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Abstract

In cooperative relaying, packets are not forwarded by traditional hop-by-hop transmissions between
pairs of nodes. Instead, several nodes cooperate with each other to forward a packet by, for example,
forming a distributed antenna array. To date, such schemes have been primarily investigated at the
physical layer with the focus on communication of a single end-to-end flow. In this paper, we consider
cooperative relay networks with multiple stochastically varying end-to-end flows. The traffic from each
flow is queued within the network until it can be forwarded. For such networks, we study network
control policies that take into account queue dynamics to jointly optimize routing, scheduling and
resource allocation. Specifically, we develogheoughput optimalpolicy, i.e., a policy that stabilizes
the network for any arrival rate in its stability region. This policy is a generalization of the well-known
Maximum Differential Backloglgorithms, which takes into account the cooperative gains in the network.
Implementing this policy requires solving an optimization problem over the set of feasible transmission
rates. We discuss several structural characteristics of this optimization problem for the special case of

parallel relay cooperative networks.

. INTRODUCTION

In recent years, there has been a growing body of work on “cross layer” control of wireless
networks. In particular, given stochastically varying traffic demands, vatlwosighput optimal
control schemes have been developed that jointly address issues such as scheduling and physical-

layer resource allocation (e.g. power control). This includes [1]-[8], which address various
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Fig. 1. A four node parallel relay network model.

models of single-hop networks, and [9], [10], which address multi-hop networks and include
routing in the control strategy. Much of this work has been recently surveyed in [11]. By
“throughput optimal” we mean that a control scheme stabilizes all the queues within the network
whenever it is possible to do so by any (possibly non-causal) policy. In other words, such a
scheme stabilizes the network for any rate in the netwoskability region Many of these
schemes utilize some version ofnaaximum differential backlog (MDB)olicy, first proposed

by Tassiulas and Ephremides f9Buch policies have the desirable property that they require no
a priori knowledge of the traffic statistics and yet are throughput optimal.

A feature of all the above models is that each packet is forwarded along a single route of
point-to-point links, i.e. one node transmits the packet to the next receiver; after it is received,
the next node transmits the packet onward. In particular, at any time a packet resides at a
single location in the network, and the resources needed for the next transmission do not depend
on the previous transmissions of the packet. Recently, there has been much interest in various
cooperative relayingechniques (e.g. [12]-[19]) that do not satisfy these assumptions. With such
techniques, multiple nodes cooperate in relaying a packet. For example, consider the four node
“parallel relay” network from [12], [13], shown in Figure 1. Suppose that node 1 has traffic
to send to node 4. The arrows in the figure indicate the feasible links for this traffic using
traditional point-to-point forwarding, i.e. node 1 could send this traffic either via node Zor 3.
However, with cooperative relaying, node 1 can broadcast the same packet to both nodes 2 and
3. Nodes 2 and 3 can then cooperatively forward this packet to node 4 by, for example, forming

a distributed antenna array. In certain cases, the resulting cooperative rate is greater than the

!In the single-hop case, this policy reduces to the so-called “max weight” policy.

2For simplicity, we assume that node 1 cannot directly transmit to node 4, e.g. the direct link may be of too poor a quality

to be feasible.



sum of the individual rates achievable over each of the direct routes, i.e. the nodes achieve a
“cooperative gain”.

Cooperative communication has mainly been addressed from the physical-layer viewpoint,
i.e. by studying the achievable rates or diversity gains of given cooperative schemes, assuming
that all sources are backlogged and often just focusing on a single end-to-end 2essjoal
of this paper is to develop and study models of cooperative communication that incorporate the
stochastic arrival of traffic for multiple sessions (i.e. with different sources and/or destinations)
and the related queueing dynamics at the various nodes in the network. For example, returning
to the network in Figure 1, suppose node 2 also has its own traffic to send to node 4. In this
case, in order to stabilize the network, node 1 may have to forgo any cooperative gain and use
the single route through node 3. Given such a model, we are then interested in characterizing
the network stability region (i.e. the set of arrival rates for which the queues in the network stay
bounded), and developing an MDB-like policy which is throughput optimal without requaing
priori knowledge of the traffic statistics.

We focus on so-called “decode and forward” cooperative techniques, in which all of the
cooperative nodes must decode a packet before forwarding it. An example of such a scheme is
distributed beamforming, e.g. [18]. With such schemes, packets may now be duplicated within
the network, i.e., each cooperative node must have a copy of the packet. Hence, when multiple
sessions are present a new potential trade-off emerges: in order to exploit cooperative gains, the
amount of congestion in the network must first increase due to this duplication. This increase in
traffic can be somewhat ameliorated by exploiting the broadcast nature of the wireless medium.
For example, in Figure 1, node 1 can transmit a packet to nodes 2 and 3 with a single transmission
(e.g. viewing this packet as common information sent over the corresponding broadcast ¢hannel).

In addition to “decode and forward,” a variety of other cooperative relaying strategies have
been considered, such as the “amplify and forward” technique (e.g. [16]), in which each relay
simply forwards an amplified version of the received signal. We do not address such schemes

here. One reason for this is that in these schemes the “commodity” at the intermediate nodes is no

30ne paper that does take a network layer view of cooperation is [20], which addresses routing in a cooperative network for
minimum energy, but does not address traffic dynamics.
“We note that in [21] an MDB-type of policy is given for a network that exploits such broadcasting. However, the focus in

[21] is on broadcasting to improve reliability given unreliable links.



longer bits, but analog information. It is not obvious how to incorporate this into the queueing
models considered here. We also note that in addition to improving throughput, cooperative
relaying is often studied as a means for increasing diversity in a fading environment (e.g. [14]-
[16]). Here, we focus on the case where there is no fading, and therefore do not address these
diversity gains.

We begin in the next section by discussing modelling cooperative relay networks. We present a
network model which can apply to a network with a general topology and multiple cooperative
sets. Several examples are given to show how this model can capture different cooperative
scenarios. We then move on to characterize the network stability region and give a modified
version of the MDB policy that is shown to be throughput optimal. We provide a proof of this

optimality and then discuss calculating this policy for some simple examples.

II. GENERAL NETWORK MODEL

We study a model for a multi-hop network with an arbitrary topology and cooperative com-
munication. For simplicity, we consider only “two-hop” cooperative communication, i.e. a node
may send a packet to a group of nodes to be cooperatively forwarded to a destination node; the
cooperative group then forwards this packet to the destinatiicourse, in an arbitrary network
there can exist scenarios in which a packet could be cooperatively forwarded over several hops,
e.g. one group could forward it to another group, which then forwards it to the destination.
We do not consider such possibilities here, in part to simplify notation and in part because the
complexity in implementing such a scheme quickly becomes intractable.

Our network model is a generalization of the model in [10] which includes cooperative
communication. Specifically, the netwogkconsists of a set of nodég and a sei’ of feasible
non-cooperative or direct links, where each non-cooperative link is simply an ordered pair of
nodes(u,v) for u,v € V. These represent point-to-point links over which traffic can be %ent.

Additionally, there are two other sets of “links” in the network. First, we define aSsef

5As discussed below, the cooperative group may include either the source or destination. This allows us to model several
other cooperative schemes.

®In principle, a “link” exists between every pair of nodes in a wireless network. However, we do not requi itieitide
all such links. For example, in Figure 1, the links between certain pairs of nodes may not be feasible. This may be a way of

reducing routing complexity in practice.



feasiblecooperative linksThese are many-to-one links, denoted by ordered pairs), where

S C V is a subset of the nodes and= V is a single destination node for the link. In this case,

the nodes inS all cooperate to forward a packet to Second, we define a s&t of feasible
broadcast links denoted by ordered paifs, 7). These are one-to-many links originating at a
nodewu € V and terminating at a subset of of nodEsC V. When a packet is sent over these
“links,” it is broadcast fromu to all of the nodes inl. We make the assumption that each
cooperative link(S,«) is matched to at least one broadcast I{nk.S) whose destination set is

the same as the origin set of the cooperative link. Similarly, each broadcast link is matched to at
least one corresponding cooperative link. Finally, we assume that the only traffic that can be sent
over a cooperative link is that which is received on one of the corresponding broadcast links.
Technically, a key reason for this assumption is that it makes it easy to ensure that indeed the
same packet is present at each node in the cooperative ¥éthout this assumption, we would

need to keep track of the specific packets within the network, not just the number of packets.
From an implementation viewpoint, this is also desirable, in that it reduces the overhead needed
to coordinate the cooperative transmitters.

Returning to the example four node network in Figure 1.&et (V,&£,S,7) be a model for
this network. Herey = {1,2, 3,4}, and€ consists of the four direct links, shown by the arrows
in the figure. Assume that 2 and 3 can cooperate to relay a message to 4. We model this by
settingS = {({2,3},4)} and7 = {(1,{2,3})}. Under the above assumption, to send a packet
over the cooperative link,{2,3},4), it must first be sent over the broadcast liflk{2,3}).

Next, we turn to the feasible rates over each link in the network. We assume the network
operates in slotted time, where the length of each time-slot is normalized to 1. For simplicity,
we assume that there is no fading or changes in the topology over the time-scale of interest.
Within time-slott, let R(t) = (R,;(t)) denote the vector of realized transmission rates for all
le LUSUT, ie., this indicates the transmission rate on each link of all three types in the
network. For allt, we assume thaR(t) € C, whereC denotes thenstantaneous link capacity

region, which we assume is a bounded subsefRgf-!

. In other words,C denotes the set
of feasible link rates in any time-slat Any constraints on the set of links that may be active

are included in this set. Note thatincludes the feasible rates on all cooperative and broadcast

"Such effects can be incorporated in our analysis at the expense of more complicated notation.



links.

Next, we illustrate several examples ©f For these examples, we assume that the channel
between each pair of nodeg;j is given by an additive Gaussian noise channel with g;fim_J
unit variance noise, and bandwidiii = 1 Hz. We further assume that each transmitter has a
power constraint ofP during each time-slot. If link(z, ) is the only link activated, then we

model the feasible transmission rate by
Rij = log(l + hijp),

i.e., the Shannon capacity of this point-to-point channel. This is reasonable provided that each
time-slot has sufficiently many degrees of freedom to allow for sophisticated coding. We em-
phasize that the results in Section Il are not restricted to this case, but apply to any model for
C that gives a bounded subset®f"*~”'.

Example 1:Consider the four-node parallel relay network in Figure 1. Ret (R, 5,R12,R13,
Rs4, Ro4,R34) be the vector of transmission rates for the 6 links in this model, where{2, 3},
e.g. Ris is the rate of the broadcast lirk, {2,3}) and, Rs, is the rate on the cooperative link
({2,3},4). Suppose that in any time-slot, only one of the following two sets of transmitters may
be active: A; = {1} or A, = {2,3}. Note that this enforces half-duplexing constrain{see
e.g. [16], [17]), at node& and 3, so that these nodes can not be both transmitting and receiving
within a time-slot With this assumption, the link capacity regiah= C, UC,, where(; is the
set of feasible rates corresponding to activation4etif R € C;, then the last three components
of R must be zero).

Suppose additionally that during a time-slot, multiple feasible links must be served using time-
division multiplexing (TDM) (i.e. at any time only one link is active.). LBt; = log(1 + h;; P)

be the maximum feasible bit rate for direct litik j) when it is active. It follows that

G Z{(Rls,Rm,RB’O,O,O) € Ri : Rig < 11 Ri2, Ri3 < moRy3,

3 (1)
Ris <3 min<E12>El3)aZ7—i =1,72>0 Vi}.

=1

8n this example, we do not allow some schedules that do not violate the half-duplexing constraint, such as a scenario where
node 1 transmits to node 2, while node 3 transmits to node 4. Such schedules can easily be accommodated in the general model;

here we omit them to simplify the discussion.



Similarly, if Rg, is the maximum feasible rate on linK2,3},4), then

Co :{(07070, Rgy4, Roy, Ray) € Ri : Roy < 71 Roy, Rss < 7R3,

3 2)
Rgy < T3RS4’ZTi =1,7,> OW}.

=1

As an example of a cooperative gain, assume nodes 2 and 3 cooperate by beamforming, then

Ry = log(1 + (v/hat + /h31)*P). (3

This is greater than the rate achieved by either direct (ihk) or (3,4).°

For the network in Figure 1, we can instead define other link capacity regions by changing our

assumptions on the allowable physical-layer techniques. For example, when node 1 is transmit-

ting, the network can be viewed as a Gaussian broadcast channel. Note that the traffic sent over the

broadcast link(1, {2, 3}) represents theommon informatiorin the broadcast channel. Without
loss of generality, assume that, < hi5. Let Cgc be the capacity region of the corresponding
two-user Gaussian broadcast channel. It follows that the ralgs, Ri2, R13) must satisfy
(Ri2+Ris, Ri3) € Cpe. Therefore, we can defi@ as the set of all R s, Ria, Ri3,0,0,0) € RS
such that(R,; + Rig, R13) € Cpc. For a symmetric networkh(, = h;3), C; reduces to the set
of (Ris, Ri2, Ri3,0,0,0) € RS that lie in the simplex defined by

Ris 4+ Ria + Ry3 <log (1 + h12P). (4)

Similarly, when setA, is active, nodes 2 and 3 transmit to node 4 over a Gaussian mul-
tiaccess channel. When these nodes send only direct traffic € 0), the transmission rates
(Ro24, R34) must lie in the corresponding multiaccess capacity regignc. This is the set of
(0,0,0,0, Roy, R34) € RE satisfying

> Ry <log (1 +) hi4P) vV C {2,3}. (5)

% %
When both nodes send only cooperative traffit,y(= R34 = 0), the transmission raté g,

is again given by (3). In addition, we can allow the nodes to transmit both cooperative and

°0f course achieving this rate requires that the two transmitters have perfect synchronization and therefore can coherently

combine their signals at the receiver. Other models for distributed beamforming that relax this assumption can also be found,

e.g. [18].These can be incorporated into the model by simply re-defilRing



direct traffic simultaneously. One way to model this is to allow time-sharing between the above
two modes. More generally, we can view this as a type of three-user multiaccess channel, with
two users corresponding to the direct traffic for nodes 2 and 3, respectively, and a third user
corresponding to the cooperative trafffcThe difference here is that the power constraints of
the “users” are coupled. We assume that if both users 2 and 3 devote a fractof, 1]

of their power to cooperative traffic, then they can achieve any r@tes0, Rsy, Ro4, R34) =

(0,0,0, R4, R5, Rg) € R satisfying

> R; <log (1 + Za(@) VY C {4,5,6}, (6)

% 2%
where Py(a) = (Vhay + Vhza)*aP, Ps(a) = hoy(1 — )P, and Ps(a) = hsy(1 — a)P. Let
Comac(a) be the set of rated), 0, 0, Ry, Rs, Rg) which satisfy (6) for a particular power splitting

parameterv. We can then set
C:= |J Comacla).
a€(0,1]

It can be verified that the resulting region is convéx.

@

Fig. 2. A three node simple relay network model.

Example 2: The next example we consider is the three node relay network shown in Figure 2,
which is based on the classical relay channel [22]. For this example, we again focus on the case
where all information is intended for a single destination (node 3), and all feasible direct links

are indicated via an arrow. We assume that both nodes 1 and 2 can generate traffic for node 3.

10A key assumption here is that the encoding of the traffic by these three “users” depends only on their own message and
that the messages are independent.
Note that here we require both nodes 2 and 3 to devote the same fraction of their power to the cooperative traffic. More

generally, one can consider a model where each may devote a different fraction.



Furthermore, we assume thfat, > hq5. For this network, we discuss two ways in which packets
from node 1 can be cooperatively relayed to node 3. First, we can consider a cooperative link
({1, 2}, 3), in which noded and2 cooperatively forward a packet to node 3, e.g. using distributed
beamforming. To utilize this cooperative link, node 1 must first send a packet to node 2 and save
a copy of the packet for itself. Then in the next time slot, both nodes can transmit the packet to
node3. To incorporate such a scheme into our model, we view the first transmission as occurring
over a broadcast linK1, {1,2}), i.e. a link in which the source is also one of the destination
nodes. Of course, node 1 need not actually transmit a packet over this link and thus the maximum
transmission rate on the link is simpTgll{LQ} = log(1+hi1oP), i.e. the direct rate from node 1 to
node 2. In this casé, contains vectors of the forR, 5, R12, Ri3, Rs3, Re3). Given a duplexing
constraint at node, C can again be decomposed into two setsandC,, whereC; (C,) is the

set of feasible rates given that node 2 is receiving (transmitting) Ci.econtains vectors of the

form (Rys, R12, R13,0,0), while C, contains vectors of the forrf0, 0, Ry3, Rs3, Roe3). Note that

here link (1, 3) can be active in either case. As in Example 1, we can médahd(C, as in (1)

by assuming TDM transmissions or assuming a more general rate region as in (4) (e.g. allowing
node 1 to simultaneously broadcast direct traffic to node 3 and cooperative traffic to node 2 over
the underlying Gaussian broadcast channel.)

A second possible cooperative scenario for this model is for node 1 to first transmit a packet
to node 2, but for node 3 to also store the received signal from this transmission (even though
it can not decode it). Then in the next time-slot, node 2 forwards the packet to node 3, which
uses the information from both transmissions to decode the packet. We model this case by
including a broadcast link1, {2,3}) and a cooperative link{2, 3}, 3). The maximum rate for
the broadcast link1,{2,3}) is again the rate at which node 1 can transmit to node 2 (since
node 3 is not decoding), i.eﬁl{zg} = log(1+ h12P). The corresponding rate on the cooperative
link ({2,3},3) is

Ryz313 = log(1 + hos P) + log(1 + hi3P). (7)

Here, the first term reflects the mutual information received from node 2’s transmission and the
second term is the mutual information received from node 1’s original transmission to node 2. In
this case, one can again defiidor given duplexing and multiplexing constraints. For example,

the cooperative link can still achieve rafﬁmp, in (7), while node 1 can simultaneously send
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at rate

= hiz P
Ry3=1 1+ ——-. 8
= tog (14 50 ®

This can be accomplished by having noglesuccessively decode both transmissions starting
with node 1’s direct transmissidi.Of course, we can also define an instantaneous link capacity
region which includes both types of cooperative links. Such a region would contain vectors of
dimension7 corresponding to the three direct rates, two cooperative rates, and two broadcast

rates.

Fig. 3. A cooperative network with multiple commodities.

Example 3:The next example we consider is the network in Figure 3, which is similar to
that in Figure 1, except now there are two destinations to which traffic can be cooperatively
relayed. That is, node® and 3 can cooperative forward traffic to either nodeor node5 in a
given time-slot. Note that in this case there are two cooperative links which are matched to the
same broadcast link. The feasible link capacity regias nine-dimensional, including the rates
for the six direct rates, the one broadcast link, and the two cooperative links.

Example 4:The final example we give is shown in Figure 4. This can be viewed as a
generalization of Example 1 to the case where thereaetay nodes between a nodand node
b. In this case allh nodes may form a cooperative link, i.e. a link of the foffr, ..., n},b).

More generally, any subset of thesenodes can form a cooperative link. Allowing all such
possibilities, there are potential}y — 1 — n different cooperative links betweenandb in this
network. Each such link would also have its own corresponding broadcast link. In this case, the

instantaneous link capacity region would have a dimensio2(2f — 1 — n) + 2n. Of course, to

2For this model, we require that node 1 transmit on ljnk{2, 3}) will full power P. Otherwise, the corresponding rate on

the cooperative link would depend on the power used in the previous time-slots.
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Fig. 4. An+ 2 node parallel relay network model.

reduce the implementation complexity, one might limit the number of cooperative links in such
a setting.

In this section, we have focused on relatively simple network topologies to illustrate some
possibilities for cooperation. In a general network, several of these scenarios, as well as others,
could exist at different locations in the network. Moreover, we emphasize that while we restricted
our attention to two-hop cooperative transmissions, we do not restrict the overall network to have
a two-hop topology. For example, a session could route a packet using more than two hops, where

the route consists of one or more cooperative links.

A. Traffic and queueing dynamics

Next we turn to describing our model of the traffic and queueing dynamics within the
network. Following [10], all traffic that enters the network is classified according to a particular
“commodity,” which specifies its desired destinatidri.et £ C V denote the set of commodities
in the network, where commodity has destination nodé. Exogenous traffic corresponding
to each commodity: € K is assumed to arrive into the network at nade V \ k, according
to an ergodic procesB¥(t), where B(t) is the number of exogenous bit arrivals to node
time-slott. Each node buffers all arriving packets for each commodity until they are transmitted.

Let UF(t) be the number of untransmitted bits (unfinished work) of commo#itgt node

i, which is to be sent over a direct or broadcast link (we refer to this as the direct traffic).

3More generally a commodity could have any node from a given subset as a destination; however, we do not consider this

here.
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Additionally, for each cooperative linkS, u) € S, let U%(t) be the unfinished work of commodity
k traffic, which is to be forwarded cooperatively by the nodesSinWe view each of these
guantities as the backlog for a separate queue at the corresponding nodes. In other words, each
node keeps separate queues for each commodity of the direct traffic as well as each commodity
of traffic for each cooperative sét to which it belongs. Thus, potentially a node would need
(M + 1)|K| queues, wheré/ is the number of cooperative sets a node is involved in. Note if
a node is part of several cooperative links involving the same cooperative @t Example
3), all the traffic of a given commodity for each of these cooperative links can be stored in one
queue.

Let U(t) = ((UF(t))iev, (UE(t))seu)rex denote the joint queue state at timd.e. the unfin-
ished work of each commaodity in every direct or cooperative queue in the network. We consider
the case where giveli (¢) at timet, a network controller specifies a joint rate allocation/routing
assignment denoted Yz (¢))ic cusur kex, WhereRF(t) denotes the rate allocated to commodity
k over link [ at timet. For feasibility, (RF(t))iccusur xex Must satisfy

S Ri(t) < R(t) foralll, and R(t) = (Ri(t))iecusur €C (9)
ke

where R;(t) is the aggregate rate allocated over lin&t timet.
Given a feasible routing decision, the dynamics of the direct queue badkjogs for all 4,

k, satisfy:
+

UF(t+1) < . (10)

=Y RE(t) =) RE®M) + Y RE()+ > RE() + BE(1)

TeT; FEO; SeS; meZ;
Here, O, = {j € V|(i,5) € L}, T, = {T C V|(i,T) € T}, Z, = {m € V|(m,i) € L},
S, ={S CV|(S,i) € S}, and[z]" denotesmax(z, 0).

Similarly, the dynamics of the backlog for each cooperative quél@) for all S, k, satisfy:

Uk(t+1) { — > RE(M)+ > Rﬁw(t)} : (11)

j€QOg meZlg
Here, Os = {j € V|(S,j) € S} andZs = {m € V|(m,S) € T}. Note that all arrivals to

cooperative queues arrive via broadcast links. In particular, there are no exogenous arrivals. This

means that at any time, all the source nodes involved in a cooperative set has the same queue
backlog in the corresponding cooperative queues. We briefly highlight one important caveat to

this statement. This concerns the second cooperative model in Example 2. In that case, the
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cooperative link given by{2, 3}, 3) corresponds to the case where node 3 cannot decode node
1's transmission to node 2, but stores some information about the received signal to aid it in
decoding node 2’s transmission. Thus, in this case, the cooperative queue backlog does not
correspond to the actual amount of information stored at node 3 (since it is not decoding the
packet but rather storing it). If we assume that the amount of data stored by node 3 is no greater
than some bounded multiple of the actual number of bits transmitted, then the stabllifytof

still implies the stability of the node 3 cooperative queue at node 3.

[11. NETWORK STABILITY REGION AND THROUGHPUTOPTIMAL RATE ALLOCATION

Given the model in Section Il, we proceed to characterize the network stability region and the
throughput optimal joint rate allocation/routing policy. Although the results we obtain here may
be reminiscent of results for conventional networks [9], [10], we shall find that the cooperative

nature of the relay network introduces some significantly new elements.

A. Stability Region

Let pf = limy .o § S _, BF(r) be the exogenous bit arrival rate of traffic to the direct queue
at nodei for commodityk. Denote the size of the direct queue at nodler commodityk at time
t by U(t). We say that the queue @ableif limsup, ., + > ._; ljys(rygdT — 0 aSE — oo,
wherely, is the indicator function. As noted earlier, for any cooperativeSsand commodity
k, the lengths of the cooperative queues foand i are the same for all nodesin the setS
and given byU%(t). The notion of stability for the cooperative queues is defined in the same
manner as for the direct queues.

The network stability regionA is defined as the closure of the set of §)icyrexc €
R“™ for which there exists some feasible joint rate allocation and routing p@li@y) which
can guarantee that all queues are stable. This includes all policies which dynamically make
rate allocation and routing decisions given (possibly non-causal) knowledge of the joint queue
backlogs,u(t) = ((uf(t))icy, (uf)scu)rex- By feasible, we mean that at each timethe policy
specifies a rate vectdi? (t))iccusur ek Satisfying (9). The following result characterizes the
stability region for a cooperative relay network. The proof is a direct generalization of the

arguments in [9], [10], and so is omitted.
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Theorem 1:The stability regionA of a networkG = (V, £, S,7) with two-hop cooperative
forwarding is the set of allp});cy rex € R'ff”w for which there exist non-negative flow variables
((fE)agecs (fir)rers (f§)ses)vex which support(pF)icy rex relative to a weighted graph
defined by the long-term rates in the convex hull@fconv(C). That is, the following flow
conservation relations must be satisfied:

szz z@‘FZ sz_Zfr]:m_ngm

J€O; TeT; meZ; SeS;

forall k€ L and alli € V \ k;

0= ngj_ Zf?lija

j€0s meZlg

for all £ € K and all cooperative setS; and
YoE=d M Y fhe
icy i€y, (S,k)eS
for all k € K. In addition, (). )ec, (fir)rer, (f§)ses)kex € conv(C).

The first flow conservation relation requires that the flow of direct traffic for each commodity
into and out of each node which is not the destination of the commodity, must be the same.
The second relation is a similar constraint for each cooperative set. The third constraint ensures
that the arrival rate of a commodity is equal to its departure rate. Note, we can write the flow
conservation equations in this way because we have implicitly assumed that once data is sent
over a broadcast link to a cooperative set, it must be routed over a corresponding cooperative
link. The careful reader may have noted in principle this is not always required. For example,
in Figure 1, node 1 could broadcast a packet to nodes 2 and 3. Then, at a later time, node 2
could forward this packet directly, while node 3 could simply drop the packet. However, it can
be shown that allowing for such strategies does not increase the stability region. In particular,
note that under a non-causal policy one would never need to broadcast a packet to a node which
will not forward it. Since the stability region includes the rates achievable under all non-causal

policies, we do not reduce it by restricting ourselves to the above assumption.

B. Throughput Optimal Rate Allocation and Routing

Theorem 1 states that ip = (pf)icvrex € int(A), then the queues can be stabilized. In

general, however, this may require knowing the valug.di reality, p can be learned only over
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time, and may be variable. One would prefer to fidiaptiverate allocation/routing policies
which can stabilize the networwithout knowing p, as long asp € int(A). As pointed out
previously in [10], a throughput optimal resource allocation policy for stochastic networks with
physical-layer capacity regions turns out to be a generalization ofmtwemum differential
backlog(MDB) policy first proposed by Tassiulas [9]. Due to cooperative transmissions, however,
the general relay networks considered here is somewhat different from the networks considered
in [10]. Nevertheless, we show that the MDB policy can be adapted to produce a throughput
optimal rate allocation/routing policy for a cooperative relay network.

Let B(t) = (BF(t))icvrex be the vector of bit arrivals in theth time slot. In this section
to simplify our arguments, we restrict attention to the case wHdBgt) : ¢ € Z,} are
i.i.d. according to distributionrg with finite meanE[B] = p, wherep = (pF)icy p=cx iS
the vector of exogenous bit arrival rates. Furthermore, assum&|ttiglt)?] < oo for eachi and
eachk, and Pr (Njey Niexc {BF = 0}) > 0. These assumptions on the arrival process clearly
hold, for example, for independent homogeneous Poisson arrival processes. Following similar

arguments as in [11], the above assumptions can be relaxed to the Markov modulated case.

Theorem 2:A throughput optimal rate allocation/routing polid®*(u) for a network with
two-hop cooperative forwarding is given by first finding a rate allocaftirwhich is a solution

to the following optimization:

max 2 bi;i Rij + ZTZ)ET bir Rir + SZZES bs; Rs; (12)
where
by = max u; uf — uk (13)
bip = r]?ea’écu — |T|ub., (14)
by, = max |S|uf — ul. (15)

The corresponding routing policy is implemented by sending only bits from traffic ttasfich

attains the maximum in (13) ((14) and (15), respectively) at fgte( R and R;, respectively)
for all (i,j) € £ ((i,7) € T and (S,i) € S, respectively). That is, over linke LUS U T,

RF = Ry for k = k* and R} = 0 otherwise.
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Note that the policy in (12) is the not the same as the conventional MDB policy of [9], [10].
In particular, the terms/* — |T'|u% and |S|uf — u reflect thequeue couplingeffect induced
by the cooperative transmission structiffeie refer to the policy of (12) as th€ooperative

Maximum Differential BacklogCMDB) policy.

Proof of Theorem 2To show that the CMDB policy stabilizes this network for apy=
(pF)ievkex € int(A), it is convenient to consider a “fictitious networlg; that is the same
as the networkj, except that arrivals are allowed to enter the cooperative queueg/ lbet
the set of all cooperation sets. In the fictitious network, for edca U, i € S, andk € K
let pf; denote the exogenous bit arrival rate to the queue at ndde cooperative set and
commodity k£; where we assume that the same arrivals occur simultaneously at eash so
that pfs, = pf for all i € S. Let A be the stability region ofj;; this can be characterized as
in Theorem 1, except the second flow conservation equation will now hawen the left-hand
side. It is clear that if the CMDB policy stabilizeg; for all ((oF), (p%s)scu)icv rex € int(Ay)
such thatpfy = 0 for S 5 4, all i € V and allk € K, then CMDB also stabilizeg for all
p = (p¥)icvrex € int(A). Therefore, from now on, we concentrate on the artificial netwrk
To show that the CMDB policy stabilizeg; for all ((p¥), (p%)seu)icv kex sSuch thatols = 0
for S >4, all: € V and allk € K, we use an extension of Foster’s Criterion for the convergence

of Markov chains [5], [6], [10]. Consider the Lyapunov function

V=3 [<uf>2 . z<uz>2] -y

kel i€V el kel

S )+ 18]k (16)

=% Seu
We wish to show that there exists a compact subsetR/"("*“D sych that under the CMDB
policy,

EVU(t+1) - V({U@®)|U(t) =u] < —¢

for all w ¢ T, wheree > 0. This, along with some other technical conditions [10], implies the

existence of a steady state distribution t@r

1The exact value of these terms is due to our choice of the Lyapunov function used in the proof of Theorem 2, which is a
natural generalization of the Lyapunov function used in [9], [10]. Other choices of Lyapunov functions can be used to derive

other throughput optimal policies.
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)

We have from (10),

2

S ORE() = ) RE() + Y RE() + > RE() + BE(t)

TeT; Jj€0; SeS; meZ;

(Uf(t+1)?* < (U’“(t)—

;s@m—Z%m—Z@M+Z% IR +m>

TeT; Jje0; SeS; meZ;
< (UF(t)) %W<ZR +Zﬁm—2%m+2%m—mﬂ
TeT; j€0; SeS; meZ;
+(BF(t))? + 2B (1) (Z RE()+ > R,’;i(t)>
SeS, meZ;
+(§)%w—§]%w>+<2ﬁ%@+§j%mv (17)
TeT; JEQO; SeS; meZ;

Similarly, from (11), sinceofs =0 for all i € S, S € U andk € K,

=Y RE(H+ Y RES(1)

j€0g merlg

2

)

(ULt +1))? < ( Uk(t

é@M—Z%m+me0

Jj€O0s meZg
< (U§(t)* —2U§(t) (Z RE. Z ans(t)>
Jj€Os meZLs
+ (Z R§j<t>> + (Z ans(t)> - (18)
j€0s meZg

Taking conditional expected value of both sides of inequalities (17)-(18) given the event

U(t) = u, and re-arranging, we have
EVU((t+1)) — VgU(t))|U(t) = u]

gz{z—QufE SR+ Y0 R0~ S Re () - 3 RE () - B =

kek \ i€V LTeT; JEO; SeS; meZ;

+3" 2d8ISIE | 3D R ()~ Y REs()U

Seu L 7€0s meZs

—u}—i-ﬁ (29)

where3 > 0 is an upper bound on a sum of terms involving the second moments of the bit

arrivals in thetth slot (which are bounded since the second moments of the packet arrivals and
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the packet sizes are bounded), and powers of transmission rates (which are boundédisince
bounded).
Let E,[X] denoteE[ X |U(t) = u]. Note that

Z{ZufEu STRE Y REM) — ST R - T RE()

kek \ i€y LTeT; jE€O; SEeS; meZ;
+> ub|S|E | Y RE () — Y RE(1) }
Seu Li€Og meLg

_Z{ > Ed (uf —uf) + D Eu[RE ) (uf = |Tuf) + ) Eu[Rgi(t)](]S\u’g—uf)}
©

kek \ (i,5)eL (s, TYeT (Sy)es

(20)

For any ((p¥), (pks)seu)icvrex € int(As) such thatply = 0 for S 2 4, all i € V and all
k € K, there exist$ > 0 such that((p¥ + ), (pls)seu)iev.rex € Ay such thatpty = 4 for S 5 4,
all i € V and allk € K. Therefore, an application of Theorem 1dg shows that there exist

non-negative flow variable§(f%) . jjec, (ff7)rer, (f§;)ses)kex € conv(C) such that

pEs = D > =D =Y f ievikek

JjE€QO; TeT,; meZ; SeS;
_ k k
5= S-S fh Seu
j€0g merlg

We therefore have

z{zuf<pf+a>+z|5|uga}

kel ey Seu
=30 b by ST el = TR+ > FE (S| — k)
ke \ (i,5)eL &,T)eT (Syp)es

Let ((R};) e, (Rip)rer, (RE;)ses)rex be chosen according to the CMDB rule described
in (12). Then, since(f5)jec. (fir)rer. (f§)ses)vex € conv(C), 3y en wi(pF +0) +
> sey |Sukd} is less than or equal to the RHS of (20). Combining this fact with a rearrangement
of the RHS of (19), and noting[B¥(t)] = p¥, we have

EVU(E+1) -VUM)U{) =u] <5 -2 (Z {Z uf + ISIU’§}>

kel \ieV Seu
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Let T = {u : > [Siey uf + Sgey [SIuk] < EE}. Then, for anye > 0, and anyu ¢ T,
EV(U{t+1)-V({U®)|U(t) = u] < —e.

We have shown that the CMDB policy stabiliz€s for all ((p%), (pfs)secu)icvrex € int(Ay)
such thatpf = 0 for S > 4, all i € V and allk € K. Thus, we have also shown that the CMDB

policy stabilizesG for all p = (p¥)icy.rex € int(A). O

As noted above, the CMDB policy defined in Theorem 2 differs from the usual MDB policy
in the definition of the differential backlog weights, andb, defined in (14) and (15). From
the above proof, it can be seen that this is coupled to our choice of Lyapunov function in (16);

namely, the fact that we include the backlog at each node in a cooperative set.

IV. CALCULATING THE CMBD PoLICY

In this section, we focus on the calculation of the CMBD policy in several simple network

examples first presented in Section II.

A. Four Node Parallel Relay Network with TDM

Consider first the four-node network in Example 1, using the TDM rate regions given by
(1) and (2). We focus on the case where all traffic is destined for node 4, i.e. there is a
single commodity. In this network, there are three direct queues (at nodes 1, 2, and 3) and
one cooperative queue (representing traffic stored at both nodes 2 and 3). At a give leine
w1, Usq, Usg, @andu, represent the respective backlogs for the queues. For simplicity of notation,
let (wy, wa, w3, wy, ws, wg) denote(u; — 2ue, uy — Usg, Uy — Usgy 2Ue, Usg, Usq), and let(Ry,

Ry, R3, Ry, Rs, Rg) denote(Ry s 3y,R12,R13,R{2,314, 24, R34). The CMDB policy can now be

expressed as
max Y w;R;. (21)

Recall that in this example; = C; U C,, whereC; and C, are orthogonal sets. Therefore, it
follows that the solution to (21) is eithd®; or R;, where forj = 1,2, R solves
6

max w; R;. (22)
RGC]' —1
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For j = 1 or 2, note that the corresponding regiafisin (1) and (2) both constrain the non-zero
rates to lie within a simplex ifR?. It follows that the solution to (22) is simply a “max-weight”
type of rule, i.e.R; can always be chosen so that only one of its components is positive and

equal to its maximum valu®,. The index of the positive component satisfies
i*(j) = argmaxw; R;(3).

whereR;(j) denote the maximum possible value ®f in the setC;. The corresponding solution
to (22) isw;-(;)Ri+(; for eachj. Comparing the solutions fof = 1 andj = 2, it follows that
the overall solution to (21) is given by the same type of rule.

Lemma 1:Consider the four node network in Example 1, where the feasible link capacity
region is given byC; U C,, with the regions’; andC, given by (1) and (2). A solution to the
MDB problem in (21) is given by a rate vectd@®” for which every component but one is zero.

The non-zero componetit is allocated its maximum value i, R;-, and:* satisfies

i = arg max w; R;.
(3

In other words, under the MDB policy, there is no need to time-share among multiple feasible

links in different active sets within a time-slot, even though this is allowed.

B. Four Node Parallel Relay Network with Multiaccess/Broadcast

Next, suppose that instead, within a time-slot, we allow the network controller to choose any

rates in theconvex hullof C, con«C), by solving the optimization problem

6

Réxcloemc(c) A w; R;. (23)
This would correspond to time-sharing among different active sets within a time-slot. It can be
seen that sinc€; andC, are both convex polytopes iR, con(C) is also a convex polytope.
Furthermore the objective in (23) is linear, i.e. (23) is a linear programming problem. It follows
that (23) must have a solutioR* which is an extreme point of cofW). Furthermore, the
extreme points of conf¢) must be either points id; or C,, i.e. R* is also the solution to (21).
Again, even though we are allowed to time-share among active sets, the MDB policy does not
do this.

For the next scenario, we consider the network in Example 1 using the broadcast and multi-

access rate regions described in (4)-(6). We focus on a symmetric scenarioherér 3 =
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hay = hzy = 1. In this case, the power variables used in the definitio@@f; 4c(«) become
Py(a) = 4aP, Ps(a) = Ps(a) = (1 — a)P.

Suppose that we allow for time-sharing in any given time slot. Thus, within a time slot,
the network controller can choose any ratecimv(C;,C,), whereC, = Uacpo11Comac().
Note that the solutiomR" to (21) lies inconv(Cy, Copmac(a®)) for somea* € [0,1]. SinceC,
and Ceoprac(a*) are both convex polytopesonv(Ci,Conac(a™)) is also a convex polytope.
Following the above discussiolR* is an extreme point ofonv(Cy, Copac(a®)) , and therefore
is either an extreme point @f, or an extreme point afcy 40 (a*). We now consider these cases

separately.

Case 1 R" is an extreme point of;. Using the symmetry of the regions and results from
earlier discussionR" takes the formR}. = log(1 + P) and R} = 0 otherwise, wherg* =
arg max;—; 2.3 w;. 1hus, whenever the CMDB policy operates in the broadcast mode, it allocates

maximum ratelog(1 + P) to the traffic type with the largest weight;.

Case 2 R" is an extreme point @40 (). In this caseR* has the form(0, 0, 0, R}, R, Rg),

and (Rj, R:, Rj) solves
6

ReCenmac(or) “—
Since Coprac(a®) is a polymatroid [23], (R}, R:, R§) can be explicitly given as follows. Let

wyy, wis), wig) be the largest, second largest, and smallest elemefwofws, we}, respectively.
Then

P[z'](Ot*) )
Ry =log |1+ , 1=4,5,6. (25)
. ( L+ 3050 Piyle)

For instance, ifwys > ws > wg, then Ry = log(1 + 4a*P), Rs = log <1 + (11;405*)5), Rg =
(1—a*)P
log <1 + m) .
Next, to finda*, we solve

6
Py (a)
max wrylog | 1+ . 26
aE[O,l]Z 7% ( 1+, Pyla) (26)

1=4

Let L(«) be the objective in (26). For the casewof > w; > wg, it can be verified that («)
is concave inx over [0, 1], and thatZ'(«)) > 0 for all a € [0, 1]. Thus,a* = 1, i.e. all power is

allocated to cooperative transmissiaver the MAC. In other caseg,(a) may not be concave,



22

and one needs to solve for the stationary pointd.@f) and compare the value df(«) at the
stationary points with its values on the boundaries.
Let L}, 40(ws, ws, wg) be the optimal objective of (26). Using the above arguments, it is

easy to see that the following is true:

Lemma 2:Consider the symmetric four node network in Example 1 where the feasible link
capacity region is given byonv(C;UCs), with the region&’; andC, given by (4)-(6). Let the dif-
ferential queue backlogs hey, w,, ..., wes. If (max;— 23 w;)log(1+ P) > L ac(wa, ws, we),
then the optimal solutioR™ to (21) is such thak!. = log(1+ P) and R} = 0 otherwise, where
i* = argmax;_; 23 w;. Otherwise,R* = (0,0,0, R}, R:, R}), WhereRE;] is given by (25) and
a* is given by (26).

C. n+ 2 Node Parallel Relay Network with Multiaccess/Broadcast

Finally, we consider the generalization of the four node network considered in Section I1V-B
to then relay case. The resulting + 2 node parallel relay network was first introduced in
Example 4 in Section Il. Assuming half-duplexing constraints atitmelay nodes, and allowing
for time-sharing within a slot, the link capacity region is again giver€by conv(C,UC,), where
C, corresponds to activation sgt; = {1} andC, corresponds to activation s¢t,...,n}. As
mentioned in Example 4, in this case, any subset ofittedays can potentially form a cooperative
link. Let &/ C {1,...,n} be the set of all cooperation subsets. For simplicity of notation, we
include all direct links, i.e. singleton subsets,Zin

Without loss of generality, assunig; < --- < h,,. Let Cgc be the capacity region of the
n-user Gaussian broadcast channel corresponding to the model. It follows that the rate vector

((Ras)seu,0) € Ri‘u' lies in C; if and only if (R,s)sey Satisfies

Ri=> Res,i=1,...,n and (Ry,...,R,) € Cpc (27)
Sel;
wherelf; = {S € U : i = min S}. For a symmetric networkhf; = --- = hg,), C; reduces to

the set of all((Rus)seu,0) € Ri'“' satisfying the simplex constraint

> Rus <log(1+ ha P). (28)
Seu
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-----

power splitting parameters, wheté P is the power allocated by node¢o cooperation sef > i.
The multiaccess capacity regic , 4c(c) for a givena is the set of al(0, (Rg))sey € R2Y!

such that

> R, <log (1 +) Ps(a)> vV Cu. (29)

Sev Sev
Note thatCcyrac(a) is defined by as many ag"~! — 1 constraints! Finally, the overall

multiaccess regiols; = UaConac(a).
Let u, be the queue backlog at nodeand us be the queue backlog corresponding to

cooperative sef. The CMDB policy can now be expressed as

max Seu(ua — |S|ug)Ras + |S|usRsp- (30)

As before, the solutionR* to (30) lies inconv(Cy,Conrac(a®)) for somea*. SinceC; and
Comac(a®) are orthogonal and the objective is lined; lies either inC; or in Coprac(a®).

We again consider two cases.

Case 1 R" lies inC;. In the symmetric caseR™ takes the formR’ .. = log(1 + h, P) and
R ¢ = 0 otherwise, wher&™* = arg maxgey[u, — |S|usg]. Thus, at any time, only one cooperative
set (or direct link) is active. In the asymmetric case, due to the linear constraint in (27), (30)

reduces to

e 2 (e~ 1510s]) - e @
Let (R;,..., R}) be the solution to (31). Then the optimal solution to (30) has the fBfq =

Ry for S* = argmaxgey,[ua — |Slug| and R:g = 0 for all other S € U;, i = 1,...,n. That

is, at any time, multiple cooperative sets (or direct links) can be activeedch relay node
participates in only one cooperative set (or direct linkamely the cooperative set (or direct
link) in U; with the largest differential backlog, — | S|us. For a general broadcast regi6pc,

the optimization in (31) can be solved using the greedy technique from [24], [25]. Note that even
though the number of variablé®,s)s<;, in the original optimization (30) can be exponentially

large inn, the actual resulting optimization problem in (31) is omhdimensional.

Case 1 R" lies in Copac(a®). In this case, the optimization in (30) reduces to

max )Z |S|usRsp (32)

0,R eC o*
(0,Rsp)scucComac( Seut
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As mentioned aboveCcyac(a®) is potentially defined by a doubly exponential number of
constraints. However, sin@&,a¢(a*) is apolymatroid[23], the maximization in (32) merely
involves asorting of the coefficients.S|us. The solution to (32) is then given by successively
decoding the cooperative sets (or direct links) in increasing order of the coeffici8nts[23].
Since there are at mog&t' — 1 coefficients|S|ug, the maximization in (32) can be solved in

O(n) (linear) time.

V. CONCLUSIONS

In this paper, we considered throughput optimal control for a model of wireless networks
with cooperative relaying and stochastically varying traffic. This model applies to a general
network topology and several different types of cooperative scenarios. We established the network
stability region and gave a variation of the Maximum Differential Backlog policy, which we
proved to be throughput optimal. This policy is modified to incorporate the potential gains
of cooperative communication. Specifically, under this policy the size of the cooperative set
is included when determining the differential backlog metric. In this paper, we focused on a
centralized implementation. In practice, a distributed solution is more desirable, particularly for
managing the complexity of a cooperative network. Moreover, in a large network, there may be
many potential cooperative sets. Allowing all of these would likely result in prohibitively high
complexity. A useful direction for future work would be to develop a means for determining the
most “fruitful” of these sets which are to be used. Finally, as we noted above, we considered
only decode and forward models for cooperation. Incorporating other cooperative models into

this framework is also of interest.
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