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Abstract—Small-cells deployed in licensed spectrum can ex-
pand wireless service to low mobility users, which potentially
reduces the demand for macro-cellular networks with wide-area
coverage. Introducing such heterogeneity also makes network
resource allocation more complicated. To understand these chal-
lenges and tradeoffs we present a two-tier heterogeneous wireless
network model with two types of users: mobile users that can
only connect to macro-cells; and fixed users that can associate
with either macro-cells or small-cells. We study pricing strategies
and bandwidth allocation across macro- and small-cells, assuming
both monopoly and competitive Service Providers (SPs). For a
monopoly SP, we characterize the revenue-maximizing prices and
bandwidth allocations. We then consider a competitive scenario,
and we show the existence of a unique Nash equilibrium. The
possible Nash equilibria for different system parameters are
sorted into four categories corresponding to whether or not
different SPs assign bandwidth to the macro- and/or small-
cells. We also study the allocations that maximize social welfare.
For the competitive scenario, we characterize the conditions
under which the optimal social welfare is obtained in equilibria
as the number of SPs tends to infinity. Case study examples
and numerical results illustrate the corresponding pricing and
bandwidth allocations.

Index Terms—HetNet, pricing, bandwidth allocation, service
competition, game theory, network economics.

I. INTRODUCTION

One of the key approaches the cellular industry is tak-
ing to accommodate the accelerating increase in wireless
data demand is to shrink cell sizes. This is leading to the
deployment of heterogeneous networks (HetNets) containing
different types of base stations/access points with different
transmission powers, coverage ranges, and data rates [3]–[6].
At the same time, the user population is also becoming more
heterogeneous, with different mobility patterns and service
demands. These trends will likely accelerate as 5G networks
are deployed [7].

A substantial amount of research on HetNets has focused on
interference management and related issues, such as coverage
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and rate estimation [8], [9], user association [10], [11], load
balancing [12]–[14], carrier aggregation [15], massive MIMO
[16], and cell cooperation [17]. This body of work applies to
a network with given load, or traffic pattern, and does not
consider how that load may depend on strategic decisions
on the part of the service providers (SPs). These strategic
decisions include pricing plans that can discriminate among
different types of services and can compete with similar plans
offered by other SPs. These pricing strategies are coupled with
decisions on how to allocate resources such as bandwidth
across cells and different user types, which provide another
dimension in which SPs may compete.

In this paper, we study joint pricing and bandwidth opti-
mization of SPs with both heterogeneous infrastructure and
users. Both a single monopolist SP and competing SPs are
considered. Each SP’s HetNet consists of two types of cells
(macro- and small-) and two types of users, mobile and fixed.
The small-cells serve fixed users only, whereas the macro-cells
can serve either user type. Associated with each cell type is
its total rate capacity, where the total rate capacity of a small-
cell is typically larger than that of a macro-cell with the same
amount of bandwidth [18]. The SP announces two prices for
accessing its macro- and small-cells, respectively, and users
then choose an association across SPs and cell types that
maximizes their utility minus access cost. We assume each
SP has a fixed allocation of bandwidth and characterize the
optimal split of bandwidth across macro/small-cells.

A. Contributions
We summarize our main results. The pricing and bandwidth

allocation decisions are obtained via a two-stage process. In
the first stage each SP determines how bandwidth is split
between macro- and small-cells. In the second stage, each
SP sets two prices for accessing the macro- and small-cell
networks. This order is motivated by the observation that
determining the bandwidth split may occur over a slower time-
scale than price adjustments. We analyze the joint pricing
and bandwidth allocation decisions by first characterizing the
pricing strategies given a fixed bandwidth allocation for all
SPs. We then determine the bandwidth allocation based on
the pricing results obtained in the first step. The following
results are obtained:

1. HetNet market structure: At equilibrium the macro-cells
only serve mobile users, and fixed users only associate with
small-cells. The prices in macro-cells are always higher than
the prices in small-cells. This market structure applies irrespec-
tive of the number of SPs, and whether the SP(s) maximize
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(individual) revenue or social welfare. This is consistent with
the current small-cell deployments in practice, where small-
cells are primarily used in indoor systems [19] [20].

2. Bandwidth allocation: In the monopoly scenario (single
SP), subject to some conditions on user utility functions,
there always exists a unique optimal pricing and bandwidth
allocation scheme. In the competitive scenario (multiple SPs),
there is always a unique subgame-perfect Nash equilibrium.
Furthermore, the equilibrium falls into one of four classes,
corresponding to whether or not subsets of SPs allocate
bandwidth to macro- or small-cells only, or to both.

Additional properties of the equilibrium are also character-
ized, for example, it cannot be the case that one SP provides
only macro-cell service while another provides only small-
cell service. (However, one SP can provide macro-cell service
and another can offer both macro- and small-cell service.)
Moreover, we show that the Nash equilibrium can be computed
via a sequence of coordinate gradient-based updates, and use
this to illustrate numerically how the equilibrium changes with
initial bandwidth endowments.

3. Social Welfare: In addition to considering individual
revenue maximization by the SPs, we also characterize the
prices and bandwidth allocation that maximize social welfare,
namely, the sum utility of all users in the network. In the
monopoly scenario, we show that the optimal pricing rule
for social welfare maximization is the same as for revenue
maximization. However, the optimal bandwidth allocation is
generally different for the two objectives.

4. Competitive limit: We investigate the asymptotic setting
as the number of SPs increases to infinity, and show that
efficiency (maximum social welfare) is achieved only for two
of the equilibrium categories: where all SPs allocate bandwidth
to both macro- and small-cells, or to small-cells only. This
is similar to models of Cournot competition in which as the
number of firms tend to infinity, perfect competition emerges
resulting in optimal social welfare [21]. Here this occurs when
the SPs compete with each other in both macro- and small-
cells or in small-cells only. In contrast, if competition is absent
or incomplete in either macro- or small-cells, even if we
have infinite number of SPs, the equilibrium generally is not
socially optimal.

B. Related Work

There is an extensive literature on pricing and resource
allocation in wireless networks (see [22] for a comprehensive
survey). Models for studying these issues in HetNets can
be roughly divided into two categories. In the first category,
small-cells are considered as an enhancement to macro-cells
[23]–[25], as opposed to a separate service as in our work.
The work in [23] investigates the interplay of interference and
service pricing on user adoption of small-cells when small-
and macro-cells operate in common spectrum and when they
operate in fixed separate bands. The authors conclude that
almost all users choose small-plus-macro service and pay
a higher price. These results are extended to an arbitrary
number of services using a Stackelberg game formulation in
[24], where the bandwidth allocation is also optimized and

numerically studied. It is observed in [24] that some minimal
bandwidth must be allocated to small-cells in order to provide
enhanced services, but at higher prices. In [25], a sequential
game model with only optimal pricing is proposed, with the
conclusion that it is beneficial to make all small-cells open
to guest users with only macro-cell service. In contrast, in
[26] the authors study optimal spectrum allocation in HetNets
across licensed and unlicensed spectrum assuming centralized
control, and without service pricing considerations. Moreover,
all these works only consider a single SP without any service
competition.

In contrast, the second category assumes macro-cell and
small-cell services are separate services as in our work. When
considering both pricing and bandwidth allocation decisions
for a SP, there are two methods commonly used in the
literature. The first is using a sequential decisions where
pricing and bandwidth allocation are separated into two stages
as adopted in this paper. Examples of this include [27]–[29].
The authors in [27] assume that bandwidth is allocated prior to
pricing decisions. The results show that combining pricing and
spectrum allocation increases the SP revenue and motivates
users to adopt small-cell service. This approach is extended to
different small-cell deployment types in [28].

The Shannon rate objective is used in [29] in a two-stage
Stackelberg game model among an operator and users. In
Stage I, the operator determines the price charged to users,
whereas in Stage II, each user decides how much bandwidth
it requests. It is assumed that users always achieve the best
service by connecting to small-cells leading to the conclusion
that all available bandwidth should be allocated to small-cells.
However, in our paper we find that in some equilibria macro-
cells should always get some bandwidth.

Instead of a sequential model, the authors in [24] optimize
pricing and bandwidth allocation jointly. They show for any
fixed pricing and fixed bandwidth allocation policy, there exists
at least one equilibrium. However, since multiple equilibria
might exist, the operator is assumed to choose either the worst
or the best equilibrium, which are compared numerically. Note
that the sequential process used in our paper leads to a unique
equilibrium.

While these models only focus on a single SP, there has
also been work that analyzes competition among multiple
SPs and its impact on pricing and bandwidth. Reference [30]
studies service competition and pricing strategies with fixed
bandwidth allocations, and presents a comprehensive survey
of the issues related to pricing in HetNets and possible ap-
proaches to solving the pricing problem. In [31], an incentive
mechanism is designed in which a macro-cell SP can pay small
cell SPs. Dynamic pricing and open access are shown to be
better than static strategies. In [32], the authors consider two
types of connections, premium and best-effort and develop
a competitive pricing model for best-effort connections. The
preceding work focuses on a Bertrand game in which the SPs
compete on price only, whereas our paper also optimizes the
bandwidth allocation.

Optimization of spectrum resources with multiple SPs is
considered in [33], [34]. However, there the SPs compete to
acquire spectrum, as opposed to optimizing bandwidth over
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different cell types. Pricing and bandwidth allocation in other
settings has also been studied including SPs sharing unlicensed
spectrum [35], and dynamic spectrum sharing [36].

The remainder of the paper is organized as follows. The
system model is introduced in Section II. Optimal pricing
and bandwidth allocation are presented in Sections III and
IV, respectively. Social welfare is studied in Section V. We
present some examples and numerical results in Section VI
and conclude in Section VII. All proofs can be found in the
appendices.

II. SYSTEM MODEL

A. Network Model

We consider the downlink of a cellular network containing
macro- and small-cells. Macro-cells correspond to transmitters
with high transmission power, and therefore large coverage
range, such as cellular base stations. In contrast, small-cells
consist of transmitters with low transmission power, and
therefore local coverage range, such as femto- or pico-cells.
The users are also heterogeneous: mobile users are assumed
to have high mobility, and fixed users are relatively stationary.
In this setting, fixed users can associate with either macro- or
small-cells (but not both) whereas mobile users can only be
served by a macro-cell. This models the case where mobile
users are unable to connect to a small-cell as they would move
out of coverage rapidly, or the case where small-cells provide
only indoor coverage.

The macro-cells and small-cells are assumed to be uniform-
ly deployed over a given area. We normalize the density of
macro-cells to one, and assume that the users are non-atomic
with the densities of mobile users and fixed users denoted as
Nm and Nf , respectively. Note that the heterogeneity of the
users can also arise from an equivalent model that assumes
(Nm +Nf ) as the total density of users who are mobile with
probability Nm/(Nm + Nf ) and stationary with probability
Nf/(Nm +Nf ).

We assume N SPs that operate different networks, with the
same density of macro- and small-cells across the given region.
This homogeneous cell density assumption greatly simplifies
our analysis.1 Denote the set of SPs as N . When N = 1,
this corresponds to the monopoly scenario, whereas N ≥ 2
corresponds to a competitive scenario. Each SP i has its own
exclusively licensed band of spectrum with bandwidth Bi,
where Bi may vary across different SPs.2 We assume all
macro-cells and small-cells use separate bands, therefore each
SP i decides how to split its bandwidth Bi into Bi,M , the
bandwidth allocated to macro-cells, and Bi,S , the bandwidth
allocated to small-cells. 3

We assume that the macro-cells for SP i can provide a
total (average) data rate of Ci,M = Bi,MR0, where R0 is the

1We can relax this assumption and consider different densities of small-
cells for SPs, see for example [37] where these densities are determined by
each SP’s level of investment.

2For the monopoly SP scenario, we will ignore the subscript.
3In this paper we only consider licensed spectrum. We can relax this

assumption and consider introducing unlicensed spectrum, see for example
[38] where the impact of unlicensed spectrum is analyzed.

(average) spectral efficiency of the macro-cells.4 In practice,
R0 depends on the transmission parameters and the inter-site
spacing. The total available rate in small-cells for SP i is then
Ci,S = λSBi,SR0, where λS > 1 reflects the increase in
spectral efficiency due to smaller cell size, and possibly greater
deployment density. The quantities Ci,M and Ci,S can then be
interpreted as the service capacities of the macro- and small-
cells, respectively, for SP i. We will denote by Ki,M and Ki,S

the mass of users connected to the macro- and small-cells of
SP i, respectively. (Note that Ki,S consists of fixed users only,
whereas Ki,M can consist of both mobile and fixed users.)

B. Market Model

Each SP offers two distinct types of service: macro-cell
service and small-cell service. SP i sets a price per unit rate
for users associating with macro-cells or small-cells, namely,
pi,M and pi,S . The SPs do not further distinguish between
different users subscribing to the cells. Since we allow fixed
users to access either type of cell, the average price for fixed
users can be interpreted as the average of the macro/small-cell
prices weighted by the fraction connected to each. This allows
for a form of differentiated pricing between the two user types.

The users are assumed to be homogeneous in that each user
is endowed with the same utility function u(r) depending on
its received service rate r. We make the following assumptions
on the class of utility functions studied.

Assumption 1: u(r) has the following properties:
a) u(0) = 0 so that zero utility is received for no service;
b) u(r) is strictly increasing and concave with r, i.e., users

have “elastic” rate requirements;
c) ru′(r) is twice differentiable, strictly increasing and

concave for r ≥ 0;
d) u′(r) < +∞ for r > 0; and
e) u′′(r) is increasing for r ≥ 0.
Properties (a) and (b) are common; properties (c)-(e) are

more restrictive and made to facilitate our analysis. These are
satisfied by many typical utility functions used in the literature
such as α−fair functions u(r) = r1−α

1−α , α ∈ (0, 1), and u(r) =
log(1+r). Note that α−fair functions approach linear as α→
0, and log as α → 1, even though neither the linear nor the
log utility function satisfies Assumption 1.

C. User Association

Each user chooses an SP, and fixed users also choose
between macro- or small-cell service. Given a set of prices
across SPs, each user makes this decision by maximizing its
net payoff W . For a given service with price p, this is given
by:

W = max
r≥0

u(r)− pr, (1)

where the optimal r is the rate a user would select if using
this service. Under Assumption 1, (1) results in all users
having a unique rate demand function given by D(p) =

4We assume that these quantities represent the average value over the time-
scale at which users select services.
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max((u′)−1(p), 0). The maximum net payoff W ∗ for a user
from a service with price p is then

W ∗ = u(D(p))− p(D(p)). (2)

It is easy to verify that W ∗ decreases with p and W ∗ > 0
as long as D(p) > 0. Therefore, if there is enough bandwidth
to satisfy the rate demand, users choose the SP with the lowest
price. That is, mobile users choose the SP that offers the lowest
macro-cell price, while fixed users connect to either a macro-
or small-cell with the lowest price. However, in general the
total rate demand may exceed the supply in a macro- or small-
cell. We then assume the following user association rule5:
• Suppose all prices pi,M and pi,S are different. We then

assign the mobile users to macro-cells by filling up the
available capacity starting with the SP i with lowest pi,M ,
then the next lowest, and so forth until either all users are
served or there is no more capacity.

• Similarly, for the fixed users we fill up the available
capacity in order of increasing prices. Here, however,
fixed users can choose to associate with the small-cells,
or macro-cells with any remaining capacity after serving
the mobile users. Moreover, mobile users have priority
over the fixed users when connecting to a macro-cell.

• If there are SPs with prices that are the same, then
those corresponding cells are filled simultaneously, and
we allocate the users across cells in proportion to the cell
capacities. Once a particular cell’s capacity is exhausted,
then the leftover demand continues to fill the remaining
cells in a similar fashion.

This association rule leads to a unique assignment of users for
any given set of prices and bandwidths. Suppose we change
this rule, for example, so that mobile users do not have priority
for cells. Then the assignment will not be unique as macro-
cells can contain an arbitrary mix of mobile and fixed users
if they have the same price as small-cells, which makes the
equilibrium analysis more complex.

D. SP Optimization

Each SP i chooses its bandwidth partition (Bi,M , Bi,S) and
prices (pi,M , pi,S) to maximize its revenue, which is equal
to the aggregate amount paid by all users connecting to its
macro-cells and small-cells:

maximize
Bi,M ,Bi,S
pi,M ,pi,S

Si = pi,MKi,MD(pi,M ) + pi,SKi,SD(pi,S),

(3a)
subject to Bi,M +Bi,S ≤ Bi, (3b)

Bi,M , Bi,S ≥ 0, (3c)
0 < pi,M , pi,S <∞. (3d)

Note that Ki,M and Ki,S depend on the actions of the other
SP’s through the association rule described in Section II-C.

Alternatively, a social planner, such as the FCC, may seek to
allocate bandwidth and set prices to maximize social welfare,

5See Appendix A for a detailed mathematical description.

which is the sum utility of all users. This can be formulated
as in (3a)-(3d) but with the objective in (3a) replaced with

SW =

N∑
i=1

[Ki,Mu(D(pi,M )) +Ki,Su(D(pi,S))], (4)

assuming the social planner determines the pricing and spec-
trum allocations for all SPs.

E. Sequential Decision Process

We model the bandwidth and price adjustments of SPs in
the network as a two-stage process:

1) Each SP i first determines its bandwidth allocation
Bi,M , Bi,S between macro-cells and small-cells. Denote
the aggregate bandwidth allocation profile as B, i.e.,
B = {Bi,M , Bi,M , i ∈ N}.

2) Given B (assumed known to all SPs), the SPs announce
prices for both macro-cells and small-cells. The users
then associate with SPs according to the previous user
association rule.

This order reflects the fact that bandwidth partitioning takes
place over a slower time-scale than price adjustments, since
changing the bandwidth partition could conceivably involve
reconfiguring equipment at both base stations and handsets,
and adjusting the placement of access points along with
transmission parameters in order to keep the rate per cell
fixed. Adjustment of prices would not require these additional
changes.

The two-stage process can be seen as a sequential optimiza-
tion procedure. That is, the single SP first determines optimal
pricing with fixed bandwidth allocation, and then optimizes
the bandwidth allocation based on the optimal pricing scheme
determined in the first stage.

If there are multiple SPs, the SPs compete for a finite mass
of mobile and fixed users, and the two-stage process is thus a
sequential game. To gain insight into the resulting allocations
we therefore seek a subgame-perfect Nash equilibrium con-
sisting of the following: (i) A price equilibrium based on each
fixed bandwidth allocation; and (ii) A bandwidth allocation
equilibrium given that prices are set according to (i).6

III. EQUILIBRIUM PRICING STRATEGIES

In this section we derive the unique price equilibrium for
a given bandwidth allocation. Depending on whether macro-
cells serve some fixed users or not, two cases are possible:

1. Mixed service: Macro-cells serve mobile users and a
subset of fixed users;

2. Separate service: Macro-cells only serve mobile users.
Theorem 1 (Price Equilibrium): Given a fixed band-

width allocation profile, B, there exists a unique price equi-
librium satisfying the following:

i) The market clears so that the entire mass of users (both
mobile and fixed) is served.

6For convenience we will often refer to these outcomes in the monopoly
setting as an equilibrium too. Additionally, in the competitive case, we will
often refer to the overall sub-game perfect Nash equilibrium as simply a Nash
equilibrium.
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ii) The total rate demand in every macro- or small-cell is
equal to the total provisioned capacity.

iii) There exists a threshold BS,0 =

Nf

N∑
i=1

Bi

λSNm+Nf
such that if

BS =
N∑
i=1

Bi,S < BS,0, the price equilibrium results in

mixed service. Otherwise the separate service case holds.
Theorem 1 indicates that for any given bandwidth allocation,

the unique price equilibrium occurs at the market clearing
price, at which all users are served and all available rate is
allocated. As a result, the equilibrium prices can be uniquely
determined. For mixed service, the prices are equal across all
the cells, whereas for separate service, all macro-cell prices
are equal and all small-cells prices are equal, but macro-cell
prices are higher than small-cell prices. Note that this result
applies to both monopoly and competitive scenarios.

IV. BANDWIDTH ALLOCATION

We next consider the equilibrium bandwidth allocation
between macro-cells and small-cells based on the characteri-
zation of the pricing strategy in Theorem 1.

Using Theorem 1, we formulate the bandwidth optimization
problem in the separate and mixed service cases, respectively.
With separate service, this is given by:

maximize
Bi,M ,Bi,S

Si = Bi,MR0pi,M + λSBi,SR0pi,S , (5a)

subject to D(pi,M ) =

∑N
i=1Bi,MR0

Nm
, (5b)

D(pi,S) =
λS
∑N
i=1Bi,SR0

Nf
, (5c)∑N

i=1Bi,MR0

Nm
≤
λS
∑N
i=1Bi,SR0

Nf
, (5d)

Bi,M +Bi,S ≤ Bi, (5e)
Bi,M , Bi,S ≥ 0. (5f)

The constraints (5b)-(5c) follow from the fact that prices at
equilibrium clear the market. Constraint (5d) is the condition
that separate service holds. With mixed service, the optimiza-
tion problem is the same except that the inequality sign in (5d)
is reversed.

A. Bandwidth Optimization for Monopoly SP

Comparing the separate and mixed service cases, the fol-
lowing theorem gives the optimal bandwidth allocation for a
monopoly SP.

Theorem 2: For a monopoly SP in the revenue optimal
bandwidth allocation, all bandwidth is allocated and the sep-
arate service scenario occurs.

This theorem shows that a monopolist will always allocate
bandwidth so that macro-cells are only used to serve mobile
users. Intuitively, since small-cells have a higher spectral
efficiency it is advantageous to shift all fixed users to use
these.

It is easy to show that at the optimal point, the marginal
revenue increase for both services are equal if they are both

used. In other words, if BM and BS are both greater than
zero, then

u′(RM ) +RMu
′′(RM ) = λS

[
u′(RS) +RSu

′′(RS)
]
. (6)

Otherwise, BS = B and BM = 0, where RM =
BMR0

Nm
and RS = λSBSR0

Nf
are the average rates in macro-

cells and small-cells, respectively.
Due to higher spectral efficiency (i.e., λS > 1), when the

service rate is equal in macro- and small-cells, the marginal
revenue increase due to additional bandwidth is higher in
small-cells. As a consequence, at an optimal bandwidth allo-
cation, the fixed users with small-cell service achieve a higher
average rate and are subject to a lower price than mobile users
with macro-cell service.

B. Bandwidth Equilibrium for Competing SPs

We now study the equilibrium of the bandwidth allocation
stage in a competitive scenario with multiple SPs. This will
be a bandwidth allocation profile B such that no SP can
increase its revenue by unilaterally changing its own band-
width allocation, taking into account the price equilibrium and
corresponding user association.

Each SP’s strategy choice in this game allows it to of-
fer only macro-cell service, only small-cell service or both.
Furthermore, the resulting revenue depends on the decisions
of the other providers through the resulting prices and user
associations. This leads to different scenarios that must be
considered.

It is easy to verify that each SP i will always use the total
bandwidth Bi. Based on Assumption 1 and using Bi,M =
Bi − Bi,S , it can be verified that in both the separate and
mixed cases Si is a concave function of Bi,S . This enables us
to characterize the optimal bandwidth allocation in both cases,
which we then use to prove the following theorem.

Theorem 3 (Existence of Nash Equilibrium): A sub-
game perfect Nash equilibrium always exists for the
bandwidth and pricing game and every equilibrium falls into
the separate service case.

The proof of this theorem has two steps. We first prove that
no Nash equilibrium exists in the mixed service case. We then
prove that a Nash equilibrium always exists in the separate
service case using Rosen’s Theorem [39].

Even under the separate service case, the equilibria can fall
into one of the following distinct cases:

1) Small-cell only Nash Equilibrium (SNE): All SPs only
allocate bandwidth to small-cells.

2) Macro-Small-cell Nash Equilibrium (MSNE): All SPs
allocate bandwidth to both macro- and small-cells.

3) Small-cell Favored Nash Equilibrium (SFNE): A subset
of SPs only allocate bandwidth to small-cells and the
other SPs allocate bandwidth to both macro- and small-
cells.

4) Macro-cell Favored Nash Equilibrium (MFNE): A sub-
set of SPs only allocate bandwidth to macro-cells and
the other SPs allocate bandwidth to both macro- and
small-cells.



6

We next show the unique equilibrium must be from the four
preceding cases. However, the specific type of the equilibrium
depends on specific system parameters.

Theorem 4 (Uniqueness of Nash Equilibrium): The
Nash equilibrium of the bandwidth and pricing game
is unique and satisfies the conditions in Theorem 3. In
equilibrium fixed users (served only by small-cells) achieve a
higher average rate than mobile users (served by macro-cells).

Hence, there is no equilibrium in which some set of SPs
only allocate bandwidth to small-cells, while some other SPs
only allocate bandwidth to macro-cells.

The proof consists of the following four steps. First, we
show no Nash equilibrium exists if RM = RS , where RM =∑N

i=1
Bi,MR0

Nm
and RS =

λS
∑N

i=1
Bi,SR0

Nf
are the average rates

in macro-cells and small-cells, respectively. Then by Theorem
3, since the equilibrium falls into the separate service case,
it follows that at any Nash equilibrium RM < RS . Next,
we prove that at a Nash equilibrium it never happens that
some SPs only allocate bandwidth to small-cells while some
SPs only allocate bandwidth to macro-cells. We are therefore
left with the preceding four classes of Nash equilibria. In the
third step, we prove for a given set of system parameters the
equilibrium must fall in only one of the categories in Theorem
3. Finally, we show that the equilibirum must be unique within
this class. We point out that we have been unable to find a
specific utility function that results in an MFNE,7 but have
also been unable to prove that such an equilibrium does not
exist.

C. Equilibria Properties

Next we characterize some properties of the four classes
of possible Nash equilibrium, which help us to understand
two fundamental questions. The first question is which of
them occurs under a given set of parameters, which will be
addressed in the remainder of this section. The second question
is whether they are socially optimal, which will be addressed
in Section V. We also present a numerical example in Section
VI to illustrate how the endowments of bandwidth across SPs
affects the different types of equilibria that occur.

At an SNE, all SPs only allocate bandwidth to small-cells,
which makes this equilibrium easy to characterize. Hence in
this section we focus on the three other possibilities: MSNE,
MFNE and SFNE.

Proposition 1 (MSNE Properties): The following neces-
sary condition applies at an MSNE:

λS

[
Nu′(RS) +RSu

′′(RS)
]

= Nu′(RM ) +RMu
′′(RM ).

(7)
Note that when N = 1, i.e., the monopoly case, (7) becomes
identical to (6).

Further, for any two SPs i and j with total bandwidths Bi
and Bj in an MSNE, one of the following two conditions
holds:

7The difficulty of constructing such a utility function is that the sufficient
and necessary conditions for an MFNE to exist are complicated and do not
provide a straightforward way to construct a utility.

1) Symmetry: If Bi = Bj , then both SPs’ bandwidth
allocations are the same, i.e., Bi,S = Bj,S , and Bi,M =
Bj,M .

2) Monotonicity: If Bi > Bj , then SP i allocates more
bandwidth to both macro- and small-cells than SP j,
i.e., Bi,S > Bj,S , and Bi,M > Bj,M .

Proposition 2 (MFNE and SFNE Properties): The
MFNE and SFNE classes have the following properties:

1) At an MFNE, the marginal increase of the sum revenue
of all SPs with respect to the small-cell bandwidth
is larger than that of macro-cells, while the marginal
increase of social welfare with respect to the small-cell
bandwidth is smaller than that of macro-cells. At an
SFNE, the reverse is true.

2) At an MFNE (SFNE), the SPs that only allocate band-
width in macro-cells (small-cells) are those that have
smaller total bandwidth.

Part 2) of Proposition 2 also yields the following corollary
about the equilibrium in the symmetric case.

Corollary 1: In the symmetric case where Bi = B, ∀i ∈
N , the resulting Nash equilibrium must be either an SNE or
an MSNE.

The following Corollary then specifies the transition from
SNE to MSNE in the symmetric case.

Corollary 2: In the symmetric case where Bi = B, ∀i ∈
N , when B is small, the equilibrium is SNE; and when B is
large, the equilibrium is MSNE. The transition from SNE to
MSNE occurs when B results in rates R0

S and R0
M that satisfy

(7), where R0
S = NBR0

Nf
, R0

M = 0.
According to Proposition 2 and the properties of SNE, we

have the following corollary.
Corollary 3: For α-fair utility functions u(r) = r1−α

1−α with
α ∈ (0, 1), only an MSNE exists. For u(r) = log(1 + r), an
MFNE never exists.

Note that different from Corollary 1 and Corollary 2,
Corollary 3 does not require any symmetry assumption.

V. SOCIAL WELFARE

In this section we change the objective to social welfare
instead of revenue, and study the corresponding pricing deci-
sions and bandwidth allocations.

For social welfare maximization, the SPs must coordinate
resource allocation, hence the corresponding pricing and band-
width allocation problem is independent of the number of SPs.
As a result, the following theorem holds in both the monopoly
and competitive scenarios.

Theorem 5: The welfare optimal prices and bandwidth
allocation have the following properties:

1) All bandwidth is allocated and prices are set so that the
total rate demand is equal to the supply;

2) The bandwidth allocation falls into the separate service
case; and

3)
u′(RM ) = λSu

′(RS), (8)

when BM , BS > 0. Otherwise BS = B,BM = 0.
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Note the first two properties are the same as in the individual
revenue-maximizing case, while the third property differs
in that here the marginal change in welfare with respect
to bandwidth is the same for both services, as opposed to
the marginal change in revenue. Also, as in the revenue-
maximizing case, (8) can be used to show that for the welfare
maximizing allocation, the service price in small-cells is lower
than the price in macro-cells, and therefore fixed users in
small-cells achieve higher average rates than mobile users with
macro-cell service.

Applying Corollary 3 and Theorem 5, we find that α-fair
utility functions have the following special properties.

Proposition 3: Given α-fair utility functions, in the
monopoly scenario the unique optimal bandwidth allocation
is always socially optimal. In the competitive scenario, the
unique equilibrium, an MSNE, is socially optimal.

We emphasize that Proposition 3 is restricted to α-fair utility
functions. For other utility functions, the revenue maximizing
bandwidth allocation is not generally socially optimal for
any finite number of SPs. However, as the number of SPs
increases, competition among SPs may make the revenue and
social welfare objectives more closely aligned. Specifically,
we consider the asymptotic performance as the number of SPs
and users scale linearly with the number of SPs such that the
ratio of the total bandwidth to the number of fixed and mobile
users stays the same and strictly positive (i.e., the ratio never
diminishes to zero). The next theorem characterizes the limit
for the different classes of equilibria.

Theorem 6 (Asymptotic Social Welfare Optimality):
As the number of SPs N →∞, the social welfare associated
with any SNE or MSNE achieves the maximum value. In
contrast, an MFNE or SFNE generally does not achieve the
maximum social welfare for any N , or as N →∞.

The asymptotic social optimality of an SNE and an MSNE
is analogous to the asymptotic social optimality for classic
Cournot competition [21]. In that scenario, as the number of
competing firms increases without bound, with linear demand
and constant marginal cost, the Cournot market becomes per-
fectly competitive. Hence, the price converges to the marginal
cost yielding the socially optimal allocation.

The similarity of our model to Cournot competition comes
from the fact that SPs compete on quantity (bandwidth in the
second stage), and the price is determined by the quantities
announced by the firms. However, in the classic Cournot model
firms only decide the total amount of a single homogeneous
good. In our model, SPs optimize the allocation of a given
total amount of bandwidth among two “goods”: macro- and
small-cell service. We also have two types of users, i.e., mobile
users and fixed users. Despite these differences, we see similar
asymptotic optimality emerging when N →∞.

Theorem 6 motivates the question as to when the limiting
equilibria is either an MSNE or SNE.

According to Corollary 1, when the SPs have equal band-
width allocations, the equilibrium becomes socially optimal for
large N . A general condition for the limiting equilibria to be an
MSNE when SPs have different amounts of bandwidth is not
easy to characterize. Instead, to provide insight, we consider a
simpler case with two groups of SPs, one with total bandwidth

B1 and the other with total bandwidth B2. We will assume the
specific utility function u(r) = log(1+r). The number of SPs
in the groups are a1 and a2, respectively, with a1 + a2 = N .
We then take N → ∞, fixing the fraction of users in each
group. That is: NN

f = k1N , and NN
m = k2N , where k1, k2

are positive constants.8

Proposition 4: For the preceding scenario, there exists a
threshold B0 = (λS−1)k1

λSR0
, such that for large enough N the

equilibrium is an MSNE if and only if B1, B2 ≥ B0.
Note that the conditions are independent of a1 and a2, i.e.,

independent of how we divide the SPs into the two groups.
This result suggests that as long as each SP has a sufficient
amount of bandwidth determined by the threshold, it will be
able to compete with the other SPs in both macro- and small-
cells. When the number of SPs is large, this leads to perfect
competition and achieves social optimality.

VI. CASE STUDIES AND NUMERICAL RESULTS

In this section we consider some particular examples to
illustrate the results obtained in previous sections.

A. Monopoly SP

We first illustrate the bandwidth allocations that maximize
revenue and social welfare in the monopoly scenario. For
α-fair utility functions, the optimal prices and bandwidth
allocations for both revenue and social welfare maximization
are the same. Specifically, we have:

R∗S
R∗M

= λ
1
α

S . (9)

As α → 0, u(r) becomes a linear function in which case
R∗S/R

∗
M → ∞, and the SP allocates all bandwidth to the

small-cells. As α → 1, u(r) becomes log(r) in which case
R∗S/R

∗
M → λS , and the optimal bandwidth allocation is

proportional to the number of users in each cell.
For the log(1 + r) utility function, the bandwidth alloca-

tions that maximize revenue and social welfare are different.
Specifically,

1) to maximize revenue: R∗S+1
R∗
M

+1 =
√
λS ,

2) to maximize social welfare: R∗S+1
R∗
M

+1 = λS .

It is easily shown that the R∗S obtained from maximizing so-
cial welfare is greater than the R∗S obtained from maximizing
revenue, whereas the R∗M obtained from maximizing social
welfare is less than the R∗M that maximizes revenue. As a
result, the bandwidth allocation that maximizes social welfare
requires the SP to allocate more bandwidth to small-cells.

B. Competing SPs

Next we consider the scenario of multiple competing SPs.
Compared with a monopoly SP where the optimal pricing and
bandwidth allocation can be computed directly, calculating
a Nash equilibrium in the competitive case appears difficult
(except in the case of a MSNE, where it can be found by

8This is to ensure that no user obtains an infinite service rate.
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solving a system of equations), so instead we consider an
iterative best-response method.

The best response dynamic we consider is a coordinate
gradient method. In particular, each SP changes its strategy
in the direction given by the gradient of its revenue function
with respect to its bandwidth allocation, subject to proper
constraints. If we denote the proportionality constant or step-
size for SP i to be µi > 0, the update for SP i is:

Bi,S(n+ 1) =
[
Bi,S(n) + µi

∂Si
∂Bi,S(n)

]Bi
B0
i,S

(n)
(10)

where B0
i,S(n) is the boundary point at RS(n) = RM (n) and

[x]ba = max
(
a,min(x, b)

)
.

Theorem 7 (Convergence of Best Response Updates):
Starting at any initial point with separate service (i.e.,
RM ≤ RS), if each SP performs the update in (10)
sequentially, the best response updates converge to the unique
Nash equilibrium for some appropriate choice of step-sizes
{µi, i ∈ N}.

We prove this by applying Rosen’s convergence theorem
[39, Theorem 10]. That requires showing the symmetric matrix
G + GT is negative definite, where G has elements Gij =

θi
∂2Si

∂Bi,S∂Bj,S
for some fixed choice of θi > 0. 9

We next use this sequence of best response updates to
study Nash equilibria numerically. For all numerical examples,
the number of fixed and mobile users scale linearly with the
number of SPs, i.e., NN

f = k1N,N
N
m = k2N .

Figure 1 shows the ratio of the welfare obtained at an
MSNE to the socially optimal welfare for two different utility
functions10 versus the number of SPs N . In this scenario
we assume all SPs have the same total available bandwidth
Bi = 1. The system parameters are: λS = 4, k1 = 60, k2 =
100, R0 = 50, θ = 0.5. Under this set of parameters it is easy
to show that the Nash Equilibrium is always an MSNE. We
can see that as the number of SPs increases, the social welfare
approaches the maximum value.

We next study how the endowments of bandwidth across
SPs affects the different types of equilibria that occur. For this
we consider the same setting as in Proposition 4, where there
are two groups of SPs, where SPs within each group have the
same bandwidth (B1 or B2). The utility function is u(r) =
log(1 + r). For simplicity, we assume each group consists of
half of the SPs. The other parameters are: λS = 2, k1 = k2 =
25, R0 = 50. Figures 2 and 3 illustrate the corresponding Nash
equilibrium regions as functions of B1 and B2, for the cases
N = 2 and N = 20, respectively. We can see that when
both B1 and B2 are sufficiently small, the Nash equilibrium
is an SNE. When one bandwidth is large while the other is
small, the Nash equilibrium is an SFNE. When both B1, B2

are large enough, the Nash equilibrium is an MSNE. For the
given parameters, the threshold in Proposition 4, B0 = 0.25.

9From [39] this method also yields an alternate proof for the uniqueness
of the Nash equilibrium.

10We use the utility function 1 − e−θr as an illustration even though it
violates some properties we used to prove the existence of a sub-game perfect
equilibrium. This also shows that these properties are not necessary for an
equilibrium to exist.
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Figure 3 shows that with 20 SPs, the boundary is quite close
to this asymptotic limit.

These results have the following intuitive explanation. When
the available spectrum of both groups is very small, the prices
are high in both type of cells. In that case, it is better for SPs
to allocate all bandwidth to small-cells since that results in
more data rate and therefore more revenue. However, if one
group of SPs has a large amount of bandwidth, allocating all
bandwidth to small-cells significantly decreases the price in
small-cells. Thus, it is beneficial to invest in both small-cells
and macro-cells to maximize revenue.

VII. CONCLUSIONS

In this paper we investigated service pricing and bandwidth
allocation in a heterogeneous wireless network. For both
monopoly and competitive scenarios and both revenue and
social welfare maximization, we have shown that it is optimal
for the macro-cells to serve only mobile users and the small-
cells to serve only the fixed users. This conclusion is consistent
with the observation that early small-cell deployments have
been dominated by indoor systems [19] [20].

In the monopoly scenario, we have characterized the optimal
prices for macro- and small-cells along with the optimal band-
width allocation. It was shown that, in general, revenue and
welfare optimization lead to different bandwidth allocations
and prices, showing that a revenue maximizing monopolist
will cause a welfare loss. The set of α-fair utility functions is
an exception in that revenue and social welfare maximization
yield the same solution.

We also analyzed the competitive scenario with multiple SPs
and showed that a unique Nash equilibrium exists. Again, in
general the equilibrium is not socially optimal when each SP
maximizes its individual revenue. However, certain classes of
Nash equilibria are asymptotically socially optimal when the
number of SPs tends to infinity. In order to achieve the benefits
of competition, we have to ensure full competition in every
active market. Otherwise, even an infinite number of SPs may
not yield the socially optimal outcome. Specifically, certain
classes of equilibria (MFNE and SFNE) are not asymptotically
socially optimal since only a subset of the SPs compete in
either the macro- or small-cell markets.

We have made several simplifying assumptions to facilitate
our analysis which could be relaxed in future work. For
example, we restricted the demand functions of the agents
and assumed that macro- and small-cells were priced sepa-
rately (i.e., SPs did not bundle these). Other properties of
spectrum, leading to variable coverage, different spectrum
access methods, and heterogeneous traffic requirements might
also be analyzed within this framework. Another interesting
direction is to account for more dimensions in which users
may be heterogeneous, such as mobility patterns and service
preferences.

APPENDIX A
USER ASSOCIATION

In this section we formally define how users associate to
macro- and small-cells for a given bandwidth allocation and a

set of prices chosen by all SPs. We start by sorting the prices
of the macro-cells pi,M in ascending order, where ties are
broken arbitrarily. Then we associate users via the following
steps:

1) Given the priority assigned to mobile users in macro-
cells, we start by discussing these users (assuming
Nm > 0). First consider only the subsequence of macro-
cell prices and start with the lowest macro-cell price. All
mobile users attempt to attach to the macro-cells of the
SP with this price, subject to the provisioned capacity
and the available mass of mobile users. If the macro-
cells identified belongs to SP i with price pi,M , then:

Ki,M = min

(
Ci,M

D(pi,M )
, Nm

)
(11)

is the mass of mobile users attaching to the macro-cells
belonging to SP i. We then recalculate the remaining
mass of mobile users by subtracting Ki,M from Nm:

Nm := Nm −Ki,M . (12)

We also calculate the residual capacity of the macro-cell:

Ci,M := Ci,M −Ki,MD(pi,M ). (13)

2) If Nm > 0, we proceed to the macro-cells with the next
lowest price and repeat the preceding procedure.

3) If at any stage multiple SPs’ macro-cells have the same
price, then we look at them together and allocate the re-
maining mobile users proportional to the individual rates
configured. That is, if pi,M = pj,M = · · · = pk,M = p,
for all i′ ∈ {i, j, . . . , k}:

Ki′,M = min

(
Ci′,M
D(p)

, Nm
Ci′,M∑

j′∈{i,j,...,k} Cj′,M

)
.

(14)

As before we recalculate the remaining mass of mobile
users by subtracting Ki,M ,Kj,M , . . . ,Kk,M from Nm:

Nm := Nm −
∑

i′∈{i,j,...,k}

Ki′,M . (15)

Again we calculate the residual capacities of the macro-
cells: for all i′ ∈ {i, j, . . . , k}

Ci′,M := Ci′,M −Ki′,MD(p). (16)

4) The attachment procedure of mobile users stops if either
all mobile users are served (after the final attachment
Nm = 0) or all macro-cells have used up their rate.

5) If all the mobile users get attached, and there exist
macro-cells with residual capacity, then we include these
with the small-cells and consider the attachment of fixed
users. Again we sort the remaining cells, i.e., ones
with residual capacity, in increasing order of the access
prices.
We start with the cells with the lowest price. If these
are small-cells associated with SP i with price pi,S , we
have:

Ki,S = min

(
Ci,S

D(pi,S)
, Nf

)
. (17)
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As before we recalculate the mass of fixed users that are
not served yet :

Nf = Nf −Ki,S . (18)

If the cells with the lowest price are macro-cells asso-
ciated with SP i with price pi,M and residual capacity
Ci,M , we have:

Ki,M = Ki,M + min

(
Ci,M

D(pi,M )
, Nf

)
, (19)

where the first term in the min function is the mobile
users that are already assigned and the second term is
the new fixed users. We also recalculate the mass of
fixed users that are not served yet:

Nf = Nf −min

(
Ci,M

D(pi,M )
, Nf

)
. (20)

6) If Nf > 0 and there are cells remaining with positive
residual capacity, then we proceed in the same manner
as before by picking the cell with the lowest price (with
positive residual capacity) and perform the attachment
calculations as above. If there are multiple cells (macro-
cells or small-cells) with the current lowest price, then
we allocate the remaining fixed users proportional to the
residual capacities as described in the second step. To be
specific, let {i, . . . , j} small-cells and {k, . . . , l} macro-
cells have the current lowest price p, then we have: for
all i′ ∈ {i, . . . , j}

Ki′,M = Ki′,M + min
(Ci′,M
D(p)

,

Nf
Ci′,M∑

j′∈{i,...,j} Cj′,M +
∑
l′∈{k,...,l} Cl′,S

) (21)

and for all k′ ∈ {k, . . . , l}

Kk′,S = min

(
Ck′,S
D(p)

,

Nf
Ck′,S∑

j′∈{i,...,j} Cj′,M +
∑
l′∈{k,...,l} Cl′,S

)
.

(22)

We also recalculate the mass of fixed users that are not
served yet:

Nf = Nf −
∑

l′∈{k,...,l}

Kl′,S

−
∑

i′∈{i,...,j}

min

(
Ci′,M
D(p)

,

Nf
Ci′,M∑

j′∈{i,...,j} Cj′,M +
∑
l′∈{k,...,l} Cl′,S

)
.

(23)

7) The attachment procedure stops if either all fixed users
are served (Nf = 0) or no cells remain with positive
residual capacity.

APPENDIX B
PROOF OF THEOREM 1: MONOPOLY CASE

We first show that the market always clears, i.e., all users are
served and the total rate supplied equals the total rate demand-
ed. If there are some mobile users that are not served, the SP
can increase the price in macro-cells, then by assumption b)
of the concavity of our utility functions, users in macro-cells
request less rate, leading to the SP having spare rate to serve
more mobile users. The SP can thus use up its rate in macro-
cells at a higher price since any unserved mobile users would
fill in any spare capacity, which then leads to larger revenue.
This argument can be similarly applied to the case where there
are some unserved fixed users. The SP can increase the price
in small-cells and therefore achieve a higher revenue.

On the other hand, if all users are served but there is still
some spare capacity available in macro- or small-cells, the SP
can decrease the price in those cells so that users now request
a higher rate. By assumption c), ru′(r), which is revenue per
user, increases with r, it is easy to see the SP can gain more
revenue by doing so.

We now prove that the optimal pricing results in both
separate and mixed service scenarios, given a fixed bandwidth
allocation. Assume macro-cells only serve mobile users. This
then implies that RS ≥ RM ; at the boundary RS = RM ,
which implies:

RS =
λSBSR0

Nf
= RM =

BMR0

Nm
. (24)

This can be simplified to:

BS =
NfB

λSNm +Nf
=: B0

S . (25)

Therefore if BS is larger than B0
S , macro-cells only serve

mobile users and fixed users only associate with small-cells.
In contrast, if BS is smaller than B0

S , some fixed users have
the incentive to connect to macro-cells. We next prove that is
indeed the case at the optimal point.

Suppose BS < B0
S . If macro-cells only serve mobile users

and the market clears, then we have pM < pS . The SP can then
increase the macro-cell price to p′M , where pM < p′M < pS , so
that the mobile users obtain a smaller rate, creating some spare
capacity. As a result, some fixed users in small-cells would
switch to macro-cells. Denote the total mass of customers that
switch as δ. The resulting revenue of the SP would then be:

S = BMR0u
′
(
RM

Nm
Nm + δ

)
+ λSBSR0u

′
(
RS

Nf
Nf − δ

)
.

(26)

Differentiating, we then have:

∂S

∂δ
= −R′M

2
u′′(R′M ) +R′S

2
u′′(R′S), (27)

where R′M = RM
Nm
Nm+δ = BMR0

Nm+δ , R′S = RS
Nf
Nf−δ =

λSBSR0

Nf−δ are the new per user rates in macro-cells and small-
cells, respectively, after the shift of δ mass of fixed users to
macro-cells.

Based on our assumptions, r2u′′(r) decreases with r, there-
fore as long as R′S < R′M , i.e., p′M < p′S , S always increases
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with δ. As a result, it is always better for macro-cells to
serve some fixed users in this case, and the optimal price is
pM = pS .

APPENDIX C
PROOF OF THEOREM 1: COMPETITIVE CASE

We first prove that at a price equilibrium, the entire mass of
users (both mobile and fixed) will be served. We call the mass
of users that are not served free users, and a cell that could
serve a free user if capacity was available an eligible cell. As
a result, for free mobile users only macro-cells are eligible,
while for free fixed users both macro- and small-cells can be
eligible cells.

If there are any free users, then we look at an eligible cell
with the highest price. The corresponding SP i can increase the
price in this cell so that the rate demanded per user decreases.
Therefore it has redundant rate available to serve (some of) the
free users such that it is provisioned capacity is filled. Thus,
it increases its revenue due to the price increase.

We now prove that in every cell the rate demanded should
equal the rate supplied. First we establish that at a price
equilibrium every cell with leftover capacity will serve some
users. Then we show that, in addition, the rate demand will
equal the capacity provisioned.

1. We start with the case where there are some small-cells
with leftover capacity that have no users attached. Pick one
such small-cell of SP i, note that the revenue in this cell is
0. Also, from the assumed properties of the demand the price
in this cell must be non-zero. SP i can decrease the price in
the small-cell until it equals the price in the next cell that
serves some fixed users; we will stop here in most scenarios
except for specific cases to be outlined below. If the next cell
belongs to another SP j, SP i steals some users from this cell
and increases its revenue. The same argument carries through
unchanged, if there is more than one such cell. If the next cell
is SP i’s own macro-cell Mi and not only is its provisioned
capacity used up, but it also serves some fixed users, then SP
i also changes the price in its macro-cell Mi a little. As a
result, a small amount of fixed users in Mi would switch to
Si; it is easy to argue that the macro cell will still exhaust
its provisioned capacity. Since pD(p) decreases with p, SP i
can increase its revenue. If the macro-cell has some surplus
capacity, then depending on whether there are other cells at
the same price or not, different strategies can be used to show
that the revenue for SP i can be increased. If there are other
cells at the same price, then it is sufficient to set the price of
the small-cell of SP i equal to the price of the macro-cell of SP
i. Then by the user association rule, there will be an increase
in the mass of users connecting to SP i, and the increase in
revenue follows. If, instead, there are no other cells with the
same price, then the SP sets a common price for both its cells
with the value slightly below the original price of the macro-
cell. Again since pD(p) decreases with p, the revenue increase
follows. Note that in this setting SP i is actually indifferent to
adding users to its small-cell by the procedure we described
or to merely reducing the price in the macro-cell.11 As the

11In the next step it would not matter as the price will be decreased in
either case until the capacity is used up.

small-cell has non-zero provisioned capacity, we argue that
SP i would prefer the former strategy so that the allocated
bandwidth does not lie fallow. Similar arguments as above
also apply if there are macro-cells Mi that have provisioned
capacity but no users attached, but here the price is reduced
to the price of the first cell that serves some mobile users.

2. Having established that all cells with non-zero bandwidth
will serve some users at a price equilibrium, we proceed to
show that configured capacities will also be fully utilized.
Consider that there are some small-cells that have some users
but also some spare rate. It necessarily follows that all such
cells have the same price. Pick one such small-cell of SP i.
Then SP i can decrease the price in Si, and users would request
more rate (and also gain more users if there were other cells
with the same price) and the spare rate would decrease. Since
pD(p) decreases with p, SP i can increase its revenue by doing
so. The same logic carries through if there are macro-cells that
have some spare rate, irrespective of whether there are only
mobile users attached or both mobile and fixed users attached.

Finally, we prove that all macro-cells have the same price
and all cells that carry fixed users have the same price. This
will then imply our conclusion that fixed users are either
served only by small-cells, or if they are also served by macro-
cells, then the price is the same across all cells. With equal
prices, either across all cells or only for macro- and small-cells
separately, our user association rule results in users associating
with all cells. Consider sorting the macro-cells in increasing
order of their prices. If two adjacent cells (in terms of price)
offer different prices, then the SP that owns the cell with the
lower price can increase the price in the cell, reduce the rate
demand per user in its cell, attract some users from the other
cell and thus, increase its revenue (as it will still have no
surplus capacity). For the fixed users case, sort all the cells
that serve any fixed users in increasing order of their prices.
Then the same argument as above shows that this cannot be
an equilibrium.

Using similar arguments as stated in Appendix B, we can
further establish the price equilibrium in both separate and
mixed service scenarios. Combining all these completes the
proof.

APPENDIX D
PROOF OF THEOREM 2

For the mixed service case, the revenue of the SP is:

S = (BM + λSBS)R0u
′
[ (BM + λSBS)R0

Nm +Nf

]
. (28)

S is increasing with both BM and BF , therefore at the optimal
point BM +BS = B. We then have:

S = (Nm +Nf )Ru′(R), (29)

where R = (λS−1)BS+B
Nf+Nm

R0, which is the average rate each
mobile user and fixed user achieves.

Based on our assumption that ru′(r) is strictly increasing, it
is easy to see that S increases with R. Hence S also increases
with BS and achieves the maximum at the boundary point,
BMR0

Nm
= λSBSR0

Nf
.
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For the separate service case, the revenue of the SP is given
by:

S =BMR0u
′(
BMR0

Nm
) + λSBSR0u

′(
λSBSR0

Nf
) (30a)

=NmRMu
′(RM ) +NfRSu

′(RS), (30b)

where RM = BMR0/Nm, RS = λSBSR0/Nf are the aver-
age service rates in macro-cells and small-cells, respectively.
Since ru′(r) is strictly increasing and concave, it is easy to
see that at the optimal point BS +BM = B, and the marginal
revenue increase in both services should be equal if they are
both used.

APPENDIX E
PROOF OF STEP 1 IN THEOREM 3

Denote R =
( N∑
j=1

Bj,M + λSBj,S

)
R0/(Nm +Nf ) as the

average service rate for each mobile and fixed user. Then we
have:

Si = (Bi,M + λSBi,S)R0u
′(R)

= (Nm +Nf )Ru′(R)−
( N∑
j 6=i

Bj,M + λSBj,S

)
R0u

′(R).

(31)

For any fixed Bj,M , Bj,S , j 6= i, Ru′(R) is increasing with
R and u′(R) is decreasing with R. Therefore Si increases
with R. However, R also increases with Bi,S since λS > 1.
Therefore Si increases with Bi,S , which indicates in the mixed
service scenario all SPs have the incentive to increase the
bandwidth allocation to small-cells to increase their revenue,
until it reaches the boundary point RM = RS . However, in
Appendix G we will prove that it is impossible that a Nash
Equilibrium exists on the boundary point at RS = RM . Thus,
it is not possible for a Nash Equilibrium to exist in the mixed
service case.

APPENDIX F
PROOF OF STEP 2 IN THEOREM 3

In the original game, for any SP i, the bandwidth allocation
strategy profile Bi,M , Bi,S should be in the range of [0, Bi],
independent of all other SPs’ bandwidth allocation. However,
since we have proved no Nash equilibrium exists in the mixed
service case, we can transform the original game to a new
game in which only separate service holds. In this setting,
every SP i shares the same coupled constraint RS ≥ RM .
Therefore each SP’s strategy profile also depends on the other
SPs’ bandwidth allocation. Specifically, given all other SPs’
bandwidth allocation profile Bj,M , Bj,S , j 6= i, the bandwidth
allocation strategy profile for SP i in this generalized game
should be:

Bi,S ∈ [max(0, B0
i,S), Bi], Bi,M = Bi −Bi,S (32)

where B0
i,S =

NfBi+Nf

N∑
j 6=i

Bj,M−λSNm
N∑
j 6=i

Bj,S

λSNm+Nf
. That is, when

Bi,S = B0
i,S , RS = RM .

We have showed that for any SP i, its revenue Si is a
concave function in Bi,S in region B given any fixed B−i,S .
The constraint set is also convex in B. Therefore applying
Rosen’s Theorem on concave games [39], there always exists
a Nash equilibrium in our generalized game setting.

APPENDIX G
PROOF OF STEP 1 IN THEOREM 4

We first define some notation that divides the SPs at NE
into three groups, according to their bandwidth allocation
decisions:

GS ={k ∈ N|Bi,S = Bi}, (33a)
GMS ={k ∈ N|0 < Bi,S , Bi,M < Bi}, (33b)
GM ={k ∈ N|Bi,M = Bi}. (33c)

That is, GS (GM ) is the set of SPs that only allocate
bandwidth to small-cells (macro-cells). GMS is the set of SPs
that allocate bandwidth to both small-cells and macro-cells.
Obviously GS , GM and GMS are disjoint and GS ∪ GM ∪
GMS = N .

We claim that for SPs in the three sets at Nash Equilibrium,
we have:

i ∈ GS ⇒ Di ≥ 0, (34a)
i ∈ GMS ⇒ Di = 0, (34b)
i ∈ GM ⇒ Di ≤ 0, (34c)

where

Di =
∂Si
∂Bi,S

=R0

[
λSu

′(RS) +
λ2
SBi,SR0u

′′(RS)

Nf

− u′(RM )− Bi,MR0u
′′(RM )

Nm

]
. (35)

The claim follows as Di decreases with Bi,S .
Suppose there exists a Nash Equilibrium at RS = RM .

Then we have:
(1) For SP i ∈ GS ,

Bi,S = Bi,∀i ∈ GS . (36)

(2) For SP j ∈ GM ∪GMS , we have:

Dj ≤ 0⇒λSu′(RS) +
λ2
SBj,SR0u

′′(RS)

Nf

− u′(RM )− Bj,MR0u
′′(RM )

Nm
≤ 0. (37)

Rearranging the items using the definition of RS and RM , we
have:

=
(
λSu

′(RS) + λSRSu
′′(RS)−

u′(RM )−RMu′′(RM )−

λ2
S

N∑
k 6=j

Bk,SR0

Nf
u′′(RS) +

N∑
k 6=j

Bk,MR0

Nm
u′′(RM )

)
≤0. (38)
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Since RS = RM , u′′(RS) = u′′(RM ) < 0, u′(RS) +
RSu

′′(RS) > 0, λS > 1, we have:

λ2
S

N∑
k 6=j

Bk,SR0

Nf
u′′(RS)−

N∑
k 6=j

Bk,MR0

Nm
u′′(RM )

≥ (λS − 1)
(
u′(RS) +RSu

′′(RS)
)
> 0, (39)

⇒λ2
S

N∑
k 6=j

Bk,SR0

Nf
<

N∑
k 6=j

Bk,MR0

Nm
, (40)

⇒λS
N∑
k 6=j

Bk,SR0

Nf
<

N∑
k 6=j

Bk,MR0

Nm
. (41)

However, since RS = RM , we have:

λS

N∑
k 6=j

Bk,SR0

Nf
+ λS

Bj,SR0

Nf
=

N∑
k 6=j

Bk,MR0

Nm
+
Bj,MR0

Nm
.

(42)
Therefore, we have:

λS
Bj,SR0

Nf
>
Bj,MR0

Nm
,∀j ∈ GM ∪GMS . (43)

However, this means:

RS =
∑
i∈GS

λSBi,SR0

Nf
+

∑
j∈GM∪GMS

λSBj,SR0

Nf

>RM =
∑
i∈GS

Bi,MR0

Nm
+

∑
j∈GM∪GMS

Bj,MR0

Nm
, (44)

which contradicts the assumption that RS = RM .
Therefore it is impossible that a Nash Equilibrium exists on

the boundary point at RS = RM .

APPENDIX H
PROOF OF STEP 2 IN THEOREM 4

Suppose there exists one SP i that only allocates bandwidth
to macro-cells, and another SP j that only allocates bandwidth
to small-cells, then we have:

Bi,M = Bi, Bi,S = 0, Bj,M = 0, Bj,S = Bj , (45a)
Di ≤ 0, Dj ≥ 0. (45b)

It is easy to see:

λ2
S

Bj,SR0

Nf
u′′(RS) ≥ −Bi,MR0

Nm
u′′(RM ). (46)

Since u′′(r) < 0, (46) cannot hold, and we have an obvious
contradiction.

APPENDIX I
PROOF OF STEP 3 IN THEOREM 4

We prove the four classes of Nash Equilibrium are mutually
exclusive in the following steps. In the proof we will use some
properties of the Nash Equilirbium described in Section IV.
These properties are proved in later parts of the Appendix.

A. An MFNE cannot coexist with an SNE, SFNE or MSNE

Suppose for a given set of parameters, there exists one
MFNE with bandwidth allocation profile B and another NE
which belongs to SNE, SFNE or MSNE with bandwidth
allocation profile B′. Then we have:

NλSu
′(RS) + λSRSu

′′(RS) ≤ Nu′(RM ) +RMu
′′(RM ),

(47a)
NλSu

′(R′S) + λSR
′
Su
′′(R′S) ≥ Nu′(R′M ) +R′Mu

′′(R′M ).
(47b)

Since u′(r) and u′(r) + ru′′(r) are both decreasing with
r, and (RS , RM ), (R′S , R

′
M ) correspond to two different

bandwidth allocation profiles with the same amount of total
bandwidth, we can conclude that:

R′S ≤ RS , R′M ≥ RM . (48)

Then there must exist some SPs j ∈ GMS in the MFNE that
decrease their bandwidth allocation in small-cells Bj,S so that
it is possible to make R′S ≤ RS . Denote this user group as
GS−. For SPs j in group GS−, since they decrease their Bj,S ,
at the new NE, they can only be in the user group G′MS or
G′M . Then we have:

GS− = {j ∈ GMS |B′j,S < Bj,S}, (49a)

∀j ∈ GS−, j ∈ G′MS or j ∈ G′M . (49b)

By the definitions for user groups, we have:

∀j ∈ GS−, Dj = 0, D′j ≤ 0 (50a)

⇒
∑

j∈GS−

D′j ≤
∑

j∈GS−

Dj = 0. (50b)

Letting |GS−| = L, we have:

LλSu
′(RS) + λ2

S

∑
j∈GS−

Bj,SR0

Nf
u′′(RS) =

Lu′(RM ) +
∑

j∈GS−

Bj,MR0

Nm
u′′(RM ). (51)

Similarly, we also have:

LλSu
′(R′S) + λ2

S

∑
j∈GS−

Bj,SR0

Nf
u′′(R′S) ≤

Lu′(R′M ) +
∑

j∈GS−

Bj,MR0

Nm
u′′(R′M ). (52)

Rearranging some of the terms, we have:

LλSu
′(RS) + λSRSu

′′(RS) = Lu′(RM ) +RMu
′′(RM )+

λ2
S

∑
k/∈GS−

Bk,SR0

Nf
u′′(RS)−

∑
k/∈GS−

Bk,MR0

Nm
u′′(RM ), (53)

and

LλSu
′(R′S) + λSR

′
Su
′′(R′S) ≤ Lu′(R′M ) +R′Mu

′′(R′M )+

λ2
S

∑
k/∈GS−

Bk,SR0

Nf
u′′(R′S)−

∑
k/∈GS−

Bk,MR0

Nm
u′′(R′M ). (54)
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However, note that R′S ≤ RS , R′M ≥ RM , u′(r) and u′(r)+
xu′′(r) are both decreasing with r. Since u′′(r) is negative and
increases with r, for SPs that are not in the user group GS−,
we have:

∀k /∈ GS−, B′k,S ≥ Bk,S , B′k,M ≤ Bk,S . (55)

Combining these facts and equation (53) we can conclude:

LλSu
′(R′S) + λSR

′
Su
′′(R′S) > Lu′(R′M ) +R′Mu

′′(R′M )+

λ2
S

∑
k/∈GS−

Bk,SR0

Nf
u′′(R′S)−

∑
k/∈GS−

Bk,MR0

Nm
u′′(R′M ). (56)

The strict inequality comes from the following argument.
If R′S < RS , the strict inequality is trival. If R′S = RS , it
implies that at least one of the inequalities in (55) must be
strict (otherwise R′S = RS cannot hold because we have at
least one SP in GS−). Thus, we always have a strict inequality
in (56). However, (56) contradicts (54). Therefore, an MFNE
cannot coexist with an SNE, SFNE or MSNE.

B. An SFNE cannot coexist with an MSNE or SNE

The proof that an SFNE cannot coexist with an MSNE
follows using the same argument as the proof in last subsection
where we prove that an MFNE cannot coexist with an SNE,
SFNE or MSNE.

The proof that an SFNE cannot coexist with an SNE is done
similarly. If there also exists an NE belonging to SNE with
bandwidth allocation profile B, then we need to have:

R′S ≥ RS , R′M ≤ RM . (57)

Now instead of focusing on the group in which SPs decrease
Bj,S , we need to consider the group in which SPs increase
Bj,S . That is:

GS+ = {j ∈ GMS |B′j,S > Bj,S}. (58)

Then we apply the same procedure as before and obtain similar
contradictions.

C. An MSNE cannot coexist with an SNE

If there exists an MSNE with bandwidth allocation profile
B and another SNE with bandwidth allocation profile B′, then
we must have:

R′S > RS , R
′
M < RM , (59a)

NλSu
′(RS) + λSRSu

′′(RS) = Nu′(RM ) +RMu
′′(RM ),

(59b)
NλSu

′(R′S) + λSR
′
Su
′′(R′S) > Nu′(R′M ) +R′Mu

′′(R′M ).
(59c)

However, since u′(r) and u′(r) + ru′′(r) are both decreasing
with r, by (59a) and (59b) we can conclude:

NλSu
′(R′S) + λSR

′
Su
′′(R′S) < Nu′(R′M ) +R′Mu

′′(R′M ).
(60)

Clearly we have a contradiction.

APPENDIX J
PROOF OF STEP 4 IN THEOREM 4

We prove the uniqueness of the Nash Equilibrium in each
of the four classes one by one.

A. Uniqueness of an SNE

The uniqueness of an SNE is straightforward since for an
SNE, we have:

∀i ∈ N , Bi,M = 0, Bi,S = Bi, Di ≥ 0. (61)

B. Uniqueness of an MFNE

The proof of uniqueness of an MFNE is very similar to the
proof of the property that an MFNE cannot coexist with an
SNE, SFNE or MSNE. Suppose there exist two MFNEs with
bandwidth allocation profiles B and B′, respectively. Basically
we need to consider two scenarios:
• R′S ≤ RS

In this case we simply use the same arguments as in
Appendix I to get the contradiction.

• R′S > RS
In this case proof is similar to the preceding case. The
difference is that we now focus on the group of SPs that
increase Bj,S .

GS+ = {j ∈ GMS |B′j,S > Bj,S}, (62a)

∀j ∈ GS+, j ∈ G,M or GMS , j ∈ G′MS , (62b)∑
j∈GS+

Dj ≤
∑

j∈GS+

D′j = 0. (62c)

Then applying the same procedure as in Appendix I,
denoting |GS+| = L, we need to have:

LλSu
′(RS) + λSRSu

′′(RS) ≤ Lu′(RM ) +RMu
′′(RM )

+ λ2
S

∑
k/∈GS+

Bk,SR0

Nf
u′′(RS)−

∑
k/∈GS+

Bk,MR0

Nm
u′′(RM ),

(63a)
LλSu

′(R′S) + λSR
′
Su
′′(R′S) = Lu′(R′M ) +R′Mu

′′(R′M )

+ λ2
S

∑
k/∈GS+

B′k,SR0

Nf
u′′(R′S)−

∑
k/∈GS+

B′k,MR0

Nm
u′′(R′M ).

(63b)

However, we also have:

∀k /∈ GS+, B
′
k,S ≤ Bk,S , B′k,M ≥ Bk,S . (64)

Combining with R′S > RS , R
′
M < RM and the facts

that u′(r) and u′(r) + ru′′(r) are both decreasing with r
and that u′′(r) is negative and increases with r, we can
derive:

LλSu
′(R′S) + λSR

′
Su
′′(R′S) < Lu′(R′M ) +R′Mu

′′(R′M )

+ λ2
S

∑
k/∈GS−

B′k,SR0

Nf
u′′(R′S)−

∑
k/∈GS−

B′k,MR0

Nm
u′′(R′M ).

(65)

Clearly we have a contradiction.
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C. Uniqueness of an SFNE
The proof of uniqueness of an SFNE is essentially the same

as that for an MFNE. We can apply similar procedures as in
the preceding section and get a contradiction if there exist two
SFNEs with different bandwidth allocation profiles.

D. Uniqueness of an MSNE
We can still apply the arguments used to prove the u-

niqueness of an MFNE and SFNE to prove the uniqueness
of an MSNE. However, we provide another method here. This
alternative method reveals many significant properties of an
MSNE.

We know that for an MSNE, we need to have:

∀i ∈ N , Bi,M > 0, Bi,S > 0, Di = 0⇒
N∑
i=1

Di = 0. (66)

Based on the expression for Di, we have:

NλSu
′(RS) + λSRSu

′′(RS) = Nu′(RS) +RMu
′′(RM ).

(67)
Next, find any distinct pair of SPs, and calculate Di − Dj .
Then we get:

λ2
S

(Bi,S −Bj,S)R0

Nf
u′′(RS) =

(Bi,M −Bj,M )R0

Nm
u′′(RM ).

(68)
Thus, we can conclude that the MSNE must satisfy the
following system of equations:{

λS [Nu′(RS) +RSu
′′(RS)] = Nu′(RM ) +RMu

′′(RM ),
λ2
S∆Bij,S
Nf

u′′(RS) =
∆Bij,M
Nm

u′′(RM ),∀i, j ∈ N , i 6= j,

(P1)
where ∆Bij,S = Bi,S −Bj,S , ∆Bij,M = Bi,M −Bj,M .

By the monotonicity of both u′(r) and u′(r) + ru′′(r), we
conclude that Nu′(r) + ru′′(r) also monotonically decreases
with r. Then by the first equation we can uniquely determine
N∑
i=1

Bi,S . The second equation characterizes the relationships

of Bi,S between any pair of SPs. The preceding system
of equations has N unknowns and N independent linear
equations. Thus if there is a solution, it must be unique.

APPENDIX K
PROOF OF PROPOSITION 1

At an MSNE, all SPs allocate bandwidth to both macro-cells
and small-cells. This allocation is the solution of the following
system of equations:{

λS [Nu′(RS) +RSu
′′(RS)] = Nu′(RM ) +RMu

′′(RM ),
λ2
S∆Bij,S
Nf

u′′(RS) =
∆Bij,M
Nm

u′′(RM ),∀i, j ∈ N , i 6= j,

(P1)
where ∆Bij,S = Bi,S − Bj,S is the difference in bandwidth
allocation to small-cells between SP i and SP j, and the
analogous definition applies to ∆Bij,M . We next use these
equations to prove the two properties in the theorem:

1) When Bi = Bj , i, j ∈ {1, 2, ..., N}, then ∆Bij,S =
−∆Bij,M . According to the second equation, ∆Bij,S =
∆Bij,M = 0.

2) When Bi > Bj , i, j ∈ {1, 2, ..., N}, then according to
the second equation, ∆Bij,S ,∆Bij,M > 0.

APPENDIX L
PROOF OF PROPOSITION 2

1) For an MFNE, we have:

∀i ∈ GM ,∀j ∈ GMS ⇒ Di ≤ Dj = 0. (69)

Therefore based on the defition of Di (35), we have:

λSu
′(RS)− u′(RM ) ≤Bi,MR0u

′′(RM )

Nm
−

λ2
SBi,SR0u

′′(RS)

Nf
(70a)

=
Bi,MR0u

′′(RM )

Nm
< 0. (70b)

Then we have:
λSu

′(RS) < u′(RM ). (71)

However, we also have:∑
j∈GMS

Dj = 0, |GMS | = L⇒

LλSu
′(RS) + λSRSu

′′(RS)− Lu′(RM )−RMu′′(RM )

=λ2
S

∑
k∈GM

Bk,SR0

Nf
u′′(RS)−

∑
k∈GM

Bk,MR0

Nm
u′′(RM )

(72a)

=−
∑
k∈GM

Bk,MR0

Nm
u′′(RM ) > 0. (72b)

Finally, we have:

LλSu
′(RS) + λSRSu

′′(RS) > Lu′(RM ) +RMu
′′(RM ).

(73)
Since we have λSu′(RS) < u′(RM ), we obtain the MFNE
condition:

λS [u′(RS) +RSu
′′(RS)] > u′(RM ) +RMu

′′(RM ), (74a)
λSu

′(RS) < u′(RM ). (74b)

For an SFNE, we apply the same procedures and get the
condition:

λSu
′(RS) + λSRSu

′′(RS) < u′(RM ) +RMu
′′(RM ),

(75a)
λSu

′(RS) > u′(RM ). (75b)

2) For an MFNE, utilizing the fact that Di ≤ Dj = 0, we
have:

λ2
N∑
k 6=i

Bk,SR0

Nf
u′′(RS)−

N∑
k 6=i

Bk,MR0

Nm
u′′(RM ) ≥

λ2
N∑
k 6=j

Bk,SR0

Nf
u′′(RS)−

N∑
k 6=j

Bk,MR0

Nm
u′′(RM ) (76a)

⇒λ2Bj,SR0

Nf
u′′(RS)− Bj,MR0

Nm
u′′(RM ) ≥

λ2Bi,SR0

Nf
u′′(RS)− Bi,MR0

Nm
u′′(RM ) (76b)

⇒λ2Bj,SR0

Nf
u′′(RS)− Bj,MR0

Nm
u′′(RM ) ≥

− BiR0

Nm
u′′(RM ). (76c)
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Since u′′(r) < 0, it is clear that we need to have:

Bj,M > Bi. (77)

For an SFNE, we apply the same procedures, and get the
analogous results.

APPENDIX M
PROOF OF COROLLARY 3

For α-fair utility functions, ru′′(r)+u′(r) = (1−α)r−α >
0 and u′(r) = r−α. Therefore neither (74a)-(74b) nor (75a)-
(75b) can occur. On the other hand, the marginal revenue in-
crease in macro-cells, RMu′′(RM )+u′(RM ), goes to infinity
when RM goes to 0, which means an SFNE never exists.

APPENDIX N
PROOF OF THEOREM 5

The proof of the welfare optimal pricing is very similar to
the proof we presented in Appendix B. We do not repeat the
steps here.

As for the bandwidth allocation, for the mixed service case,
we have:

SW = (Nm +Nf )u(R), (78)

where R = (BM+λSBS)R0

Nm+Nf
is the average service rate in both

macro-cells and small-cells. It is easy to see BM + BS = B
and social welfare increases with R. Since λS > 1, social
welfare increases with BS and the maximum occurs at the
boundary point, BMR0/Nm = λSBSR0/Nf .

For the separate service case, we have:

SW = Nmu(RM ) +Nfu(RS), (79)

where RM = BMR0/Nm, RS = λSBSR0/Nf are the aver-
age service rates in macro-cells and small-cells, respectively.
Since u(r) in increasing and strictly concave, the statements
in Theorem 5 are easy to verify.

APPENDIX O
PROOF OF THEOREM 6

We first prove the following lemma.
Lemma 1 (Characterization of Limiting NE): Denote

RS = λS lim
N→∞

N∑
i=1

Bi,S/Nf , RM = lim
N→∞

N∑
i=1

Bi,M/Nm.

Since in our setting we let the mass of users scale linearly
with the number of SPs and the ratio of the total bandwidth
to the mass of mobile and fixed users stay the same, the
limits always exist.

1) At the limiting SNE, we have the following inequality:

λSu
′(RS) ≥ u′(RM ). (80)

2) At the limiting MSNE, we have:

λSu
′(RS) = u′(RM ). (81)

3) We also have:

Limiting MFNE : λSu
′(RS) ≤ u′(RM ), (82)

Limiting SFNE : λSu
′(RM ) ≥ u′(RM ). (83)

Proof: When N → ∞, considering the first equation in
the system of equations (P1), we have:

λSu
′(RS) +

λSRSu
′′(RS)

N
= u′(RM ) +

RMu
′′(RM )

N
. (84)

Under our assumptions, u′(r) < ∞,∀x > 0. |ru′′(r)| <
u′(r),∀r ≥ 0. Since RS > 0 always holds, as long as
RM > 0, RSu′′(RS) and RMu′′(RM ) are always finite. The
equation is thus simplified to be:

λSu
′(RS) = u′(RM ).

When RM = 0, if u′(0) is finite, then RMu
′′(RM ) is also

finite and we are done. When u′(0) is infinite, however, there
will not be any solution to the equation system (P1) since
λSu

′(RS) < ∞, which then completes the proof. Applying
the preceding procedures, we can obtain the properties of the
limiting SNE and the limiting MFNE or SFNE.

The condition for maximizing social welfare is:

λSu
′(RS) = u′(RM ), (85)

if there exists such a solution. If the solution does not exist, the
condition is simply Bi,S = Bi,∀i ∈ N . Clearly the limiting
SNE and MSNE satisfy the condition and therefore they
are social welfare-optimal. In contrast, generally the limiting
MFNE or SFNE do not satisfy the condition.

APPENDIX P
PROOF OF PROPOSITION 4

For utility function u(r) = log(1 + r), u′(x) =
1
r+1 , u

′′(x) = − 1
(r+1)2 . In order to get a limiting MSNE, we

need to make sure the following system of equations has a
feasible solution:{

λSu
′(RS) = u′(RM )

λ2
S∆Bij,S
Nf

u′′(RS) =
∆Bij,M
Nm

u′′(RM ),∀i, j ∈ N , i 6= j.

(P2)
We also have the following:

Nf = k1N,Nm = k2N, a1 + a2 = N, (86a)

RS =
λS(a1B1,S + a2B2,S)R0

Nf
, (86b)

RM =
(a1B1,M + a2B2,M )R0

Nm
, (86c)

B1,M = B1 −B1,S , B2,M = B2 −B2,S . (86d)

The systems in (P2) can then be simplified to:{
a1B1,S + a2B2,S =

(λS−1)NmNf+λSNfR0(a1B1+a2B2)
λS(Nm+Nf )R0

B1,S −B2,S =
Nf (B1−B2)
Nm+Nf

.

It follows that the solutions are given by{
B1,S =

(λS−1)NmNf+λSNfB1R0(a1+a2)
λS(Nm+Nf )(a1+a2)R0

B2,S =
(λS−1)NmNf+λSNfB2R0(a1+a2)

λS(Nm+Nf )(a1+a2)R0
.

Next we check the feasibility of the solutions. First of all, for
the first equation in (P2) to hold, we need to make sure that:

λSu
′(RS) ≤ u′(RM ), when B1,S = B1, B2,S = B2 (87a)

⇒ a1B1 + a2B2 ≥
(λS − 1)Nf

λSR0
. (87b)
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Since λS > 1, this condition also guarantees that RS > RM .
On the other hand, B1,S , B2,S should lie within the feasible

region [0, B1] and [0, B2], respectively, which gives:

B1 ≥
(λS − 1)Nf

λS(a1 + a2)R0
=

(λS − 1)k1N

λSNR0
=

(λS − 1)k1

λSR0
,

(88a)

B2 ≥
(λS − 1)Nf

λS(a1 + a2)R0
=

(λS − 1)k1N

λSNR0
=

(λS − 1)k1

λSR0
.

(88b)

Combining everything we get the following conditions for the
existence of the limiting MSNE in this scenario:

B1 ≥
(λS − 1)k1

λSR0
, B2 ≥

(λS − 1)k1

λSR0
. (89)

APPENDIX Q
PROOF OF THEOREM 7

We know that:

Si =λBi,SR0u
′
[λ N∑

i=1

Bi,SR0

Nf

]
+

(Bi −Bi,S)R0u
′
[ N∑
i=1

(Bi −Bi,S)R0

Nm

]
. (90)

Therefore:

∂2Si
∂B2

i,S

=R0
2
[2λ2

S

Nf
u′′(RS) +

2

Nm
u′′(RM )+

λ3
SBi,SR0

N2
f

u
′′′

(RS)+

(Bi −Bi,S)R0

N2
m

u
′′′

(RM )
]
, (91a)

∂2Si
∂Bi,S∂Bj,S

=R0
2
[ λ2

S

Nf
u′′(RS) +

1

Nm
u′′(RM )+

λ3
SBi,SR0

N2
f

u
′′′

(RS)+

(Bi −Bi,S)R0

N2
m

u
′′′

(RM )
]
. (91b)

To simplify the notation, let:

a =
λ2
SR

2
0

Nf
u′′(RS), b =

R2
0

Nm
u′′(RM ), (92a)

c =
λ3
SR

3
0

N2
f

u
′′′

(RS), d =
R3

0

N2
m

u
′′′

(RM ). (92b)

Next setting θi = 1, ∀i ∈ N , we can then construct
the Jacobian matrix G and formulate the symmetric matrix
G0 = G+GT .

G0ii = 4(a+ b) + 2Bi,Sc+ 2Bi,Md, (93a)
G0ij = 2(a+ b) + (Bi,S +Bj,S)c+ (Bi,M +Bj,M )d.

(93b)

Letting x = [k1 k2 · · · kN ]T , we have:

xTG0x =(a+ b)
[
4

N∑
i=1

k2
i + 2

N∑
i=1

ki

N∑
j 6=i

kj
]
+

c
[ N∑
i=1

Bi,S(2k2
i + 2ki

∑
j 6=i

kj)
]
+

d
[ N∑
i=1

Bi,M (2k2
i + 2ki

∑
j 6=i

kj)
]
. (94)

Denoting

P = 4

N∑
i=1

k2
i + 2

N∑
i=1

ki

N∑
j 6=i

kj , (95a)

L = max{2k2
i + 2ki

∑
j 6=i

kj}, (95b)

then we have:

xTG0x ≤P (a+ b) + L(B1,S +B2,S + · · ·+BN,S)c+

L(B1,M +B2,M + · · ·+BN,M )d (96a)
=P (a+ b) + L(BSc+BMd). (96b)

Based on our assumptions, xu
′′′

(x) + 2u′′(x) < 0, and we
have:

BSc+BMd =
λ3
SBSR

3
0

N2
f

u
′′′

(RS) +
BMR

3
0

N2
m

u
′′′

(RM ) (97a)

=
λ2
SR

2
0

Nf
RSu

′′′
(RS) +

R2
0

Nm
RMu

′′′
(RM )

(97b)

<− 2λ2
SR

2
0

Nf
u′′(RS)− 2R2

0

Nm
u′′(RM ) (97c)

=− 2(a+ b). (97d)

Therefore, we only need to compare P and 2L:

P = 4

N∑
i=1

k2
i + 2

N∑
i=1

ki

N∑
j 6=i

kj = 4

N∑
i=1

k2
i + 4kikj(i 6=j),

(98a)

2L = max{4k2
i + 4ki

∑
j 6=i

kj} = max{4k2
i + 4kikj(i 6=j)}.

(98b)

Obviously P > 2L. Therefore:

xTG0x < (P − 2L)(a+ b) < 0, (99)

which proves that G0 is negative definite.
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