists an equilibrium strategy profile where the user’s surplus
is positive. In that equilibrium strategy profile, the two SAs
take turns in purchasing information from the ESC so that in
a given time-slot only one purchases information.

We also consider a setting in which there are two ESCs

3Considering a spot market for wireless service is also of interest, but left
for future work.

in the market, which may offer different quality of spectrum
measurements at different costs. In such a setting, we show
that despite this increased competition, the users’ surplus
remain zero (Theorem 6). This can be contrasted with the
one-time static market in [4], [5], where with two ESCs,
user surplus can be positive. Hence, from a user surplus
perspective, a longer term market may be preferred to a spot-
market. Another distinction with the static one-time market
in [4], [5] involves the equilibrium ESC selection. In the
static case, the only equilibria in which both of the SAs enter
the market are those in which each obtains information from
a different ESC. For a spot-market, we show that multiple
SAs may obtain information from the same ESC if a certain
normalized cost of obtaining information from that ESC is
not higher compared to obtaining information from the other
ESC (Theorem 5). Thus, a spot market may not support
competition among ESCs as well as a longer term static
market.

Our work enriches the growing literature that studies the
role of information acquisition on competition. For example,
[17] considers acquiring information about a competitor’s
supply in a spectrum sharing scenario, and [18] studies firms
that can acquire information about customer demand from a
third party. The question of whether firms should share infor-
mation with competitors has also received attention (e.g [19]).
Another line of related work addresses issues around the
design of the ESC and SAS infrastructure. This includes
work on sensor deployment (e.g. [20]), channel assignments
(e.g. [21], [22]) and work on privacy issues raised by such
networks (e.g. [23], [24]).

II. SYSTEM MODEL

We consider a model in which there are at most two ESCs
(denoted by ESC A and ESC B) and two SAs denoted by SA
1 and SA 2.4 Each SA seeks to serve users in a given band of
spectrum at a given location. To do this, the SAs must acquire
spectrum measurements from one of the ESCs and can only
use the spectrum when the ESC indicates that it is available
(i.e., not being used by a federal incumbent). If an SA does
not acquire information from either ESC, we assume it can
not serve any users.5 If both SAs receive information that the
spectrum is available, then they both can utilize it. We next
discuss the participants in this market in more detail.

A. Information Selling from the ESC

Each ESC provides a binary indication of whether the
spectrum is available for use over time based on their own
sensing capabilities. We assume that each ESC must be
certified to have a negligible probability of missed detection of
the incumbent, i.e., if the incumbent is present, the ESC will
never announce that the spectrum is available. However, we
do allow the ESCs to incur false alarms, i.e., if the incumbent

4Our model can be easily generalized to the scenario where there are more
than 2 ESCs; generalizing to more than two SAs is less straightforward and
left for future work.

5This could model a setting in which the SAs are located in an area near
the coasts for CBRS and so excluded from using the spectrum without ESC
input.



is not present, an ESC may still announce that the spectrum
is not available. An ESC with better sensing capabilities will
be less likely to make such errors. We identify each ESC A
and B with a probability qA and qB , respectively, that gives
the probability that the ESC indicates that the spectrum is
available (which in turn depends on the incumbent’s usage
patterns and the ESC’s sensing capability). Without loss of
generality, we assume that qA ≥ qB so that ESC A has
the higher quality of information (unless they are identical).
Further to simplify our exposition, we assume that ESC
B’s measurement is a degraded version of ESC A, so that
whenever the ESC B indicates the channel is available, ESC
A also does the same. However, when ESC A estimates the
channel is available, ESC B may not estimate the same.6

We assume a spot market where the market operates at
different time slots t = 1, . . . , T . At each time slot, ESC
A (B) sells its prediction to any of the SAs at the price p̃A
(p̃B). The SAs do not learn the outcome of the prediction until
they make a purchase. Here, qA, qB , p̃A, and p̃B are common
knowledge to both the ESCs and to the SAs. Throughout this
paper, we assume that p̃A and p̃B are exogenous parameters
and focus on the strategic decisions of the SAs given these
prices.

B. SAs Decisions

Each SA must make two decisions. First, it must decide
whether to acquire information from ESC A, ESC B, or to
not acquire any information at all in each time slot.7 In the
first stage, both the SAs simultaneously decide on acquiring
information. We initially consider the case where the SAs
employ a stationary memoryless randomized strategy, i.e.,
each SA employs the same randomized strategy at every
instance irrespective of the decision made by the SAs in the
previous slots. Note that though the strategy is static, it must
be optimal against the strategy employed by the other SA.
SA may select one of the ESCs w.p. 1 (i.e., deterministically
obtains information from one of the ESCs). Mathematically,
SA i selects ESC j with probability σi,j at each time slot.
We allow

∑
j σi,j to be less than 1, which means there is a

non-zero probability that the SA i does not choose any of the
ESCs. Note that an equilibrium in the stationary distribution
is also an equilibrium when the decisions may depend on the
history and are the only possible equilibrium when the game is
repeated finitely many times. We also provide an equilibrium
where the decision of the SAs may depend on the history of
decisions in an in infinitely repeated game in Section V-A1
under the assumption that there is only one ESC.

The second decision an SA must make is the price pi that it
will charge users for its service. As is the case in the wireless
market today, we view the price pi as representing the amount
users pay for receiving long-term service from SA i (e.g., the

6Our analysis can easily be extended to the case where instead ESCs A
and B make independent errors.

7We do not consider SAs purchasing information from both ESCs in a
given time-slot. Given our assumption about ESC B’s measurement being a
degraded version of ESC A’s, there is no advantage to doing this. If these
measurements experienced independent errors, there could be gain from doing
this, which we leave for future work.

monthly service price). As such these prices represent the
service from an SA averaged over this service period. Here
we view these as flat-rate prices, and assume that each SA
only offers a single service plan (which is reasonable as in
our model the user population is homogeneous).

Each SA i, seeks to maximize its expected profit which is
given by

Πi = piλi −
∑
j

σi,j p̃j (1)

where λi indicates the number of users SA i serves. Here,∑
j σi,j p̃j is the total expected price the SA pays to the

ESCs for acquiring information. If SA i decides not to acquire
information in the first stage, then we set p̃j = 0 and λi = 0
so that the overall profit is also zero, i.e., this models a case
where SA i decides not to enter the market. This may occur
when the revenue the SA would generate is not sufficient to
recover the cost of acquiring information from one of the
ESCs.

C. User’s Subscription Model

We consider a mass Λ of non-atomic users, so that we
have λ1 + λ2 ≤ Λ. The users are homogeneous in that each
user obtains a value v for getting service from either SA in a
given time period. However, users also incur a cost for using
the service, which as in [8]–[11] is given by the sum of the
price charged to them by the SA and a congestion cost they
incur when using this service. The congestion cost models the
degradation in service due to congestion of network resources.
We model the congestion cost for using a band of spectrum
with bandwidth W by g(x/W ), where x is the total mass of
users using that band and g is a convex, increasing function.
Hence, the instantaneous pay-off of a user receiving service
from SA i is given by

v − pi − g(x/W ). (2)

The dependence of g on W models the fact that a larger band
of spectrum is able to support more users. The mass of users,
x, using the band depends in turn on the licensing policy
and the information available to the SAs. Here, we focus on
shared access, in which case users of both SAs utilize the
same band of spectrum whenever both of them know that the
spectrum is available. We model this as in [8]–[10], by setting
x = λ1 + λ2. If there were more than 2 SAs using this band
at a given time, then this can be extended naturally by setting
x =

∑
ı∈A λi, where A indicates the set of SAs using this

band.
The SAs knowledge of spectrum availability in turn de-

pends on the information they acquire from the ESCs. In
particular, if SA i obtains information from ESC k and has λi
users, these users are only able to use the spectrum when the
ESC k reports the spectrum is available (which occurs with
probability qk). When users can not use the spectrum, we
assume their instantaneous pay-off is zero. When users can
use the spectrum, they receive a pay-off as in (2), where the
traffic of the other SA will in turn depend on the information
that SA receives from its ESC. Hence, the pay-off obtained
will be a random variable. We assume that users seek to



maximize the expected value of this quantity.8 Furthermore,
users can choose not to purchase service from either SA,
giving them a pay-off of zero.

The specific form of the average congestion will depend
on which ESCs the SAs contract with. If both SAs obtain
information from the same ESC j, then both SAs’ customers
will use the spectrum during the times ESC j specifies it is
available (which occurs with probability qj). Note that the
probability thatboth the SAs obtain the information from the
ESC j is

∏
i σi,j . Thus, the expected payoff of users of SA

i given that both the SAs obtain information from the same
ESC j is given by

qjv − qjg
(
λ1 + λ2

W

)
− pi (3)

where the above occurs with probability σ1,jσ2,j .
Next suppose that the SAs obtain information from different

ESCs. First, assume that SA i obtains information from ESC
A and SA k obtains information from ESC B. Recall that
when ESC B estimates that the channel is available, then
ESC A also estimates that the channel is available. Thus,
the subscribers of SA k always face congestion from SA i’s
users. However, the subscribers of SA i only face congestion
from SA k’s customers when ESC B also indicates that the
incumbent is not present (which occurs with probability qB).
Hence, the subscribers of SA i enjoy an exclusive access to
the spectrum with probability qA − qB . This results in the
users of SA i having an expected pay-off of

qAv − (qA − qB)g

(
λ1

W

)
− qBg

(
λ1 + λ2

W

)
− pi (4)

and the above occurs with probability σi,Aσk,B .
Similarly, if SA k obtains information from ESC A and

SA i obtains information from ESC B, the expected payoff
of users of SA i is

qBv − qBg
(
λ1 + λ2

W

)
− pi (5)

and this occurs with probability σi,Bσk,A.
Finally, suppose one SA i obtains information from ESC

j, while the other SA k chooses not to acquire information
from either ESC (and so does not serve any customers). The
users of SA i then obtain an expected pay-off of

qjv − qjg
(
λi
W

)
− pi (6)

which occurs with probability σi,j(1 −
∑

j σk,j). Note that∑
j σk,j denotes the probability that the SA k does not obtain

information from any of the ESCs. Here, we assume that the
users have to pay the price pi if they subscribe to the SA i
even when SA i does not obtain any information from any of
the ESCs.

8For example, this is reasonable when users are purchasing service
contracts with a long enough duration so that they see many realizations
of the ESC reports.

Thus, the expected-payoff of users of SA i is

Πi =
∑
j

σ1,jσ2,j

(
qjv − qjg

(
λ1 + λ2

W

))
+ σi,Aσk,B

(
qAv − (qA − qB)g

(
λi
W

)
− qBg

(
λ1 + λ2

W

))
+ σi,Bσk,A

(
qBv − qBg

(
λ1 + λ2

W

))
+
∑
j

σi,j(1− σk,A − σk,B)

(
qjv − qjg

(
λi
W

))
− pi.

(7)

Here, we use k to denote the other SA from i.

D. Multi-Stage Market Equilibrium

We model the overall setting as a game with the SAs and
the users as the players. Each SA’s pay-off in this game is
its profit (cf. (1)), while each user’s objective is the expected
pay-off described in Section II-C. This game consists of the
following stages:

1) In the first stage, each SA i selects σi,j for each ESC j.
Note that σi,j can be 0 for all j in the scenario where
SA i stays out of the market.

2) In the second stage, SA i selects its price pi knowing
the decisions made in stage 1 by both SAs.

3) In the last stage, given the first two stages’ decisions,
the subscribers will choose one of the SAs from which
to receive service or choose not to receive service.

We refer to a sub-game perfect Nash equilibrium of this game
as a market equilibrium. We again emphasize that we can
view the first stage’s randomized strategy as being played over
multiple time-slots to yield the corresponding average pay-off,
while the second and third stage decisions are performed once
in the time-scale of interest.

III. THIRD STAGE EQUILIBRIUM

In the final stage of the game, the user equilibrium specifies
the subscribers λi of each SA i given the prices selected in
the second stage and the ESC choices made in the first stage.

Each user is seeking to maximize its expected pay-off.
Given our assumption of identical non-atomic users, the user
equilibrium can be characterized as a Wardrop equilibrium
[25].

Definition 1. Wardrop Equilibrium: In a Wardrop equilib-
rium, only SAs whose expected payoff is maximum (among all
SAs) and non-negative will serve any positive mass of users.

In other words, if in equilibrium both SAs are serving
customers, then the expected pay-offs for both SA’s must be
the same (since, otherwise some customers would switch to
the other SA). If one SA is not serving any customers, then its
expected pay-off must be smaller than that of the other SA.
Additionally, this expected pay-off must be non-negative as
otherwise some customers would be better off not purchasing
service.

Note that if fewer than Λ customers are receiving service,
then it must be that the expected pay-off is equal to zero as



otherwise, some customers not receiving service would choose
to receive service since the congestion cost is increasing in
the number of users. Hence, we obtain the following–

Lemma 1. The user’s surplus (or, user’s expected payoff) is
positive only if λ1 + λ2 = Λ.

Note that even though λ1 + λ2 = Λ it may happen that
the expected payoff is zero. In the following we focus on the
case where both SAs always serve the entire population of Λ
customers, i.e..

Assumption 1. We assume that under any best response price
from one of the SAs (provided at least one SA enters the
market in stage 1), we have λ1 + λ2 = Λ.

Specifically, we characterize the equilibrium where all
the users are served. From the preceding discussion such
equilibria are sufficient to characterize if the user surplus can
ever be positive.

Note that if the users subscribe to both the SAs, the
expected payoffs from the two SAs must be equal. Hence,
we have λ1 > 0 and λ2 > 0 only if

Π1 = Π2. (8)

Next we give a condition under which one of the SAs does
not serve any customers.

Lemma 2. If both SAs obtain information with probability
one from the same ESC (i.e., σ1,A = σ2,A = 1 or σ1,B =
σ2,B = 1), then λi = 0 if pi < pj where i 6= j, i, j ∈ {1, 2}.

This lemma implies that if the SAs obtain information from
the same ESC with probability one, then the SA which offers
the lowest price will be the only one serving customers. This
follows from noting that under these conditions, only one term
in (7) will be non-zero each SA and this term will be identical
for the two SAs. Hence, the SA with the lowest price, will
have the largest expected payoff.

To simplify our analysis in the remainder of the paper we
make the following assumption:

Assumption 2. The congestion cost is linear, i.e., g(x) = x
W .

The linearity assumption is quite common in the literature
[4], [5], [10] and indicates that the congestion is proportional
to the load per unit bandwidth. With this assumption, a
necessary condition for Assumption 1 to hold is given by
the following:

Lemma 3. Assumption 1 holds only if v > Λ/W .

For example if v = 1, then this condition becomes Λ/W <
1. In general this is showing that only if v is large enough
compared to the congestion cost, the SAs will serve the entire
customer base.

IV. SECOND STAGE PRICE EQUILIBRIUM

We now turn to the second stage in which given their first
stage ESC selections (σi,j for all i and j), the SAs set prices to
compete for customers. We, first show that in this stage there
is a unique price equilibrium (Theorem 1). Subsequently, we
show that if the SAs employ the same ESC selection strategy,

the market is shared between the two SAs (Corollary 2).
We also show that if both the SAs obtain information from
the same ESC with probability 1, the prices become zero
(Corollary 3). Finally, we characterize the second-stage price
strategy when there is a single ESC.

The second stage price equilibrium is achieved by first
finding the best response pi for a given pj , j 6= i and then
solving for the fixed point (p∗1, p

∗
2) of these best responses.

The result of this is characterized in the following theorem.

Theorem 1. If for a given ESC selection strategy, there is a
second stage equilibrium in which both SAs are serving cus-
tomers, then this is the unique second stage price equilibrium
and it satisfies:

p∗1 =
(σ1,A − σ2,A)qAv

3
+

(σ1,B − σ2,B)qBv

3
+

qA(2σ2,A(1− σ1,A) + σ1,A(1− σ2,A))Λ

3W
+

qB(2σ2,B(1− σ1,A − σ1,B)− 2σ2,Aσ1,B)Λ

3W
+

qB(σ1,B(1− σ2,A − σ2,B)− σ1,Aσ2,B)Λ

3W

p∗2 =
(σ2,A − σ1,A)qAv

3
+

(σ2,B − σ1,B)qBv

3
+

qA(σ2,A(1− σ1,A) + 2σ1,A(1− σ2,A))Λ

3W
+

qB(σ2,B(1− σ1,A − σ1,B)− σ2,Aσ1,B)Λ

3W
+

qB(2σ1,B(1− σ2,A − σ2,B)− 2σ1,Aσ2,B)Λ

3W
.

The corresponding third-stage Wardrop equilibrium is

λ1 =
p∗1W

D
, and λ2 =

p∗2W

D
(9)

where

D =qA(σ2,A(1− σ1,A) + σ1,A(1− σ2,A))

+ qB ((σ2,B + σ1,B)(1− σ1,A − σ1,B)

−σ2,Aσ1,B − σ1,Aσ2,B) .

Recall, that under Assumption 1 λ1 + λ2 = Λ. Also note
that if σ1,A > σ1,B , and σ2,A > σ2,B , the prices given in this
theorem are larger as v increases. Intuitively, if a SA chooses
to obtain information more frequently compared to the other,
the users will obtain a higher expected payoff. The expected
payoff achieved increases with v, hence, the price of the SA
also increases.

Note from (9) that the market share of SA i also increases
as the price p∗i increases. However, since λ1 + λ2 = Λ, if p∗i
increases p∗j must decrease.

Next we give a condition to characterize when this theorem
applies:

Corollary 1. A necessary and sufficient condition for Theo-
rem 1 to hold is if

Π1 = Π2 and Πi ≥ 0 (10)



where Πi is given in (7) with pi replaced by p∗i from
Theorem 1 and λi is replaced by the expressions in (9).

The inequality in (10) ensures that the users’ surpluses are
non-negative. In other words, one can simply evaluate these
expressions and if they satisfy this corrolary, then there is a
unique equilibrium as given in Theorem 1.

We next consider the symmetric case in which σ1,A = σ2,A

and σ2,B = σ2,A.

Corollary 2. If σ1,A = σ2,A , and σ1,B = σ2,B , then the
price equilibrium in Theorem 1 becomes

p∗1 = p∗2 =
qAσ2,A(1− σ1,A)Λ

W

+
qB(σ2,B(1− σ1,A − σ1,B)− σ2,Bσ1,A)Λ

W
(11)

λ1 = λ2 = Λ/2 (12)

Thus, the prices and the market shares are also the same
for SAs if they employ the same strategy for choosing ESCs.
The prices become independent of v. Intuitively, since both
the SAs employ the same strategy, the expected payoff of
users are balanced out, hence, the equilibrium prices become
equal.

Note that prices increase with an increase in the variance
of the spectrum availability. Intuitively, if there is a certainty
(i.e. σi,A or σi,B is higher) in the strategy of both the SAs,
they will compete more fiercely since they will have similar
information or quality of service. Thus, the price increases
with an increase in the variance.

We, now, specify the strategy where both the SAs obtain
information from the same ESC with probability 1.

Corollary 3. If σ1,A = σ2,A = 1 (thus, σ1,B = σ2,B = 0) or
σ1,B = σ2,B = 1, then p∗1 = p∗2 = 0.

Thus, if both the SAs always obtain information from the
same ESC, the prices of both the SAs are zero. Since the
SAs must pay a fee to the ESCs, the profits of the SAs will
be negative. The above result follows directly from Lemma 2.
When the SAs obtain information from the same ESC, the one
which sets a lower price can have all the market share, hence,
the SAs engage in a “price war,” and compete the prices to
zero. Note that the prices paid to the ESCs are paid in the
first stage and thus are sunk costs in this stage and so do not
influence this price war.

Finally, we specify the strategy where there is only one
ESC j, j ∈ {A,B} in the market. We can capture this in
our formulation by setting σi,l = 0 for ESC l 6= j so that
σ2,Aσ1,B = σ1,Bσ2,A = 0. In this case, for a SA, selecting
ESC I is equivalent to not selecting and ESC in agiven period
and so we can view their strategy as simply deciding on the
probability that they will select ESC j.

Corollary 4. If there is only ESC j, the unique second stage
pricing strategy when both SAs serve customers is

p∗1 =
(σ1,j − σ2,j)qjv

3
+

2Λσ2,j(1− σ1,j)

3W
+

Λσ1,j(1− σ2,j)

3W

p∗2 =
(σ2,j − σ1,j)qjv

3
+

Λσ2,j(1− σ1,j)

3W
+

2Λσ2,j(1− σ1,j)

3W
.

(13)

The corresponding third stage Wardrop equilibrium is

λ1 =
p∗1W

qjσ1,j(1− σ2,j) + qjσ2,j(1− σ1,j)

λ2 =
p∗2W

qjσ1,j(1− σ2,j) + qjσ2,j(1− σ1,j)
. (14)

Corollary 5. A necessary and sufficient condition for Corol-
lary 4 is that

σ1,jσ2,j(qjv − qjΛ/W ) + σ1,j(1− σ2,j)(qjv − qjλ1/W )

≥ p∗1.
(15)

The inequality in (15) must be satisfied in order to ensure
that the user’s surpluses are non-negative unless users will
not subscribe (cf. (7)). Since Π1 = Π2, thus, it is sufficient
to ensure that Π1 ≥ 0.

Note that in a static market, σi,j is either 1 or 0. In [4],
[5], it is shown that in the static market, both the prices of
SAs are zero if there is a single ESC. However, in the spot
market, the prices of the SAs may be positive in the scenario
σi,j < 1. Thus, a SA can choose not to obtain information
from the ESC with a positive probability and this can make
the equilibrium prices of both the SAs positive.

If σi,j < σk,j , the price of SA i can become negative if v
is large, since the co-efficient of v is negative.

Corollary 6. If σi,j < σk,j , i, k ∈ {1, 2}, i 6= k, the price of
SA i is zero if

v ≥

Λσi,j(1− σk,j)
W

+
2Λσk,j(1− σi,j)

W
σk,j − σi,j

. (16)

Note that if v is large, or W is small, at least one of the
SAs price will be zero unless σi,A = σj,A. If σk,j = 1, the

right hand side is upper bounded by
2Λ

W
.

V. FIRST STAGE EQUILIBRIUM

We now characterize the first-stage equilibrium in which the
SA determine their ESC selection strategies. First, we specify
a characteristic of the equilibrium which rules out that the
SAs obtain information from the same ESC with probability 1
(Theorem 2) . In Section V-A we characterize the equilibrium
strategies where there is only one ESC. Subsequently, we
characterize the equilibrium strategies when there are multiple
ESCs in Section V-B.

First, we rule out the possibility that both the SAs will
always obtain information from the same ESC w.p. 1.

Theorem 2. There is no equilibrium where σ1,j = σ2,j = 1
for any positive p̃j > 0.



The above result readily follows from Corollary 3 since if
σ1,j = σ2,j = 1, j ∈ {A,B} the prices must be zero from
Corollary 3. Since the SAs have to pay a positive price to ESC
j, both the SAs’ profits are negative. Any SA can choose not
to obtain any information and can secure at least zero profit.
Hence, there is a profitable unilateral deviation.

Recall that the profit of SA i is

p∗i λi −
∑
j

σi,j p̃j . (17)

When both the SAs are serving customers, p∗i and λi are
given in Theorem 1. SA i would want to select σi,j in order
to maximize its own profit only. Note from the expressions
in Theorem 1 that the expression p∗i λi is not concave in σi,j .
Thus, it is challenging to find the Nash equilibrium.

A. Single ESC

We, first, state the only possible class of Nash equilibrium
strategy profile where there is a single ESC. We also show
that the user’s surplus is always zero.

We first state a strategy profile and will show that the
strategy profile is a NE.

Definition 2. The strategy profile SP is defined as one in
which SA i i ∈ {1, 2} selects ESC j with probability 1 and
SA k , k 6= i selects ESC j with probability φ where φ is the
following

φ = max{2Λ/W − v
2v − Λ/W

, 0} (18)

and does not obtain information from ESC j with probability
1− φ.

In the strategy profile SP one of the SAs selects the ESC
j with probability 1, and the other SA k selects the ESC
j with probability φ. Hence, σk,j = φ. In other words,
one of the SAs randomizes between obtaining information
and not obtaining information while the other always obtains
information. Hence, the strategy profile SP is asymmetric
as different SAs employ different strategies. Also note that
the strategy profile is not unique since SA i and SA k can
interchange the strategy.

We, now state the second stage price strategy and the third-
stage Wardrop equilibrium under the strategy profile SP. The
price strategy under the strategy profile SP is the following

p∗i = (1− φ)qj(
v

3
+

Λ

3W
)

p∗k = (1− φ)qj(
2Λ

3W
− v

3
). (19)

The corresponding Wardrop equilibrium is

λi =
p∗iW

1− φ
λk =

p∗kW

1− φ
. (20)

Thus, the expected payoff of the SAs are

πi = (1− φ)Wqj(
v

3
+

Λ

3W
)2 − p̃j

πk = (1− φ)Wqj(
2Λ

3W
− v

3
)2 − p̃jφ. (21)

2 3 4

v

0

0.2

0.4

0.6

φ

Fig. 1. The variation of φ as a function of v in an example scenario with
Λ = 300,W = 150, qj = 0.5.

Now, we are ready to state the result.

Theorem 3. 1) If (1 − φ)Wqj(2Λ/(3W ) − v/3)2 ≥ p̃jφ
and Λ/W < v < 2Λ/W where φ is given in (18), the
equilibrium strategy is as stated in SP.

2) If (1−φ)Wqj(2Λ/(3W )− v/3)2 < p̃jφ or v ≥ 2Λ/W ,
where φ is given in (18) then only one of the SAs can exist
in the market. SA i, i ∈ {1, 2} will obtain information
with probability 1 and the SA k, k 6= i will stay out of the
market. The pricing strategy is the same as the monopoly
strategy (Theorem 4 of [5]).

There is no other possible equilibrium given Assumption 1.

The strategy profile when only one of the SAs obtains
information and the other never does leads to the equivalent
static market scenario. In the static market as described in [4],
[5], a monopoly always arises when there is a single ESC. Our
analysis shows that the monopoly scenario can arise with a
spot market if v ≥ 2Λ/W . Hence, if v is large, similar to the
static market, a monopolistic outcome will occur when there
is a single ESC. However, unlike the static case, when v is
not too large, a competitive equilibrium can arise with a spot
market.

Note from Lemma 3 that for v < Λ/W , λ1 + λ2 can not
be equal to Λ. Hence, the result corresponding to v < Λ/W
does not appear in the result. Note that φ decreases as v
increases. Hence, as v increases, one of the SAs will be more
likely to opt out against obtaining information from the ESC.
Thus, as v increases, a monopoly scenario arises with a higher
probability. Figure 1 illustrates this by plotting the variation
of φ as a function of v for a given scenario.

From (21) that the revenue of SA k which randomizes its
ESC selection is given by (1 − φ)Wqj(2Λ/(3W ) − v/3)2.
If this is less than that SA’s expected payment to the ESC,
p̃jφ, then this SA can not obtain a positive profit. When this
occurs then as shown in Theorem 3 that SA will stay out of
the market. Hence, for larger values of p̃j is is more likely
that a monopolistic outcome will occur. Figure 2 illustrates
this by plotting the variation of SA k’s payoff as a function
of p̃j for a given scenario.

The expected payoff of SA k is strictly less than that of SA
i since v > Λ/W (cf.(21)). Note that SA k’s profit decreases
with an increase in φ. However, if φ is 0, the profit of SA j
will be 0 as SA j can not serve any users. Thus, φ must be
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Fig. 2. Variation of SA k’s payoff as a function of p̃j for the same example
as in Figure 1 (Λ = 300,W = 150, v = 3, qj = 0.5). When p̃j > 25, SA
k does not obtain information from the ESC.

the minimum possible value such that SA j will exist in the
market which is given by the expression in (18). Intuitively, by
randomizing SA k differentiates itself from SA i and avoid
hence avoid a price war. This shows that a SA will try to
differentiate as much as possible while still being profitable.

The next result characterizes the user’s surplus.

Corollary 7. The user’s surplus under any market equilibrium
is zero.

Proof. From Lemma 1 note that the users’ surplus can be
positive only if λ1 + λ2 = Λ. When λ1 + λ2 = Λ the only
possible equilibria are given by Theorem 3. From Theorem
4 of [5], under the monopoly strategy, the user’s surplus is
always zero. Hence, if the case (2) of Theorem 3 is satisfied,
the user’s surplus is zero. To complete the proof, we consider
the first case in which the equilibrium profile is SP.

From (7) note that the user’s surplus from SA k is

φ(qjv − qjΛ/W )− pk
= φ(2qjv/3− qAΛ/(3W ))− qj(2Λ/(3W )− v/3)

= 0 (from (18)) (22)

Hence, the result follows.

This result shows that in equilibrium profile SP, SA k
selects the probability to obtain information from the ESC
j in a manner such that the users’ surplus becomes 0. Note
that when the SAs participate in the long term market, the
monopoly scenario arises where the user’s surplus is zero and
only one of the SAs exists in the market. In the spot market,
the user’s surplus does not become positive even though both
the SAs can participate in the market.

Also note that if W is large, the condition in Case (1) is
less likely to be satisfied. Thus, a monopoly scenario more
likely occurs when the amount of shared bandwidth is large.

1) Non-Stationary Strategy: We next consider a case in
which the SAs are playing an infinitely repeated game and
can adopt non-stationary strategies which may depend on the
history of play.9 We show that under a non-stationary strategy,
the user’s surplus can be positive.

9We consider an infinitely repeated game, since in the finitely repeated
game the stationary strategy profile is the only equilibrium.

We seek to characterize the sub-game perfect Nash equi-
librium. The payoff of SA i is the following

∞∑
t=1

γt−1πi,t (23)

where πi,t is the profit at stage t, and γ ∈ (0, 1) is a discount
factor.

We now specify the sub-game perfect equilibrium in the
repeated game.

Theorem 4. Consider the strategy profile SPmulti: SA 1 (or,
SA 2) selects ESC j with probability 1 in odd time slots t =
1, 3, . . . and selects ESC j with probability 0 in even time
slots t = 2, 4, . . ., SA 2 (or, SA 1, resp.) selects ESC j with
probability 0 in odd time slots t = 1, 3, . . . , and selects ESC
j with probability 1 in even time slots t = 2, 4, . . .. If SA k
k ∈ {1, 2} deviates at time slot t, SA i ∈ {1, 2}, i 6= k will
select ESC j with probability 1 and SA k will select ESC j
with probability φ (cf. 18)) as stated in Theorem 3.

The above strategy profile constitutes a sub-game perfect
equilibrium for high enough γ < 1.

Thus, in the repeated interaction only one of the SAs will
be active at a given time slot. The SAs alternate between
serving users and not. If a SA (say, 1) deviates and obtains
information in two consecutive time slots, the other SA (say
2) punishes the SA by reverting back to the stationary strategy
stated in Theorem 3 where SA 2 will presume the role of i
and always obtains information from ESC j with probability
1. SA 1’s payoff will be strictly less than what it obtains prior
to deviating. Thus, neither SA has any incentive to deviate.

The price of each of the SA i under the strategy profile
SPmulti is given by the following

p∗1 = p∗2 = qj
Λ

4W
(24)

and under this profile we have λ1 = λ2 = Λ/2. The users’

welfare is
qjv

2
− qjΛ

2
which is always positive if v > Λ.

If either of the SAs deviates, since the SAs revert back to
the strategy profile SP, the SPs’ equilibrium prices should be
given by (19) and λi for each SA i is given by (20). However,
there is a subtlety here due to the differences in the time-scale
over which prices are made and ESC selections are made.
When prices are made over a slower time-scale, then an ESC
can not instantly change its price when it detects a deviation.
Instead, one can view the prices as being repeatedly set in a
longer time-scale repeated game, whenever one detects that in
the previous round of the pricing game the other SA deviated,
then in the next time-period, the prices from profile SP will
be adopted.

B. 2 ESCs

We now briefly consider the case when there are 2 ESCs:
A, and B. For this section, we again focus on stationary ESC
selection policies.

Theorem 5. If
p̃A
qA

<
p̃B
qB



the equilibrium coincides with the one as stated in Theorem 3
with j = A.

Thus, even when there are two ESCs one of the SAs
may opt against obtaining any information from any of the
ESCs with a positive probability. Specifically, if the cost
of obtaining information from ESC B normalized by the
channel availability of ESC B is larger than the corresponding
normalized cost of ESC A, then no SA will obtain information
from ESC B. Note that in the static market considered in
[4], [5], when both SAs enter the market, they always obtain
information different ESCs. This results shows that this need
not be true with a spot market. In a static market, the selection
of different ESC provides a way for the SAs to differentiate
themselves; in aspot market the SAs can instead use the ESC
selection policy to accomplish this.

A general characterization of the equilibrium in the two
ESC case appears to be cumbersome and is left for future
work. However, in general we can show the following:

Theorem 6. With two ESCs, in any market equilibrium, the
user’s surplus is always zero.

In other words, the result that the user’s surplus is zero is
also true when there are multiple ESCs in the market. Hence,
compared to the static market, the spot market cannot generate
a positive users’ surplus.

VI. CONCLUSION AND FUTURE WORK

In this paper we consider a scenario in which spectrum
measurements are sold by ESCs via a spot market. We
developed a model and characterized the market equilibira
for a setting in which two competing SAs first decide on
their ESC selection strategy and then compete on price to
serve a pool of end users with shared spectrum. We show that
unlike the static market considered in prior work, with a spot
market multiple SAs can co-exist even when there is a single
ESC. However, we show that in the spot market, the user’s
surplus always remain zero. In the repeated version of the
game, there exists a strategy profile where the user’s surplus
can be positive. This suggests that allowing for such a market
may help to increase the number of SAs in the market but
may not yield benefits to consumers unless that SAs jointly
adopt a non-stationary selection strategy.

Our model can be extended in several directions. We
focused on a simple setting with only SAs and at most two
ESCs, considering markets with a larger number of SAs and
ESCs in one possible future direction. We also only consider
the case where the two SAs competed using a single band
of shared spectrum; considering other spectrum bands and
different licensing policies is another possible future direction.
In our model all end users are homogeneous; models with
heterogeneous customers would also be of interest.
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APPENDIX

A. Proof Sketch of Theorem 1

In any Wardrop equilibrium where both SAs serve cus-
tomers, we must have Π1 = Π2. Hence, using the expression
in (7) it follows that in any such Wardrop equilibrium

qA(σ1,A − σ2,A)v + qB(σ1,B − σ2,B)v − p1 + p2 =

qAλ1σ1,A(1− σ2,A)− λ2σ2,A(1− σ1,A)

W
+

qBλ1(σ1,B(1− σ2,A − σ2,B)− σ1,Aσ2,B)

W
−

qBλ2(σ2,B(1− σ1,A − σ1,B)− σ2,Aσ1,B)

W
. (25)

Under Assumption 1, λ1 + λ2 = Λ. Thus,

qA(σ1,A − σ2,A)v + qB(σ1,B − σ2,B)v − p1 + p2 =

qAλ1σ1,A(1− σ2,A) + (λ1 − Λ)σ2,A(1− σ1,A)

W
+

qBλ1(σ1,B(1− σ2,A − σ2,B)− σ1,Aσ2,B)

W
−

qB(Λ− λ1)(σ2,B(1− σ1,A − σ1,B)− σ2,Aσ1,B)

W
. (26)

Using this we can solve for λi in terms of pi and see that SA
i’s revenue, piλi is a concave function of pi. The price which
maximizes piλi can thus be obtained from the first order
optimality conditions. This gives the best response function
for SA 1 as

p∗1 =
qA(σ1,A − σ2,A)v + qB(σ1,B − σ2,B)v

2

+
qAΛσ2,A(1− σ1,A)

2W
+
qBΛ(σ2,B(1− σ1,A − σ1,B)− σ2,Aσ1,B)

2W
+ p∗2/2. (27)

Due to the symmetry, p∗2 can be obtained by replacing 1 with
2. Solving for the intersection of these best response functions,
the result follows.10

B. Proof Sketch of Theorem 3

The proof depends on the following Lemma.

Lemma 4. p∗i λi is strictly increasing function in σi,j if σk,j <
1 where i, k ∈ {1, 2} and i 6= k.

The above lemma can be proved by differentiating p∗i λi (in
Corollary 4) with respect to σi,j .

By differentiating we can also show that

Lemma 5. p∗i λi is a strictly decreasing function in σi,j if
σk,j = 1 where i, k ∈ {1, 2} and i 6= k.

Thus, from Lemma 4 σi,j = 1 is a best response if σk,j <
1. On the other hand, if σi,j = 1, the best response is the
minimum possible σk,j . Note that the minimum possible σk,j
is the one for which Πk = 0. Note that if σk,j = 0, the profit
of SA k is zero. Hence, σk,j = 0.

10The careful reader will note that in obtaining the best response, we
implicitly assumed that in any deviation both SAs continued to serve
customers so that (26) still applies. The complete proof requires one to also
argue that there is no loss in doing this, i.e., any profitable deviation that
results in one of the SAs serving no customers is also accounted for.

Now, from Corollary 4, Πk = 0 when σi,j = 1 is given by

σi,jσk,j(qjv − qjΛ/W ) = p∗k

σk,j(qjv − qjΛ/W ) = qj(1− σk,j)(2Λ/(3W )− v/3)

σk,j =
2Λ− v
2v − Λ

(28)

Since σk,j ≥ 0, thus, the best response σk,j is given in (28).
Note that by the construction this is the only possible

solution.
Now SA k follows the strategy only if the profit is non-

negative. Hence, the strategy where σk,j constitutes a NE is
given by the condition in Case (1) of Theorem 3.

If the condition in case (1) is not satisfied, there is no other
possible equilibrium where σk,j > 0. Hence, SA i will have
monopoly power.


