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Joint Scheduling and Resource Allocation in Uplink
OFDM Systems for Broadband Wireless Access

Networks
Jianwei Huang, Vijay G. Subramanian, Rajeev Agrawal, and Randall Berry

Abstract—Orthogonal Frequency Division Multiplexing
(OFDM) with dynamic scheduling and resource allocation is
a key component of most emerging broadband wireless access
networks such as WiMAX and LTE (Long Term Evolution)
for 3GPP. However, scheduling and resource allocation in an
OFDM system is complicated, especially in the uplink due to
two reasons: (1) the discrete nature of subchannel assignments,
and (2) the heterogeneity of the users’ subchannel conditions,
individual resource constraints and application requirements.
We approach this problem using a gradient-based scheduling
framework. Physical layer resources (bandwidth and power) are
allocated to maximize the projection onto the gradient of a total
system utility function which models application-layer Quality
of Service (QoS). This is formulated as a convex optimization
problem and solved using a dual decomposition approach.
This solution has prohibitively high computational complexity
but reveals guiding principles that we use to generate lower
complexity sub-optimal algorithms. We analyze the complexity
and compare the performance of these algorithms via simulation.

Index Terms—Orthogonal Frequency Division Multiplexing
(OFDM), scheduling, resource allocation, optimization, dual de-
composition, uplink communications

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
the core technology for most recent wireless data systems,
including IEEE 802.16 (WiMAX), IEEE 802.11a/g (Wireless
LANs), and LTE for 3GPP. In this paper, we analyze an
uplink scheduling and resource allocation problem for OFDM
wireless access networks. The specific problem is motivated
by the WiMAX/802.16e standard, where there is a centralized
scheduler that knows the QoS classes, and can estimate the
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queue-lengths on each mobile device. The WiMAX/802.16e
standard specifies mechanisms for communicating this infor-
mation to the scheduler and for conveying the scheduling
decisions to the mobiles, both with low delays.1

Our approach is motivated by our previous work on down-
link scheduling in CDMA systems [3] and OFDM systems [4].
As in [3], [4], we consider a gradient-based scheduling
framework, which is described in detail in Section II along
with our system model. In this framework, the time-varying
gradient of a utility function is used to guide the resource
allocation decisions and provide long-term Quality of Service
(QoS) guarantees. In particular, we maximize a weighted sum-
rate during each scheduling interval, where the weights are
time-varying. The optimization variables are the assignment
of OFDM subchannels to the users and the allocation of each
user’s power across the assigned subchannels. We highlight
two challenging aspects of this problem in the OFDM uplink
context. First, the discrete nature of subchannel assignments
in OFDM systems usually leads to hard integer programming
problems. Second, the per-user power constraints in the uplink
make the problem even less tractable. We initially relax the
integer constraints and allow multiple users to share one
subchannel using orthogonalization (e.g. via time-sharing2).
In Section III we derive an optimal solution to this re-
laxed problem via a dual decomposition. Due to the per-
user power constraints, the resulting algorithm has very high
computational complexity. However, this provides insight into
the structure of an optimal solution. In Section V we use
the insights gained from the optimal solution to propose a
family of sub-optimal algorithms that also take into account
the integer constraints on subchannel allocations. Finally, in
Section VI we these algorithms using simulation.

Most initial work on OFDM scheduling and resource alloca-
tion focused on the downlink case. The optimality conditions
and algorithms given for the downlink, however, can not be
directly applied to the uplink due to differences in the resource
constraints (see Section IV). Recently, uplink OFDM resource
allocation has received some attention, including [21]–[28].
In [21], an iterative OFDM resource allocation was proposed
to find a Nash Bargaining solution. A heuristic algorithm
that tries to minimize each user’s transmission power while
satisfying the individual rate constraints is given in [22]. In

1Our model is also appropriate for LTE [29] for 3GPP, UMB [30] for
3GPP2 and the FLASH OFDM system [19] from Qualcomm Flarion.

2While super-position coding would yield an even larger (and more
tractable) capacity region, we do not consider it as it is still not practical.
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[23], an algorithm for maximizing the sum-rate assuming
Rayleigh fading is given; this is a special case of the problem
considered here with equal weights. In our case no assumption
on the fading distribution is made. In [24], an uplink problem
with multiple antennas at the base station is considered; here,
we focus on single antenna systems.

The work in [25]–[28] is closer to ours. In [25], weighted
rate maximization problem is also considered for the uplink,
but with static weights. The results in [25] are generalized
in [26] to account for per-time slot fairness via a utility
function of the instantaneous rate. Per time-slot fairness is
also considered in [27]. Our work differs from these in that
by using a gradient-based scheduler, we can consider long-
term fairness, which depends on the average rate or queue
sizes. For elastic data applications, long-term QoS evaluation
is more reasonable than the short-term QoS evaluation during
each time slot. It not only more faithfully reflects users’ actual
perceived performance, but also gives the system more flexi-
bility in terms of exploiting multi-user diversity. Finally, [28]
proposed a heuristic algorithm based on Lagrangian relaxation,
which has high complexity due to a subgradient search of
the dual variables. Here we use Lagrangian relaxation to give
an optimal solution the uplink problem when time-sharing is
allowed. Solving this problem provides both an upperbound
on the actual system performance as well as the intuition we
use to design good heuristic algorithms.

II. PROBLEM STATEMENT

We consider the problem of scheduling and resource al-
location for the uplink of a OFDM cell in which a set
M = {1, . . . ,M} of users are transmitting to the same
base station. The total frequency band is divided into a set
N = {1, . . . , N} of subchannels (e.g., frequency bands). Let
pij be the power user i allocates to subchannel j, which is
subject to a per-user power constraint:

∑

j

pij ≤ Pi,∀i ∈M. (1)

Let xij be the fraction of subchannel j allocated to user i,
where the total allocation across all users should be no larger
than 1, i.e., ∑

i

xij ≤ 1, ∀j ∈ N . (2)

We use bold symbols to denote vectors and matrices of
these quantities, e.g., P = {Pi, ∀i}, e = {eij , ∀i, j}, p =
{pij , ∀i, j}, and x = {xij ,∀i, j}.

Time is divided into equal length slots. At the beginning
of every time slot, the scheduler seeks to maximize a (time-
varying) weighted sum of the users’ rates over a (time-varying)
rate-region. We describe this rate-region next.

The scheduler is assumed to have knowledge of the nor-
malized received signal-to-interference plus noise ratio (SINR)
per unit transmit power, eij , for each user i and subchannel
j.3 The time-varying subchannel quality vector at time t is

3In both FDD and TDD systems this can be obtained using a combination
of measurements made on the uplink pilots as well as past transmissions from
the mobiles.

denoted by et. As in [4], this model incorporates various
subchannelization schemes where the resource allocation is
performed in terms of subchannels (i.e., sets of tones); eij

represents a collective quality indicator for the subchannel,
e.g., the (harmonic/geometric/arithmetic) average across the
tones in the subchannel. This model also applies if resource
allocation is done with a granularity of multiple symbols in
the time domain.

We model the feasible rate region at time t by

R(et) =
{

r : ri =
∑

j∈N
f(xij , pijeij(t))

}
, (3)

where (x,p) ∈ X are chosen subject to (1) and (2) and the
set

X :=
{

(x, p) ≥ 0 : 0 ≤ xij ≤ 1, pij ≤ xijsij

eij(t)
∀i, j

}
. (4)

Here, f(a, b) = a log(1 + b
a ) so that ri is the achievable rate

of user i in a Gaussian Multiple Access Channel using time-
sharing (cf. [17, Section 15.3.6, pg. 547]). By continuity, we
assume that f(0, b) = 0. The value of sij is a maximum
SINR constraint on subchannel j for user i, which can model
scenarios when users have limited choices of modulation and
coding schemes.

In practical OFDM systems, xij is constrained to be an
integer, i.e., we have the additional constraint xij ∈ {0, 1}
for all i, j. Initially, we ignore this constraint, and consider
a system in which users can share each tone. If resource
allocation is done on blocks of OFDM symbols, then fractional
values of xij can be implemented by time-sharing the symbols
in a block. Alternatively, this can also be implemented by
frequency sharing (e.g., [31]), if there are a large number of
subchannels with roughly equal gains. We will re-introduce
these integer constraints in Sections IV and V.

Next we formulate the scheduling and resource allocation
problem. Our approach is based on the gradient-based schedul-
ing framework in [2], [10], [12]. Each user i is assigned
a utility function Ui(Wi,t, Qi,t) depending on their average
throughput Wi,t up to time t and their queue-length Qi,t at
time t. This is used to quantify fairness and ensure stability of
the queues. At the beginning of each time slot t, the scheduler
chooses a rt ∈ R(et) that maximizes a weighted sum of the
users’ rates, where the weights are determined by the gradient
of the sum utility across all users, i.e., it solves

max
rt∈R(et)

(
∇wU(Wt,Qt)−∇qU(Wt, Qt)

)T

rt, (5)

where U(Wt,Qt) =
∑K

i=1 Ui(Wi,t, Qi,t). Further assuming
that for each user i, Ui(Wi,t, Qi,t) = ui(Wi,t) − di

p (Qi,t)p,
then (5) is equivalent to

max
rt∈R(et)

∑

i

(
∂ui(Wi,t)

∂Wi,t
+ di(Qi,t)p−1

)
ri,t, (6)

where, ui(Wi,t) is a increasing concave function used to
represent elastic data applications [1], [8], [13], [18], di ≥ 0
is a QoS weight for user i’s queue length, and p > 1 is a
fairness parameter associated with the queue length,
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The broad class of policies in (6) can be tuned to yield
good operating points by a proper choice of parameters. If
di = 0 for all i ∈ M, the resulting policy has been shown to
yield utility maximizing solutions [2], [10], [12]. If ui(·) ≡ 0
with di > 0 for all i ∈ M, then the policy has been shown
to be stabilizing in a variety of settings [5]–[7]. The weights
can also be adapted so as to maximize sum utility subject to
stability [9] or (feasible) minimum throughput constraints. [11]

More generally, the optimization in (6) can be written as

max
rt∈R(et)

∑

i

wi,tri,t, (7)

where wi,t ≥ 0 is a time-varying weight assigned to the ith
user at time t. Our focus is on solving such a problem for an
uplink OFDM system, i.e., when R(et) is given by (3). Note
that (7) must be re-solved at each scheduling instant because
of changes in both the subchannel state, et, and the weights.
While in the above examples, the weights wi,t were given by
the gradient of an utility function, our algorithms also apply
to other methods for generating these weights.

III. OPTIMAL SOLUTION WITH FRACTIONAL
ALLOCATIONS

We now consider the optimal solution to (7) when R(et)
is given by (3). Suppressing the time index, the problem is

max
(x,p)∈X

∑

i∈M
wi

∑

j∈N
xij log

(
1 +

pijeij

xij

)
(UL)

subject to the per subchannel assignment constraints in (2) and
the per user power constraints in (1), where X is given in (4).

It can be shown that Problem UL has no duality gap and so
we solve it via a dual formulation. We associate dual variables
λ = (λi)i∈M with constraints (1) and µ = (µj)j∈N with
constraints (2), resulting in the Lagrangian,

L(λ, µ,x,p) :=
∑

i,j

wixij log
(

1 +
pijeij

xij

)

+
∑

i

λi

(
Pi −

∑

j

pij

)
+

∑

j

µj

(
1−

∑

i

xij

)
. (8)

Therefore, the optimal solution to Problem UL is given by

min
(λ,µ)≥0

max
(x,p)∈X

L(λ,µ, x, p). (9)

We solve this problem by the following steps. First, we
analytically find the optimal p and x given fixed values of
the dual variables. We then show that the optimal µ is given
by a search for the maximum value of a per-user metric on
each subchannel. The final step is to numerically search for
the optimal value of λ.

The value of p which maximizes L(λ, µ, x, p) given x, µ
and λ is given bu

p∗ij =
xij

eij
min

{ (
wieij

λi
− 1

)+

, sij

}
, (10)

where (·)+ = max(·, 0). Substituting p∗ into L(·, ·, ·, ·) yields

L(λ, µ,x) =
∑

ij

xij (wih (λi, wieij , sij)− µj)

+
∑

j

µj +
∑

i

λiPi, (11)

where we have used the function h(·, ·, ·) from [3]; namely,

h(a, b, c) =





0 if a ≥ b;
a
b − 1− log a

b if b
1+c ≤ a < b;

log(1 + c)− a
b c if a < b

1+c ,

(12)

where a ≥ 0, b > 0 and c ≥ 0. Optimizing (11) over x such
that xij ∈ [0, 1] yields

L(λ, µ) =
∑

j

µj +
∑

i

λiPi

+
∑

ij

(wih (λi, wieij , sij)− µj)
+

, (13)

where the optimal subchannel allocation has the following
structure

x∗ij(µj) =





1, if wih (λi, wieij , sij) > µj ;
[0, 1], if wih (λi, wieij , sij) = µj ;
0, if wih (λi, wieij , sij) < µj .

(14)

Since the cost function in (13) is separable, by defining
µij (·) := wih (·, wieij , sij) as in [3], we can minimize
L(λ, µ) over µ for a given λ by setting µj = µ∗j (λ) given by

µ∗j (λ) = max
i

µij (λi) . (15)

From (14) and (15), it is clear that x∗ij(µ
∗
j (λ)) ≡ 0 if

i 6∈ arg maxi∈M µij (λi), i.e., users not maximizing a specific
subchannel metric are not allocated the subchannel. There will
be ties when multiple users achieve the value µ∗j on subchannel
j. These can be broken arbitrarily for optimizing the dual
function. Substituting µ∗ into L(λ,µ), and noticing that µ∗,
x∗, p∗ are all functions of λ, we have

L(λ) :=
∑

j

max
i

µij(λi) +
∑

i

λiPi.

The solution to (9) is given by numerically minimizing L(λ)
over λ ≥ 0. For this we use a subgradient-based search and
update λ by

λi(t + 1) =
[
λi(t)− κ(t)

(
Pi −

∑

j

p∗ij(t)
)]+

, ∀i ∈M.

where p∗ij is given by (10) and xij are given by (14) and addi-
tionally satisfy the feasibility constraint (2) in case of ties. The
algorithm will converge when κ(t) is chosen appropriately,
e.g., [20, Exercise 6.3.2]. Given an optimal λ∗, by duality,
L(λ∗) is the optimal objective value to Problem UL.

However, to implement this algorithm, the scheduler must
specify the corresponding optimal primal values of (x∗, p∗).
Here, as in [4], more care is required. Specifically, when ties
occur in (15), it is often needed to split the subchannel among
several users (i.e., allowing fractional values of x∗). Following
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a similar approach as in [3] (for the downlink), the optimal
fractional values can be found by solving a linear program
whose size increases with the number of users and tones
involved in each tie. As discussed below, this number can be
quite large in the uplink setting. Moreover, as noted earlier,
one is typically interested in an integer allocation in practice.
We consider this problem next.

IV. INTEGER SUBCHANNEL ALLOCATION BASED ON
OPTIMAL ALGORITHM

We now address the problem:

max
(x,p)∈X ,

xij∈{0,1},∀i,j

∑

i∈M
wi

∑

j∈N
xij log

(
1 +

pijeij

xij

)
, (UL-Int)

subject to per user power constraints (1). Initially, consider the
following heuristic for Problem UL-Int: (i) Solve Problem UL
as in the previous section; and (ii) “break” any ties on all
subchannels, i.e., whenever there is a fractional x∗ij value,
choose one user in the tie and allocate subchannel j to that
user only. Clearly, if there are no ties, this algorithm gives the
optimal solution to Problem UL-Int. After all ties are broken,
we can then re-optimize the power allocation for each user
using a finite-time water-filling algorithm as in [4].

In [4] a similar procedure is used for a downlink OFDM
scheduling problem. However, there are several major differ-
ences between the uplink and downlink settings that make this
approach less appealing for the uplink. First, in the downlink
case there is a single power constraint

∑
i,j pij ≤ P for the

base station instead of the per-user constraints in (1). Hence, in
the downlink L(λ) is a function of only a single dual variable
λ, which simplifies the numerical search for the optimizer. In
the uplink setting, the convergence of the subgradient search
is too slow to be useful for scheduling on a fast time-scale.

Second, even if the optimal λ can be found, breaking ties is
more difficult than in the downlink case. Scalar subgradients
of L(λ) in the downlink case can be used to devise simple
tie-breaking rules [4], while in the uplink case, the subgra-
dients are vectors, complicating such an approach. Also, the
uplink case can be more sensitive to how ties are resolved.
For example, if two users, i and l, have the same weights
(wi = wl) and the same gains on subchannel j (eij = elj),
then allocating subchannel j to either yields the same total
weighted rate and the same total power usage in the downlink
case. On the other hand, different allocations lead to different
individual power consumptions in the uplink case, and thus
may lead to totally different solutions.

Finally, the number of ties is typically much larger in the
uplink case than in the downlink case. Consider a simple
scenario with two users and two subchannels. Each user has
the same gain over both subchannels, i.e., ei1 = ei2 = ei for
i = 1, 2, and P = P1 = P2, where P is the total power
constraint in the downlink case. Assume user 2 has a much
better subchannel than user 1 so that in the downlink case,
the unique optimal solution is to allocate both subchannels to
user 2, and there is no tie. However, in the uplink case, it can
be shown that at the optimal dual solution, λ1 and λ2 will
satisfy µ1j(λ1) = µ2j(λ2) for j = 1 and 2, i.e., there is a tie

in each subchannel and four possible subchannel allocations
must be considered to determine how to break the tie. This can
be easily extended to M users and N subchannels, with each
user having the same gain over all its subchannels, resulting
in MN ties even in this simplistic setting.

V. LOW COMPLEXITY SUBOPTIMAL ALGORITHMS

Due to the issues discussed in the previous section, finding
the optimal dual solution to Problem UL and breaking any
ties to get an integer allocation is computationally difficult,
even for a moderately sized system. Thus, we now present
a family of sub-optimal algorithms (SOAs), which try to
reduce this complexity using the structure revealed by the
optimal algorithm while enforcing an integer-tone allocation
and exhibiting good performance.

In the optimal algorithm, given the optimal λ∗, the optimal
subchannel allocation up to any ties is determined by sorting
the users on each tone according to the metric µij(λ∗) as
in (14). Given an optimal subchannel allocation, the optimal
power allocation is given by a per-user water-filling allocation
as in (10). In each SOA, we use the same two phases but
modify them to reduce the complexity. Specifically, we begin
with a subChannel Allocation (CA) phase which assigns each
subchannel to at most one user. Two different implementations
of the CA phase are given. In SOA1, instead of using µij(λ∗),
we consider metrics based on a constant power allocation over
all subchannels assigned to a user. In SOA2, we again use a
dual based approach, but here we first determine the number
of subchannels assigned to each user and then match specific
subchannels and users. After the CA phase in both SOAs, we
execute the Power Allocation (PA) phase in which each user’s
power is allocated across the assigned subchannels as in the
optimal algorithm.

A. CA in SOA1: Progressive Subchannel Allocation based on
Metric Sorting

In this family of SOAs, subchannels are assigned sequen-
tially in one pass based on a per user metric for each
subchannel. Let Ki(n) denote the set of subchannels assigned
to user i after the nth iteration. Let gi(n) denote user i’s metric
during the nth iteration and let li(n) be the subchannel index
that user i would like to be assigned if he/she is assigned
the nth subchannel. The resulting CA algorithm is given in
Algorithm 1. Note that all the user metrics are updated after
each subchannel is assigned.

We consider several variations of Algorithm 1 which corre-
spond to different choices for steps 4 and 5. The choices for
step 4 are:

(4A): Sort the subchannels based on the best channel con-
dition among all users. This involves two steps. First, for each
subchannel j, find the best channel condition among all users
and denote it by µ̃j := maxi eij . Second, find a subchannel
permutation {αj}j∈N such that µ̃α1 ≥ µ̃α2 ≥ · · · ≥ µ̃αN

, and
set li (n) = αn for each user i at the nth iteration. Each max
operation has complexity of O(M), and the sorting operation
has a complexity of O(N log(N)). The total complexity is
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Algorithm 1 CA Phase for SOA1
1: Initialization: set n = 0 and Ki (n) = ∅ for each user i.
2: while n < N do
3: n = n + 1.
4: Update subchannel index li (n) for each user i.
5: Update metric gi (n) for each user i.
6: Find i∗ (n) = arg maxi gi (n) (break ties arbitrarily).
7: Assign the nth subchannel to user i∗ (n):

Ki (n) =

{
Ki (n− 1) ∪ {li (n)} , if i = i∗(n);
Ki (n− 1) , otherwise.

8: end while

O (NM + N log N). We note that this is a one-time “pre-
processing” that needs to done before the CA phase starts.
During the subchannel allocation iterations, the users just
choose the subchannel index from the sorted list.

(4B): Sort the subchannels based on the channel condi-
tions for each individual user. For each user i at the nth
iteration, set li(n) to be the subchannel index with the
largest gain among all unassigned subchannels, i.e., li(n) =
arg maxj∈N\∪iKi(n−1) eij . This requires M sorts (one per
user) that only need to be performed once, since each sub-
channel assignment does not change a user’s ordering of the
remaining subchannels. The total complexity of the M sorting
operations is O (MN log N), which is higher than that in (4A).

Let ki(n) = |Ki(n)|. The choices for Line 5 are:
(5A): Set gi (n) to be the total increase in user i’s utility if

assigned subchannel li (n), assuming constant power alloca-
tion over all assigned subchannels, i.e.,

gi(n) = wi

[ ∑

j∈Ki(n−1)∪{li(n)}
log

(
1 +

Pieij

ki(n− 1) + 1

)

−
∑

j∈Ki(n−1)

log
(

1 +
Pieij

ki(n− 1)

)]
. (16)

(5B): Set gi (n) to be user i’s gain from only subchannel
li (n), assuming constant power allocation, i.e.,

gi (n) = wi log
(

1 +
Pi

ki (n− 1) + 1
ei,li(n)

)
.

Compared with (5A), this metric ignores the change in user
i’s utility due to the decrease in power allocated to any
subchannels in Ki(n− 1).

The complexity of either of these choices over N iterations
is O(NM), and so the total complexity for the CA phase 4

is O (NM + N log N) (if (4A) is chosen) or O (MN log N)
(if (4B) is chosen).

B. CA in SOA2: subchannel Number Assignment & subchan-
nel User Matching

As summarized in Algorithm 2, SOA2 implements the
CA phase through two steps: subchannel number assignment

4We note that SOA1 with (4B) and (5B) is similar to the algorithms
proposed in [25]. In Section VI we show that other variations of SOA1 ((4B)
and (5A)) and SOA2 can achieve better performance with similar or slightly
higher complexity.

(CNA) and subchannel user matching (CUM).

Algorithm 2 CA Phase of SOA2
1: CNA step: determine the number of subchannels ni allo-

cated to each user i such that
∑

i∈M ni ≤ N .
2: CUM step: determine the subchannel assignment xij ∈
{0, 1} for all i and j, such that

∑
j∈N xij = ni.

CNA Step: The CNA step determines the number of sub-
channels ni assigned to each user i ∈ M based on the
approximation that each user sees a flat wide-band fading
subchannel. This step does not specify which subchannel is
allocated to which user; such a mapping is left to the CUM
step. The CNA step is further divided into two stages: a basic
assignment stage and an assignment improvement stage.

Stage 1, Basic Assignment: Here, we model each user i
as having a normalized SINR ei = 1

N

∑
j∈N eij , and then

determine the number of subchannels assigned ni for all i by
solving:

max
{ni≥0,i∈M}

∑

i∈M
wini log

(
1 +

Pi

ni
ei

)

subject to:
∑

i∈M
ni ≤ N. (SOA2-CNA)

It can be shown that Problem SOA2-CNA is a standard con-
cave maximization problem over a convex set with a unique
and possibly non-integer solution; we use a dual relaxation
method to find this solution. The optimal Lagrange multiplier
for the subchannel constraint and any intermediate optimal
ni allocation can be found by a line-search, over ranges
[0, maxi (wi log(1 + Piei))] and [0, N ], respectively. Hence,
the worst case complexity of the solving each subproblem is
independent of M or N . Since we need to determine the value
of ni for every user, the complexity of the basic assignment
step is O(M). If the resultant channel allocations contain non-
integer values, we will approximate with an integer solution
that satisfies

∑
i∈M ni = N .

Since each user is allocated only a subset of the subchan-
nels, the normalized SINR ei = 1

N

∑
j∈N eij is typically a

pessimistic estimate of the averaged subchannel conditions
over the allocated subset. This motivates the following assign-
ment improvement stage of CNA.

Stage 2, Assignment Improvement: Here, we iteratively solve
the following variation of Problem SOA2-CNA:

max
{ni(t)≥0,i∈M}

∑

i∈M
wini (t) log

(
1 +

Pi

ni (t)
ei (t)

)

subject to:
∑

i∈M
ni (t) ≤ N, (SOA2-CNA-t)

for t = 1, 2, . . . . During the t-th iteration, ei (t) is a refined
estimate of the normalized SINR based on the best ni (t− 1)
subchannels of user i (ni(0) = N ). The iterative procedure
stops when the subchannel allocation converges or the maxi-
mum number of iterations allowed is reached. At the end an
integer approximation will be performed, if needed.

The complete algorithm for the CNA phase of SOA2 is
given in Algorithm 3. In order to perform the assignment
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improvement, we need to perform M sorting operations once,
with a total complexity O(MN log(N)). Step 4 of each itera-
tion has complexity of O(M) due to solving M subproblems
for a fixed dual variable. The maximum number of iterations
is fixed and thus is independent of N or M . The integer
approximation stage (typically) requires a sorting with the
complexity of O(M log(M)). So the total complexity for the
CNA phase of SOA2 is O(MN log(N) + M log(M)).

Algorithm 3 CNA Phase of SOA2
1: Initialization: integer MaxIte> 0, t = 0, ni(0) = N and

ni(1) = N/2 for each user i.
2: while (ni (t + 1) 6= ni (t) for some i) & (t <MaxIte) do
3: t = t + 1.
4: For each user i, ei (t) = average gain of user i’s best

ni (t− 1) subchannels.
5: Solve Problem (SOA2-CNA-t) to determine the opti-

mal ni (t) for each user i.
6: end while
7: let n∗i = ni(t) for each user i.

CUM Step: The CNA step determines how many sub-
channels are to be allocated to each user but not the exact
subchannel assignment. This is accomplished in the CUM
step by finding a subchannel assignment that maximizes the
weighted-sum rate assuming each user employs a flat power
allocation, i.e. we solve the problem:

max
xij∈{0,1}

∑

i∈M

∑

j∈N
xijwi log

(
1 +

Pi

n∗i
eij

)

subject to:
∑

j∈N
xij = n∗i ,∀i ∈M,

∑

i∈M
xij = 1,∀j ∈ N ,

(SOA2-CUM)

where n∗ = (n∗i , i ∈M) is the integer subchannel allocation
obtained in the CNA step.

Problem SOA2-CUM is an integer Assignment Problem
whose optimal solution can be found by using the Hungarian
Algorithm [15].5 To use the Hungarian algorithm here, we need
to perform the following “virtual user splitting”: For user i,
let rij = wi log

(
1 + Pi

n∗i
eij

)
, and let

ri = [ri1, ri2, · · · , riN ]

be user i’s achievable rates over all possible subchannels. We
can then form an M ×N matrix R =

[
rT
1 , rT

2 , · · · , rT
M

]T 6.
Next, we split each user i into n∗i virtual users by adding
n∗i − 1 copies of the row vector ri to the matrix R giving a
N × N square matrix. Solving Problem SOA2-CUM is then
equivalent to finding a permutation matrix C∗ = [cij ]N×N

5A similar idea has been used to solve other OFDM resource allocation
problems, e.g., [16], [21].

6Here we assume that each user is allocated at least one subchannel. If only
M̃ < M users are allocated positive amount of channels, we can replace M
by M̃ in the discussions.

TABLE I
WORST CASE COMPUTATIONAL COMPLEXITY OF SUBOPTIMAL

ALGORITHMS

Suboptimal Algorithms Worst Case Complexity
4A 5A O (NM + N log N)

subChannel 4A 5B O (NM + N log N)
Allocation 4B 5A O (MN log N)

SOA1 4B 5B O (MN log N)
Power Allocation O (MN)

Total O (MN log N)
subChannel CNA O (MN log N + M log M)
Allocation CUM O

(
N3

)
SOA2 Power Allocation O (MN)

Total O
(
N3 + MN log N + M log M

)

such that

C∗ = arg min
C∈C

−C · R := arg min
C∈C

−
N∑

i=1

N∑

j=1

cijrij . (17)

This problem can be solved by the standard Hungarian algo-
rithm which has a computational complexity of O

(
N3

)
. After

obtaining C∗, we can calculate the corresponding subchannel
allocation x∗, e.g., if c∗kj = 1 and virtual user k corresponds
to the actual user i, then x∗ij = 1.

C. Power Allocation (PA) phase with Single-user Water-filling

In this phase each user optimally allocates its power across
the subchannel assigned to it in the CA phase. For user i, this
can be formulated as the following problem

max
pi∈Pi

∑

j

x∗ij log (1 + pijeij) , (PAi)

where Pi =
{

pi ≥ 0 : pij ≤ sij

eij
,
∑

j∈N pij ≤ Pi

}
.

The solution to Problem PAi will be a water-filling type of
power allocation, taking into account the per subchannel SINR
constraint. Specifically, if

∑
j∈N x∗ij

sij

eij
≤ Pi, we let p∗ij =

sij

eij
. Otherwise, the optimal power allocation is determined

by

p∗ij = min
((x∗ij

νi
− 1

eij

)+

,
sij

eij

)
,

where the constant νi is chosen so that
∑

j∈N p∗ij = Pi. Note
that it is possible that some subchannel is allocated to user i
but gets no power due to its (relatively) poor subchannel gain.
The optimal value of νi can be found through a simple line
search. However, it is possible to devise a finite-time algorithm
(with a maximum of 2n∗i steps) to calculate the exact value
of vi as in [3], [4] with the difference here being that this
procedure needs to be executed for every user who is allocated
a subchannel. Since

∑
n∗i = N , it follows that the total worst

case computational complexity for this approach is O(MN).

D. Complexity Summary of Suboptimal Algorithms

The worst case computational complexities of SOA1 and
SOA2 are summarized in Table I.
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Fig. 1. Empirical CDF of the location-based term in users’ normalized
channel condition eij ’s for all user i and subchannel j
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Fig. 2. Empirical CDF of users’ normalized channel condition eij ’s for all
user i and subchannel j

VI. SIMULATION RESULTS

We report simulation results for the following four algo-
rithms: 1) (Integer-Dual) integer subchannel allocation (with
tie breaking) based on optimal algorithm as in Section IV and
power control as in Section V-C, inspecting up to 128 ways
of breaking the ties with an integer allocation and selecting
the allocation among these with the largest weighted sum rate
(before reallocating the power); 2) (SOA1) all four versions of
subchannel allocation procedure as in Section V-A, and power
control as in Section V-C; 3) (SOA2) subchannel allocation as
in Section V-B (with up to 10 iterations) and power control
as in Section V-C; and 4) (Base-line) each subchannel j is
allocated to the user i with the highest eij , without considering
the weights wi’s and the power constraints, while each user’s
power is still allocated as in Section V-C.

We consider a system bandwidth of 5MHz consisting of 512
OFDM tones, grouped into 64 subchannels (8 adjacent tones

per subchannel, i.e., corresponding to the “Band AMC mode”
of 802.16 d/e.). Each user’s subchannel gains are the product
of a constant location-based term, picked using an empirically
obtained distribution, and a fast fading term, generated using a
block-fading model and a standard mobile delay-spread model
with a delay spread of 10µsec. The fast-fading component
for each multi-path component is held fixed for 2msec and
an independent value is generated for the next block, which
corresponds to a 250Hz Doppler. The empirical cumulative
distribution function (CDF) of the location-based term of
users’ location-based term of the eij’s is given in Fig. 1, and
the empirical CDF of the net eij’s (i.e., including the fast-
fading component) is given in Fig. 2. Since the units of eij

are in 1/watt, the x-axis in both figures is measured in -dBW.
The symbol duration is 100µsec with a cyclic prefix of 10µsec,
which roughly corresponds to 20 OFDM symbols per fading
block (i.e., 2msec). This is one of the allowed configurations in
the IEEE 802.16 standards [14]. Resource allocation (solving
Problem UL) is done once per fading block. All the results
are averaged over the last 1000 fading blocks. For the sake of
illustration and to keep things simple, we assume that all users
are infinitely back-logged, di = 0, and have the same isoelastic
utility function ui(Wi,t) = (Wi,t)α/α, where Wi,t is the long
term average throughput of user i up to time t. All users also
have the same maximum power constraint of Pi = 2W. We
calculate the achievable rate of user i on subchannel j as

rij = Bxij log
(
1 + pijeij

xij

)
,

where B is the subchannel bandwidth.
In all tables, the “Utility” column denotes

∑
i Ui(Wi,t)

(in scientific notations when appropriate), where t is the
end of simulation time. The “Log U” column denotes the
logarithmic utility function,

∑
i log(Wi,t), which provides an

alternate characterization of fairness among users. The “Rate”
column denotes the total rate achieved by users in Mbps.
The “User #” column denotes the average number of users
who receive positive rates within one scheduling interval. The
“Opt. Ratio” for the Integer-Dual algorithm denotes the ratio
between the objective value of Problem UL-Int achieved with
the algorithm and the maximum objective value of Problem
UL averaged over all scheduling instances. This gives us
an idea of how good the performance of the Integer-Dual
algorithm is. Furthermore, we emphasize that this value is
based on the average performance of solving problem UL in
each scheduling instance; this does not translate directly into
a bound on the average utility under a optimal scheduling rule
and under the given policy as the trajectory of the scheduling
weights will be different under the two policies. Since other
suboptimal algorithms do not find the optimal dual value
of Problem UL at each scheduling instance, the “Optimality
Ratio” does not apply to them.

Table II shows results for all the algorithms (summed over
all users) when scheduling decisions are made every 20 OFDM
symbols (i.e., a fading block of 2msec). The utility parameter
is α = 0.5. In Table II, SOA1 (with 4B & 5A) and SOA2
achieve the best performance in terms of total utility. Their
performance is even better than the Integer-Dual approach,
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TABLE II
ALGORITHM PERFORMANCE FOR SCHEDULING EVERY 20 OFDM

SYMBOLS, α = 0.5

Algorithms Utility Log U Rate User # Opt. Ratio
Integer-Dual 53922 514.0 21.56 37.5 0.9412

4A 5A 52494 510.7 22.86 34.6 N/A
SOA 1 4A 5B 51697 509.2 20.22 28.1 N/A

4B 5A 54165 513.3 22.25 35.0 N/A
4B 5B 53156 511.4 21.43 28.6 N/A

SOA 2 54316 513.6 22.33 35.1 N/A
Base Line 21406 -1960.5 16.13 2.66 N/A

TABLE III
ALGORITHM PERFORMANCE FOR SCHEDULING EVERY 20 OFDM

SYMBOLS, α = 0

Algorithm Utility Log U Rate User # Opt. Ratio
Integer-Dual 515 515 19.80 39.0 0.9715

4A 5A 511 511 18.47 36.9 N/A
SOA 1 4A 5B 509 509 21.56 28.6 N/A

4B 5A 515 515 20.04 37.4 N/A
4B 5B 512 512 17.80 29.3 N/A

SOA 2 515 515 19.91 37.4 N/A
Base Line -1961 -1961 16.13 2.66 N/A

which was obtained based on the optimal value of the relaxed
problem. This is likely because only 128 ways to break ties are
considered, which is typically not sufficient. Since the Integer-
Dual algorithm achieves an optimality ratio of 0.9412, this
suggests that SOA1 and SOA2 achieve very close to optimal
performance as well. The base-line algorithm always has poor
performance.

Tables III and IV give the results of the algorithms when the
utility parameter α is equal to 0 (proportional fair allocation)
and 1 (maximum rate allocation), respectively. It is clear that
there is a trade-off between fairness (measured by Log U)
and efficiency (measured by total rate). The value of α = 0
gives a throughput allocation that is the fairest and the least
efficient, while α = 1 is the most efficient and least fair. Once
again we note that all of the heuristics have good performance
with SOA1 (with 4B & 5A) and SOA2 achieving the best
performances in terms of total utility.

In each case simulated, all of the SOA’s have good perfor-
mance with SOA1 (with 4B & 5A) and SOA2 consistently
achieving the best performance in terms of total utility. From

TABLE IV
ALGORITHM PERFORMANCE FOR SCHEDULING EVERY 20 OFDM

SYMBOLS, α = 1

Algorithm Utility Log U Rate User # Opt. Ratio
Integer-Dual 23.24e6 472.56 23.37 20.43 0.82541

4A 5A 23.19e6 448.99 22.28 22.6 N/A
SOA 1 4A 5B 23.11e6 -136.03 23.20 15.6 N/A

4B 5A 24.31e6 444.02 24.42 32.7 N/A
4B 5B 23.95e6 -195.10 24.05 15.6 N/A

SOA 2 24.46e6 372.95 24.57 21.8 N/A
Base Line 16.08e6 -1961 16.13 2.66 N/A

the analysis in Section V-D, we note that these have slightly
higher complexity than some of the other SOA’s. Hence if
lower complexity is desired, this can be provided with only
a slight loss in performance. We also note that in each of
the algorithms (except the base line one) a large number of
users are scheduled in each time-slot, which may lead to a
high signaling overhead. This can be addressed by adding a
penalty term to our objective which increases with the number
of users scheduled.

VII. CONCLUSIONS

We presented an optimization-based formulation for
scheduling and resource allocation in the uplink OFDM access
network. Compared to the downlink, we showed that the
uplink was computationally more challenging due in part to
the per-user power constraints. A (high complexity) optimal
algorithm was given as well as a family of low complexity
heuristics. The heuristics were shown to have good perfor-
mance via simulations for a range of different user utilities
and scheduling time-scales. Two algorithms from this family
consistently achieved the best performance, but had a slightly
higher complexity than some of the other algorithms, enabling
complexity to be traded off with performance within this
family of algorithms.
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