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Throughput Optimal Control of

Cooperative Relay Networks

Edmund M. Yeh and Randall A. Berry

Abstract

In cooperative relaying, packets are not forwarded by traditional hop-by-hop transmissions between

pairs of nodes. Instead, several nodes cooperate with each other to forward a packet by, for example,

forming a distributed antenna array. To date, such schemes have been primarily investigated at the

physical layer with the focus on communication of a single end-to-end flow. In this paper, we consider

cooperative relay networks with multiple stochastically varying end-to-end flows. The traffic from each

flow is queued within the network until it can be forwarded. For such networks, we study network

control policies that take into account queue dynamics to jointly optimize routing, scheduling and

resource allocation. Specifically, we develop athroughput optimalpolicy, i.e., a policy that stabilizes

the network for any arrival rate in its stability region. This policy is a generalization of the well-known

Maximum Differential Backlogalgorithms, which takes into account the cooperative gains in the network.

Implementing this policy requires solving an optimization problem over the set of feasible transmission

rates. We discuss several structural characteristics of this optimization problem for the special case of

parallel relay cooperative networks.

I. I NTRODUCTION

In recent years, there has been a growing body of work on “cross layer” control of wireless

networks. In particular, given stochastically varying traffic demands, variousthroughput optimal

control schemes have been developed that jointly address issues such as scheduling and physical-

layer resource allocation (e.g. power control). This includes [1]–[8], which address various
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Fig. 1. A four node parallel relay network model.

models of single-hop networks, and [9], [10], which address multi-hop networks and include

routing in the control strategy. Much of this work has been recently surveyed in [11]. By

“throughput optimal” we mean that a control scheme stabilizes all the queues within the network

whenever it is possible to do so by any (possibly non-causal) policy. In other words, such a

scheme stabilizes the network for any rate in the network’sstability region. Many of these

schemes utilize some version of amaximum differential backlog (MDB)policy, first proposed

by Tassiulas and Ephremides [9].1 Such policies have the desirable property that they require no

a priori knowledge of the traffic statistics and yet are throughput optimal.

A feature of all the above models is that each packet is forwarded along a single route of

point-to-point links, i.e. one node transmits the packet to the next receiver; after it is received,

the next node transmits the packet onward. In particular, at any time a packet resides at a

single location in the network, and the resources needed for the next transmission do not depend

on the previous transmissions of the packet. Recently, there has been much interest in various

cooperative relayingtechniques (e.g. [12]–[19]) that do not satisfy these assumptions. With such

techniques, multiple nodes cooperate in relaying a packet. For example, consider the four node

“parallel relay” network from [12], [13], shown in Figure 1. Suppose that node 1 has traffic

to send to node 4. The arrows in the figure indicate the feasible links for this traffic using

traditional point-to-point forwarding, i.e. node 1 could send this traffic either via node 2 or 3.2

However, with cooperative relaying, node 1 can broadcast the same packet to both nodes 2 and

3. Nodes 2 and 3 can then cooperatively forward this packet to node 4 by, for example, forming

a distributed antenna array. In certain cases, the resulting cooperative rate is greater than the

1In the single-hop case, this policy reduces to the so-called “max weight” policy.

2For simplicity, we assume that node 1 cannot directly transmit to node 4, e.g. the direct link may be of too poor a quality

to be feasible.



3

sum of the individual rates achievable over each of the direct routes, i.e. the nodes achieve a

“cooperative gain”.

Cooperative communication has mainly been addressed from the physical-layer viewpoint,

i.e. by studying the achievable rates or diversity gains of given cooperative schemes, assuming

that all sources are backlogged and often just focusing on a single end-to-end session.3 A goal

of this paper is to develop and study models of cooperative communication that incorporate the

stochastic arrival of traffic for multiple sessions (i.e. with different sources and/or destinations)

and the related queueing dynamics at the various nodes in the network. For example, returning

to the network in Figure 1, suppose node 2 also has its own traffic to send to node 4. In this

case, in order to stabilize the network, node 1 may have to forgo any cooperative gain and use

the single route through node 3. Given such a model, we are then interested in characterizing

the network stability region (i.e. the set of arrival rates for which the queues in the network stay

bounded), and developing an MDB-like policy which is throughput optimal without requiringa

priori knowledge of the traffic statistics.

We focus on so-called “decode and forward” cooperative techniques, in which all of the

cooperative nodes must decode a packet before forwarding it. An example of such a scheme is

distributed beamforming, e.g. [18]. With such schemes, packets may now be duplicated within

the network, i.e., each cooperative node must have a copy of the packet. Hence, when multiple

sessions are present a new potential trade-off emerges: in order to exploit cooperative gains, the

amount of congestion in the network must first increase due to this duplication. This increase in

traffic can be somewhat ameliorated by exploiting the broadcast nature of the wireless medium.

For example, in Figure 1, node 1 can transmit a packet to nodes 2 and 3 with a single transmission

(e.g. viewing this packet as common information sent over the corresponding broadcast channel).4

In addition to “decode and forward,” a variety of other cooperative relaying strategies have

been considered, such as the “amplify and forward” technique (e.g. [16]), in which each relay

simply forwards an amplified version of the received signal. We do not address such schemes

here. One reason for this is that in these schemes the “commodity” at the intermediate nodes is no

3One paper that does take a network layer view of cooperation is [20], which addresses routing in a cooperative network for

minimum energy, but does not address traffic dynamics.

4We note that in [21] an MDB-type of policy is given for a network that exploits such broadcasting. However, the focus in

[21] is on broadcasting to improve reliability given unreliable links.
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longer bits, but analog information. It is not obvious how to incorporate this into the queueing

models considered here. We also note that in addition to improving throughput, cooperative

relaying is often studied as a means for increasing diversity in a fading environment (e.g. [14]–

[16]). Here, we focus on the case where there is no fading, and therefore do not address these

diversity gains.

We begin in the next section by discussing modelling cooperative relay networks. We present a

network model which can apply to a network with a general topology and multiple cooperative

sets. Several examples are given to show how this model can capture different cooperative

scenarios. We then move on to characterize the network stability region and give a modified

version of the MDB policy that is shown to be throughput optimal. We provide a proof of this

optimality and then discuss calculating this policy for some simple examples.

II. GENERAL NETWORK MODEL

We study a model for a multi-hop network with an arbitrary topology and cooperative com-

munication. For simplicity, we consider only “two-hop” cooperative communication, i.e. a node

may send a packet to a group of nodes to be cooperatively forwarded to a destination node; the

cooperative group then forwards this packet to the destination.5 Of course, in an arbitrary network

there can exist scenarios in which a packet could be cooperatively forwarded over several hops,

e.g. one group could forward it to another group, which then forwards it to the destination.

We do not consider such possibilities here, in part to simplify notation and in part because the

complexity in implementing such a scheme quickly becomes intractable.

Our network model is a generalization of the model in [10] which includes cooperative

communication. Specifically, the networkG consists of a set of nodesV, and a setL of feasible

non-cooperative or direct links, where each non-cooperative link is simply an ordered pair of

nodes(u, v) for u, v ∈ V. These represent point-to-point links over which traffic can be sent.6

Additionally, there are two other sets of “links” in the network. First, we define a setS of

5As discussed below, the cooperative group may include either the source or destination. This allows us to model several

other cooperative schemes.

6In principle, a “link” exists between every pair of nodes in a wireless network. However, we do not require thatL include

all such links. For example, in Figure 1, the links between certain pairs of nodes may not be feasible. This may be a way of

reducing routing complexity in practice.
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feasiblecooperative links. These are many-to-one links, denoted by ordered pairs(S, v), where

S ⊂ V is a subset of the nodes andv ∈ V is a single destination node for the link. In this case,

the nodes inS all cooperate to forward a packet tov. Second, we define a setT of feasible

broadcast links, denoted by ordered pairs(u, T ). These are one-to-many links originating at a

nodeu ∈ V and terminating at a subset of of nodesT ⊂ V. When a packet is sent over these

“links,” it is broadcast fromu to all of the nodes inT . We make the assumption that each

cooperative link(S, u) is matched to at least one broadcast link(u, S) whose destination set is

the same as the origin set of the cooperative link. Similarly, each broadcast link is matched to at

least one corresponding cooperative link. Finally, we assume that the only traffic that can be sent

over a cooperative link is that which is received on one of the corresponding broadcast links.

Technically, a key reason for this assumption is that it makes it easy to ensure that indeed the

same packet is present at each node in the cooperative setS. Without this assumption, we would

need to keep track of the specific packets within the network, not just the number of packets.

From an implementation viewpoint, this is also desirable, in that it reduces the overhead needed

to coordinate the cooperative transmitters.

Returning to the example four node network in Figure 1. LetG = (V , E ,S, T ) be a model for

this network. HereV = {1, 2, 3, 4}, andE consists of the four direct links, shown by the arrows

in the figure. Assume that 2 and 3 can cooperate to relay a message to 4. We model this by

settingS = {({2, 3}, 4)} andT = {(1, {2, 3})}. Under the above assumption, to send a packet

over the cooperative link,({2, 3}, 4), it must first be sent over the broadcast link(1, {2, 3}).
Next, we turn to the feasible rates over each link in the network. We assume the network

operates in slotted time, where the length of each time-slot is normalized to 1. For simplicity,

we assume that there is no fading or changes in the topology over the time-scale of interest.7

Within time-slot t, let R(t) = (Rl(t)) denote the vector of realized transmission rates for all

l ∈ L ∪ S ∪ T , i.e., this indicates the transmission rate on each link of all three types in the

network. For allt, we assume thatR(t) ∈ C, whereC denotes theinstantaneous link capacity

region, which we assume is a bounded subset ofR|L∪S∪T |+ . In other words,C denotes the set

of feasible link rates in any time-slott. Any constraints on the set of links that may be active

are included in this set. Note thatC includes the feasible rates on all cooperative and broadcast

7Such effects can be incorporated in our analysis at the expense of more complicated notation.
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links.

Next, we illustrate several examples ofC. For these examples, we assume that the channel

between each pair of nodesi, j is given by an additive Gaussian noise channel with gain
√

hij,

unit variance noise, and bandwidthW = 1 Hz. We further assume that each transmitter has a

power constraint ofP during each time-slot. If link(i, j) is the only link activated, then we

model the feasible transmission rate by

Rij = log(1 + hijP ),

i.e., the Shannon capacity of this point-to-point channel. This is reasonable provided that each

time-slot has sufficiently many degrees of freedom to allow for sophisticated coding. We em-

phasize that the results in Section III are not restricted to this case, but apply to any model for

C that gives a bounded subset ofR|L∪S∪T |+ .

Example 1:Consider the four-node parallel relay network in Figure 1. LetR = (R1S,R12,R13,

RS4, R24,R34) be the vector of transmission rates for the 6 links in this model, whereS = {2, 3},
e.g. R1S is the rate of the broadcast link(1, {2, 3}) and,RS4 is the rate on the cooperative link

({2, 3}, 4). Suppose that in any time-slot, only one of the following two sets of transmitters may

be active:A1 = {1} or A2 = {2, 3}. Note that this enforces ahalf-duplexing constraint(see

e.g. [16], [17]), at nodes2 and3, so that these nodes can not be both transmitting and receiving

within a time-slot.8 With this assumption, the link capacity region,C = C1 ∪ C2, whereCi is the

set of feasible rates corresponding to activation setAi (if R ∈ C1, then the last three components

of R must be zero).

Suppose additionally that during a time-slot, multiple feasible links must be served using time-

division multiplexing (TDM) (i.e. at any time only one link is active.). LetRij = log(1 + hijP )

be the maximum feasible bit rate for direct link(i, j) when it is active. It follows that

C1 =

{
(R1S, R12, R13, 0, 0, 0) ∈ R6

+ : R12 ≤ τ1R12, R13 ≤ τ2R13,

R1S ≤ τ3 min(R12, R13),
3∑

i=1

τi = 1, τi ≥ 0 ∀i
}

.

(1)

8In this example, we do not allow some schedules that do not violate the half-duplexing constraint, such as a scenario where

node 1 transmits to node 2, while node 3 transmits to node 4. Such schedules can easily be accommodated in the general model;

here we omit them to simplify the discussion.
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Similarly, if RS4 is the maximum feasible rate on link({2, 3}, 4), then

C2 =

{
(0, 0, 0, RS4, R24, R34) ∈ R6

+ : R24 ≤ τ1R24, R34 ≤ τ2R34,

RS4 ≤ τ3RS4,

3∑
i=1

τi = 1, τi ≥ 0∀i
}

.

(2)

As an example of a cooperative gain, assume nodes 2 and 3 cooperate by beamforming, then

RS4 = log(1 + (
√

h24 +
√

h34)
2P ). (3)

This is greater than the rate achieved by either direct link(2, 4) or (3, 4).9

For the network in Figure 1, we can instead define other link capacity regions by changing our

assumptions on the allowable physical-layer techniques. For example, when node 1 is transmit-

ting, the network can be viewed as a Gaussian broadcast channel. Note that the traffic sent over the

broadcast link(1, {2, 3}) represents thecommon informationin the broadcast channel. Without

loss of generality, assume thath12 ≤ h13. Let CBC be the capacity region of the corresponding

two-user Gaussian broadcast channel. It follows that the rates(R1S, R12, R13) must satisfy

(R12+R1S, R13) ∈ CBC . Therefore, we can defineC1 as the set of all(R1S, R12, R13, 0, 0, 0) ∈ R6
+

such that(R12 + R1S, R13) ∈ CBC . For a symmetric network (h12 = h13), C1 reduces to the set

of (R1S, R12, R13, 0, 0, 0) ∈ R6
+ that lie in the simplex defined by

R1S + R12 + R13 ≤ log (1 + h12P ) . (4)

Similarly, when setA2 is active, nodes 2 and 3 transmit to node 4 over a Gaussian mul-

tiaccess channel. When these nodes send only direct traffic (RS4 = 0), the transmission rates

(R24, R34) must lie in the corresponding multiaccess capacity regionCMAC . This is the set of

(0, 0, 0, 0, R24, R34) ∈ R6
+ satisfying

∑
i∈V

Ri4 ≤ log

(
1 +

∑
i∈V

hi4P

)
∀V ⊆ {2, 3}. (5)

When both nodes send only cooperative traffic (R24 = R34 = 0), the transmission rateRS4

is again given by (3). In addition, we can allow the nodes to transmit both cooperative and

9Of course achieving this rate requires that the two transmitters have perfect synchronization and therefore can coherently

combine their signals at the receiver. Other models for distributed beamforming that relax this assumption can also be found,

e.g. [18].These can be incorporated into the model by simply re-definingRS4.
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direct traffic simultaneously. One way to model this is to allow time-sharing between the above

two modes. More generally, we can view this as a type of three-user multiaccess channel, with

two users corresponding to the direct traffic for nodes 2 and 3, respectively, and a third user

corresponding to the cooperative traffic.10 The difference here is that the power constraints of

the “users” are coupled. We assume that if both users 2 and 3 devote a fractionα ∈ [0, 1]

of their power to cooperative traffic, then they can achieve any rates(0, 0, 0, RS4, R24, R34) ≡
(0, 0, 0, R4, R5, R6) ∈ R6

+ satisfying

∑
i∈V

Ri ≤ log

(
1 +

∑
i∈V

Pi(α)

)
∀V ⊆ {4, 5, 6}, (6)

where P4(α) = (
√

h24 +
√

h34)
2αP , P5(α) = h24(1 − α)P , and P6(α) = h34(1 − α)P . Let

CCMAC(α) be the set of rates(0, 0, 0, R4, R5, R6) which satisfy (6) for a particular power splitting

parameterα. We can then set

C2 =
⋃

α∈[0,1]

CCMAC(α).

It can be verified that the resulting region is convex.11
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Fig. 2. A three node simple relay network model.

Example 2:The next example we consider is the three node relay network shown in Figure 2,

which is based on the classical relay channel [22]. For this example, we again focus on the case

where all information is intended for a single destination (node 3), and all feasible direct links

are indicated via an arrow. We assume that both nodes 1 and 2 can generate traffic for node 3.

10A key assumption here is that the encoding of the traffic by these three “users” depends only on their own message and

that the messages are independent.

11Note that here we require both nodes 2 and 3 to devote the same fraction of their power to the cooperative traffic. More

generally, one can consider a model where each may devote a different fraction.
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Furthermore, we assume thath12 > h13. For this network, we discuss two ways in which packets

from node 1 can be cooperatively relayed to node 3. First, we can consider a cooperative link

({1, 2}, 3), in which nodes1 and2 cooperatively forward a packet to node 3, e.g. using distributed

beamforming. To utilize this cooperative link, node 1 must first send a packet to node 2 and save

a copy of the packet for itself. Then in the next time slot, both nodes can transmit the packet to

node3. To incorporate such a scheme into our model, we view the first transmission as occurring

over a broadcast link(1, {1, 2}), i.e. a link in which the source is also one of the destination

nodes. Of course, node 1 need not actually transmit a packet over this link and thus the maximum

transmission rate on the link is simplyR1{1,2} = log(1+h12P ), i.e. the direct rate from node 1 to

node 2. In this case,C contains vectors of the form(R1S, R12, R13, RS3, R23). Given a duplexing

constraint at node2, C can again be decomposed into two setsC1 andC2, whereC1 (C2) is the

set of feasible rates given that node 2 is receiving (transmitting), i.e.,C1 contains vectors of the

form (R1S, R12, R13, 0, 0), while C2 contains vectors of the form(0, 0, R13, RS3, R23). Note that

here link(1, 3) can be active in either case. As in Example 1, we can modelC1 andC2 as in (1)

by assuming TDM transmissions or assuming a more general rate region as in (4) (e.g. allowing

node 1 to simultaneously broadcast direct traffic to node 3 and cooperative traffic to node 2 over

the underlying Gaussian broadcast channel.)

A second possible cooperative scenario for this model is for node 1 to first transmit a packet

to node 2, but for node 3 to also store the received signal from this transmission (even though

it can not decode it). Then in the next time-slot, node 2 forwards the packet to node 3, which

uses the information from both transmissions to decode the packet. We model this case by

including a broadcast link(1, {2, 3}) and a cooperative link({2, 3}, 3). The maximum rate for

the broadcast link(1, {2, 3}) is again the rate at which node 1 can transmit to node 2 (since

node 3 is not decoding), i.e.,R1{2,3} = log(1+h12P ). The corresponding rate on the cooperative

link ({2, 3}, 3) is

R{2,3}3 = log(1 + h23P ) + log(1 + h13P ). (7)

Here, the first term reflects the mutual information received from node 2’s transmission and the

second term is the mutual information received from node 1’s original transmission to node 2. In

this case, one can again defineC for given duplexing and multiplexing constraints. For example,

the cooperative link can still achieve rateR{2,3}3 in (7), while node 1 can simultaneously send
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at rate

R1,3 = log

(
1 +

h13P

1 + h23P

)
. (8)

This can be accomplished by having node3 successively decode both transmissions starting

with node 1’s direct transmission.12 Of course, we can also define an instantaneous link capacity

region which includes both types of cooperative links. Such a region would contain vectors of

dimension7 corresponding to the three direct rates, two cooperative rates, and two broadcast

rates.
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Fig. 3. A cooperative network with multiple commodities.

Example 3:The next example we consider is the network in Figure 3, which is similar to

that in Figure 1, except now there are two destinations to which traffic can be cooperatively

relayed. That is, nodes2 and3 can cooperative forward traffic to either node4 or node5 in a

given time-slot. Note that in this case there are two cooperative links which are matched to the

same broadcast link. The feasible link capacity regionC is nine-dimensional, including the rates

for the six direct rates, the one broadcast link, and the two cooperative links.

Example 4:The final example we give is shown in Figure 4. This can be viewed as a

generalization of Example 1 to the case where there aren relay nodes between a nodea and node

b. In this case alln nodes may form a cooperative link, i.e. a link of the form({1, . . . , n}, b).
More generally, any subset of thesen nodes can form a cooperative link. Allowing all such

possibilities, there are potentially2n − 1− n different cooperative links betweena andb in this

network. Each such link would also have its own corresponding broadcast link. In this case, the

instantaneous link capacity region would have a dimension of2(2n− 1−n) + 2n. Of course, to

12For this model, we require that node 1 transmit on link(1, {2, 3}) will full power P . Otherwise, the corresponding rate on

the cooperative link would depend on the power used in the previous time-slots.
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Fig. 4. A n + 2 node parallel relay network model.

reduce the implementation complexity, one might limit the number of cooperative links in such

a setting.

In this section, we have focused on relatively simple network topologies to illustrate some

possibilities for cooperation. In a general network, several of these scenarios, as well as others,

could exist at different locations in the network. Moreover, we emphasize that while we restricted

our attention to two-hop cooperative transmissions, we do not restrict the overall network to have

a two-hop topology. For example, a session could route a packet using more than two hops, where

the route consists of one or more cooperative links.

A. Traffic and queueing dynamics

Next we turn to describing our model of the traffic and queueing dynamics within the

network. Following [10], all traffic that enters the network is classified according to a particular

“commodity,” which specifies its desired destination.13 LetK ⊂ V denote the set of commodities

in the network, where commodityk has destination nodek. Exogenous traffic corresponding

to each commodityk ∈ K is assumed to arrive into the network at nodei ∈ V \ k, according

to an ergodic processBk
i (t), whereBk

i (t) is the number of exogenous bit arrivals to nodei in

time-slott. Each node buffers all arriving packets for each commodity until they are transmitted.

Let Uk
i (t) be the number of untransmitted bits (unfinished work) of commodityk at node

i, which is to be sent over a direct or broadcast link (we refer to this as the direct traffic).

13More generally a commodity could have any node from a given subset as a destination; however, we do not consider this

here.
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Additionally, for each cooperative link(S, u) ∈ S, let Uk
S(t) be the unfinished work of commodity

k traffic, which is to be forwarded cooperatively by the nodes inS. We view each of these

quantities as the backlog for a separate queue at the corresponding nodes. In other words, each

node keeps separate queues for each commodity of the direct traffic as well as each commodity

of traffic for each cooperative setS to which it belongs. Thus, potentially a node would need

(M + 1)|K| queues, whereM is the number of cooperative sets a node is involved in. Note if

a node is part of several cooperative links involving the same cooperative setS (c.f. Example

3), all the traffic of a given commodity for each of these cooperative links can be stored in one

queue.

Let U (t) = ((Uk
i (t))i∈V , (Uk

S(t))S∈U)k∈K denote the joint queue state at timet, i.e. the unfin-

ished work of each commodity in every direct or cooperative queue in the network. We consider

the case where givenU (t) at timet, a network controller specifies a joint rate allocation/routing

assignment denoted by(Rk
l (t))l∈L∪S∪T ,k∈K, whereRk

l (t) denotes the rate allocated to commodity

k over link l at time t. For feasibility,(Rk
l (t))l∈L∪S∪T ,k∈K must satisfy

∑

k∈K
Rk

l (t) ≤ Rl(t) for all l, and R(t) ≡ (Rl(t))l∈L∪S∪T ∈ C (9)

whereRl(t) is the aggregate rate allocated over linkl at time t.

Given a feasible routing decision, the dynamics of the direct queue backlogsUk
i (t), for all i,

k, satisfy:

Uk
i (t + 1) ≤

[
Uk

i (t)−
∑
T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t) +

∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t) + Bk

i (t)

]+

. (10)

Here,Oi ≡ {j ∈ V|(i, j) ∈ L}, Ti ≡ {T ⊆ V|(i, T ) ∈ T }, Ii ≡ {m ∈ V|(m, i) ∈ L},
Si ≡ {S ⊆ V|(S, i) ∈ S}, and [x]+ denotesmax(x, 0).

Similarly, the dynamics of the backlog for each cooperative queueUk
S(t) for all S, k, satisfy:

Uk
S(t + 1) ≤

[
Uk

S(t)−
∑
j∈OS

Rk
Sj(t) +

∑
m∈IS

Rk
mS(t)

]+

. (11)

Here,OS ≡ {j ∈ V|(S, j) ∈ S} and IS ≡ {m ∈ V|(m,S) ∈ T }. Note that all arrivals to

cooperative queues arrive via broadcast links. In particular, there are no exogenous arrivals. This

means that at any time, all the source nodes involved in a cooperative set has the same queue

backlog in the corresponding cooperative queues. We briefly highlight one important caveat to

this statement. This concerns the second cooperative model in Example 2. In that case, the
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cooperative link given by({2, 3}, 3) corresponds to the case where node 3 cannot decode node

1’s transmission to node 2, but stores some information about the received signal to aid it in

decoding node 2’s transmission. Thus, in this case, the cooperative queue backlog does not

correspond to the actual amount of information stored at node 3 (since it is not decoding the

packet but rather storing it). If we assume that the amount of data stored by node 3 is no greater

than some bounded multiple of the actual number of bits transmitted, then the stability ofUk
S(t)

still implies the stability of the node 3 cooperative queue at node 3.

III. N ETWORK STABILITY REGION AND THROUGHPUTOPTIMAL RATE ALLOCATION

Given the model in Section II, we proceed to characterize the network stability region and the

throughput optimal joint rate allocation/routing policy. Although the results we obtain here may

be reminiscent of results for conventional networks [9], [10], we shall find that the cooperative

nature of the relay network introduces some significantly new elements.

A. Stability Region

Let ρk
i = limt→∞ 1

t

∑t
τ=0 Bk

i (τ) be the exogenous bit arrival rate of traffic to the direct queue

at nodei for commodityk. Denote the size of the direct queue at nodei for commodityk at time

t by Uk
i (t). We say that the queue isstable if lim supt→∞

1
t

∑t
τ=1 1[Uk

i (τ)>ξ]dτ → 0 as ξ →∞,

where1{·} is the indicator function. As noted earlier, for any cooperative setS and commodity

k, the lengths of the cooperative queues forS andk are the same for all nodesi in the setS

and given byUk
S(t). The notion of stability for the cooperative queues is defined in the same

manner as for the direct queues.

The network stability regionΛ is defined as the closure of the set of all(ρk
i )i∈V,k∈K ∈

R|K||V|+ for which there exists some feasible joint rate allocation and routing policyR(u) which

can guarantee that all queues are stable. This includes all policies which dynamically make

rate allocation and routing decisions given (possibly non-causal) knowledge of the joint queue

backlogs,u(t) = ((uk
i (t))i∈V , (uk

S)S∈U)k∈K. By feasible, we mean that at each timet, the policy

specifies a rate vector(Rk
l (t))l∈L∪S∪T ,k∈K satisfying (9). The following result characterizes the

stability region for a cooperative relay network. The proof is a direct generalization of the

arguments in [9], [10], and so is omitted.
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Theorem 1:The stability regionΛ of a networkG = (V ,L,S, T ) with two-hop cooperative

forwarding is the set of all(ρk
i )i∈V,k∈K ∈ R|K||V|+ for which there exist non-negative flow variables

((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K which support(ρk

i )i∈V,k∈K relative to a weighted graph

defined by the long-term rates in the convex hull ofC, conv(C). That is, the following flow

conservation relations must be satisfied:

ρk
i =

∑
j∈Oi

fk
ij +

∑
T∈Ti

fk
iT −

∑
m∈Ii

fk
mi −

∑
S∈Si

fk
Si,

for all k ∈ K and all i ∈ V \ k;

0 =
∑
j∈OS

fk
Sj −

∑
m∈IS

fk
mS,

for all k ∈ K and all cooperative setsS; and

∑
i∈V

ρk
i =

∑
i∈Ik

fk
ik +

∑

(S,k)∈S
fk

Sk,

for all k ∈ K. In addition,((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C).

The first flow conservation relation requires that the flow of direct traffic for each commodity

into and out of each node which is not the destination of the commodity, must be the same.

The second relation is a similar constraint for each cooperative set. The third constraint ensures

that the arrival rate of a commodity is equal to its departure rate. Note, we can write the flow

conservation equations in this way because we have implicitly assumed that once data is sent

over a broadcast link to a cooperative set, it must be routed over a corresponding cooperative

link. The careful reader may have noted in principle this is not always required. For example,

in Figure 1, node 1 could broadcast a packet to nodes 2 and 3. Then, at a later time, node 2

could forward this packet directly, while node 3 could simply drop the packet. However, it can

be shown that allowing for such strategies does not increase the stability region. In particular,

note that under a non-causal policy one would never need to broadcast a packet to a node which

will not forward it. Since the stability region includes the rates achievable under all non-causal

policies, we do not reduce it by restricting ourselves to the above assumption.

B. Throughput Optimal Rate Allocation and Routing

Theorem 1 states that ifρ = (ρk
i )i∈V,k∈K ∈ int(Λ), then the queues can be stabilized. In

general, however, this may require knowing the value ofρ. In reality,ρ can be learned only over
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time, and may be variable. One would prefer to findadaptiverate allocation/routing policies

which can stabilize the networkwithout knowing ρ, as long asρ ∈ int(Λ). As pointed out

previously in [10], a throughput optimal resource allocation policy for stochastic networks with

physical-layer capacity regions turns out to be a generalization of themaximum differential

backlog(MDB) policy first proposed by Tassiulas [9]. Due to cooperative transmissions, however,

the general relay networks considered here is somewhat different from the networks considered

in [10]. Nevertheless, we show that the MDB policy can be adapted to produce a throughput

optimal rate allocation/routing policy for a cooperative relay network.

Let B(t) = (Bk
i (t))i∈V,k∈K be the vector of bit arrivals in thetth time slot. In this section

to simplify our arguments, we restrict attention to the case where{B(t) : t ∈ Z+} are

i.i.d. according to distributionπB with finite meanE[B] = ρ, where ρ = (ρk
i )i∈V,k=∈K is

the vector of exogenous bit arrival rates. Furthermore, assume thatE[(Bk
i )2] < ∞ for eachi and

eachk, and Pr
(∩i∈V ∩k∈K {Bk

i = 0}) > 0. These assumptions on the arrival process clearly

hold, for example, for independent homogeneous Poisson arrival processes. Following similar

arguments as in [11], the above assumptions can be relaxed to the Markov modulated case.

Theorem 2:A throughput optimal rate allocation/routing policyR∗(u) for a network with

two-hop cooperative forwarding is given by first finding a rate allocationR∗ which is a solution

to the following optimization:

max
R∈C

∑

(i,j)∈L
b∗ijRij +

∑

(i,T )∈T
b∗iT RiT +

∑

(S,i)∈S
b∗SiRSi (12)

where

b∗ij ≡ max
k∈K

uk
i − uk

j , (13)

b∗iT ≡ max
k∈K

uk
i − |T |uk

T , (14)

b∗Si ≡ max
k∈K

|S|uk
S − uk

i . (15)

The corresponding routing policy is implemented by sending only bits from traffic classk∗ which

attains the maximum in (13) ((14) and (15), respectively) at rateR∗
ij (R∗

iT andR∗
Si, respectively)

for all (i, j) ∈ L ((i, T ) ∈ T and (S, i) ∈ S, respectively). That is, over linkl ∈ L ∪ S ∪ T ,

Rk
l = R∗

l for k = k∗ andRk
l = 0 otherwise.
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Note that the policy in (12) is the not the same as the conventional MDB policy of [9], [10].

In particular, the termsuk
i − |T |uk

T and |S|uk
S − uk

i reflect thequeue couplingeffect induced

by the cooperative transmission structure.14 We refer to the policy of (12) as theCooperative

Maximum Differential Backlog(CMDB) policy.

Proof of Theorem 2: To show that the CMDB policy stabilizes this network for anyρ =

(ρk
i )i∈V,k∈K ∈ int(Λ), it is convenient to consider a “fictitious network”Gf that is the same

as the networkG, except that arrivals are allowed to enter the cooperative queues. LetU be

the set of all cooperation sets. In the fictitious network, for eachS ∈ U , i ∈ S, and k ∈ K
let ρk

iS denote the exogenous bit arrival rate to the queue at nodei for cooperative setS and

commodityk; where we assume that the same arrivals occur simultaneously at eachi ∈ S, so

that ρk
iS = ρk

S for all i ∈ S. Let Λf be the stability region ofGf ; this can be characterized as

in Theorem 1, except the second flow conservation equation will now haveρS on the left-hand

side. It is clear that if the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf )

such thatρk
iS = 0 for S 3 i, all i ∈ V and all k ∈ K, then CMDB also stabilizesG for all

ρ = (ρk
i )i∈V,k∈K ∈ int(Λ). Therefore, from now on, we concentrate on the artificial networkGf .

To show that the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K such thatρk

iS = 0

for S 3 i, all i ∈ V and allk ∈ K, we use an extension of Foster’s Criterion for the convergence

of Markov chains [5], [6], [10]. Consider the Lyapunov function

V (u) ≡
∑

k∈K

∑
i∈V

[
(uk

i )
2 +

∑
S3i

(uk
S)2

]
=

∑

k∈K

[∑
i∈V

(uk
i )

2 +
∑
S∈U

|S|(uk
S)2

]
. (16)

We wish to show that there exists a compact subsetΓ ⊂ R|K|(|V|+|U|)+ such that under the CMDB

policy,

E[V (U (t + 1))− V (U (t))|U (t) = u] < −ε

for all u /∈ Γ, whereε > 0. This, along with some other technical conditions [10], implies the

existence of a steady state distribution forU .

14The exact value of these terms is due to our choice of the Lyapunov function used in the proof of Theorem 2, which is a

natural generalization of the Lyapunov function used in [9], [10]. Other choices of Lyapunov functions can be used to derive

other throughput optimal policies.
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We have from (10),

(Uk
i (t + 1))2 ≤

([
Uk

i (t)−
∑
T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t) +

∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t) + Bk

i (t)

]+)2

≤
(

Uk
i (t)−

∑
T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t) +

∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t) + Bk

i (t)

)2

≤ (Uk
i (t))2 − 2Uk

i (t)

(∑
T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t)−Bk

i (t)

)

+(Bk
i (t))2 + 2Bk

i (t)

(∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t)

)

+

(∑
T∈Ti

Rk
iT (t)−

∑
j∈Oi

Rk
ij(t)

)2

+

(∑
S∈Si

Rk
Si(t) +

∑
m∈Ii

Rk
mi(t)

)2

(17)

Similarly, from (11), sinceρk
iS = 0 for all i ∈ S, S ∈ U andk ∈ K,

(Uk
S(t + 1))2 ≤

([
Uk

S(t)−
∑
j∈OS

Rk
Sj(t) +

∑
m∈IS

Rk
mS(t)

]+)2

≤
(

Uk
S(t)−

∑
j∈OS

Rk
Sj(t) +

∑
m∈IS

Rk
mS(t)

)2

≤ (Uk
S(t))2 − 2Uk

S(t)

( ∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)

)

+

( ∑
j∈OS

Rk
Sj(t)

)2

+

( ∑
m∈IS

Rk
mS(t)

)2

. (18)

Taking conditional expected value of both sides of inequalities (17)-(18) given the event

U (t) = u, and re-arranging, we have

E[V (U (t + 1))− V (U (t))|U (t) = u]

≤
∑

k∈K

{∑
i∈V

−2uk
i E

[∑
T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t)−

∑
m∈Ii

Rk
mi(t)−Bk

i (t)|U (t) = u

]

+
∑
S∈U

−2uk
S|S|E

[ ∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)|U (t) = u

]}
+ β (19)

whereβ > 0 is an upper bound on a sum of terms involving the second moments of the bit

arrivals in thetth slot (which are bounded since the second moments of the packet arrivals and
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the packet sizes are bounded), and powers of transmission rates (which are bounded sinceC is

bounded).

Let Eu[X] denoteE[X|U (t) = u]. Note that

∑

k∈K

{∑
i∈V

uk
i Eu

[∑
T∈Ti

Rk
iT (t) +

∑
j∈Oi

Rk
ij(t)−

∑
S∈Si

Rk
Si(t)−

∑
m∈Ii

Rk
mi(t)

]

+
∑
S∈U

uk
S|S|Eu

[ ∑
j∈OS

Rk
Sj(t)−

∑
m∈IS

Rk
mS(t)

]}

=
∑

k∈K

{ ∑

(i,j)∈L
Eu[Rk

ij(t)](u
k
i − uk

j ) +
∑

(i,T )∈T
Eu[Rk

iT (t)](uk
i − |T |uk

T ) +
∑

(S,i)∈S
Eu[Rk

Si(t)](|S|uk
S − uk

i )

}

(20)

For any ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf ) such thatρk

iS = 0 for S 3 i, all i ∈ V and all

k ∈ K, there existsδ > 0 such that((ρk
i + δ), (ρk

iS)S∈U)i∈V,k∈K ∈ Λf such thatρk
iS = δ for S 3 i,

all i ∈ V and all k ∈ K. Therefore, an application of Theorem 1 toGf shows that there exist

non-negative flow variables((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C) such that

ρk
i + δ =

∑
j∈Oi

fk
ij +

∑
T∈Ti

fk
iT −

∑
m∈Ii

fk
mj −

∑
S∈Si

fk
Si, i ∈ V , k ∈ K.

δ =
∑
j∈OS

fk
Sj −

∑
m∈IS

fk
mS, S ∈ U

We therefore have

∑

k∈K

{∑
i∈V

uk
i (ρ

k
i + δ) +

∑
S∈U

|S|uk
Sδ

}

=
∑

k∈K





∑

(i,j)∈L
fk

ij(u
k
i − uk

j ) +
∑

(i,T )∈T
fk

iT (uk
i − |T |uk

T ) +
∑

(S,i)∈S
fk

Si(|S|uk
S − uk

i )



 .

Let ((Rk
ij)(i,j)∈L, (Rk

iT )T∈T , (Rk
Si)S∈S)k∈K be chosen according to the CMDB rule described

in (12). Then, since((fk
ij)(i,j)∈L, (fk

iT )T∈T , (fk
Si)S∈S)k∈K ∈ conv(C),

∑
k∈K{

∑
i∈V uk

i (ρ
k
i + δ) +

∑
S∈U |S|uk

Sδ} is less than or equal to the RHS of (20). Combining this fact with a rearrangement

of the RHS of (19), and notingE[Bk
i (t)] = ρk

i , we have

E[V (U (t + 1))− V (U (t))|U (t) = u] ≤ β − 2δ

(∑

k∈K

{∑
i∈V

uk
i +

∑
S∈U

|S|uk
S

})
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Let Γ = {u :
∑

k∈K[
∑

i∈V uk
i +

∑
S∈U |S|uk

S] ≤ β+ε
2δ
}. Then, for anyε > 0, and anyu /∈ Γ,

E[V (U (t + 1))− V (U (t))|U (t) = u] < −ε.

We have shown that the CMDB policy stabilizesGf for all ((ρk
i ), (ρ

k
iS)S∈U)i∈V,k∈K ∈ int(Λf )

such thatρk
iS = 0 for S 3 i, all i ∈ V and allk ∈ K. Thus, we have also shown that the CMDB

policy stabilizesG for all ρ = (ρk
i )i∈V,k∈K ∈ int(Λ). 2

As noted above, the CMDB policy defined in Theorem 2 differs from the usual MDB policy

in the definition of the differential backlog weightsb∗iT and b∗Si defined in (14) and (15). From

the above proof, it can be seen that this is coupled to our choice of Lyapunov function in (16);

namely, the fact that we include the backlog at each node in a cooperative set.

IV. CALCULATING THE CMBD POLICY

In this section, we focus on the calculation of the CMBD policy in several simple network

examples first presented in Section II.

A. Four Node Parallel Relay Network with TDM

Consider first the four-node network in Example 1, using the TDM rate regions given by

(1) and (2). We focus on the case where all traffic is destined for node 4, i.e. there is a

single commodity. In this network, there are three direct queues (at nodes 1, 2, and 3) and

one cooperative queue (representing traffic stored at both nodes 2 and 3). At a give timet, let

u1, u2d, u3d, anduc represent the respective backlogs for the queues. For simplicity of notation,

let (w1, w2, w3, w4, w5, w6) denote(u1 − 2uc, u1 − u2d, u1 − u3d, 2uc, u2d, u3d), and let(R1,

R2, R3, R4, R5, R6) denote(R1{2,3},R12,R13,R{2,3}4,R24, R34). The CMDB policy can now be

expressed as

max
R∈C

6∑
i=1

wiRi. (21)

Recall that in this example,C = C1 ∪ C2, whereC1 and C2 are orthogonal sets. Therefore, it

follows that the solution to (21) is eitherR∗
1 or R∗

2, where forj = 1, 2, R∗
j solves

max
R∈Cj

6∑
i=1

wiRi. (22)
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For j = 1 or 2, note that the corresponding regionsCj in (1) and (2) both constrain the non-zero

rates to lie within a simplex inR3. It follows that the solution to (22) is simply a “max-weight”

type of rule, i.e.R∗
j can always be chosen so that only one of its components is positive and

equal to its maximum valueRi. The index of the positive component satisfies

i∗(j) = arg max
i

wiRi(j).

whereRi(j) denote the maximum possible value ofRi in the setCj. The corresponding solution

to (22) iswi∗(j)Ri∗(j) for eachj. Comparing the solutions forj = 1 and j = 2, it follows that

the overall solution to (21) is given by the same type of rule.

Lemma 1:Consider the four node network in Example 1, where the feasible link capacity

region is given byC1 ∪ C2, with the regionsC1 andC2 given by (1) and (2). A solution to the

MDB problem in (21) is given by a rate vectorR∗ for which every component but one is zero.

The non-zero componenti∗ is allocated its maximum value inC, Ri∗, andi∗ satisfies

i∗ = arg max
i

wiRi.

In other words, under the MDB policy, there is no need to time-share among multiple feasible

links in different active sets within a time-slot, even though this is allowed.

B. Four Node Parallel Relay Network with Multiaccess/Broadcast

Next, suppose that instead, within a time-slot, we allow the network controller to choose any

rates in theconvex hullof C, conv(C), by solving the optimization problem

max
R∈conv(C)

6∑
i=1

wiRi. (23)

This would correspond to time-sharing among different active sets within a time-slot. It can be

seen that sinceC1 andC2 are both convex polytopes inR6
+, conv(C) is also a convex polytope.

Furthermore the objective in (23) is linear, i.e. (23) is a linear programming problem. It follows

that (23) must have a solutionR∗ which is an extreme point of conv(C). Furthermore, the

extreme points of conv(C) must be either points inC1 or C2, i.e. R∗ is also the solution to (21).

Again, even though we are allowed to time-share among active sets, the MDB policy does not

do this.

For the next scenario, we consider the network in Example 1 using the broadcast and multi-

access rate regions described in (4)-(6). We focus on a symmetric scenario whereh12 = h13 =
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h24 = h34 = 1. In this case, the power variables used in the definition ofCCMAC(α) become

P4(α) = 4αP , P5(α) = P6(α) = (1− α)P .

Suppose that we allow for time-sharing in any given time slot. Thus, within a time slot,

the network controller can choose any rate inconv(C1, C2), where C2 = ∪α∈[0,1]CCMAC(α).

Note that the solutionR∗ to (21) lies inconv(C1, CCMAC(α∗)) for someα∗ ∈ [0, 1]. SinceC1

and CCMAC(α∗) are both convex polytopes,conv(C1, CCMAC(α∗)) is also a convex polytope.

Following the above discussion,R∗ is an extreme point ofconv(C1, CCMAC(α∗)) , and therefore

is either an extreme point ofC1 or an extreme point ofCCMAC(α∗). We now consider these cases

separately.

Case 1: R∗ is an extreme point ofC1. Using the symmetry of the regions and results from

earlier discussion,R∗ takes the formR∗
i∗ = log(1 + P ) and R∗

i = 0 otherwise, wherei∗ =

arg maxi=1,2,3 wi. Thus, whenever the CMDB policy operates in the broadcast mode, it allocates

maximum ratelog(1 + P ) to the traffic type with the largest weightwi.

Case 2: R∗ is an extreme point ofCCMAC(α∗). In this case,R∗ has the form(0, 0, 0, R∗
4, R

∗
5, R

∗
6),

and (R∗
4, R

∗
5, R

∗
6) solves

max
R∈CCMAC(α∗)

6∑
i=4

wiRi (24)

SinceCCMAC(α∗) is a polymatroid [23], (R∗
4, R

∗
5, R

∗
6) can be explicitly given as follows. Let

w[4], w[5], w[6] be the largest, second largest, and smallest element of{w4, w5, w6}, respectively.

Then

R∗
[i] = log

(
1 +

P[i](α
∗)

1 +
∑

j<i P[j](α∗)

)
, i = 4, 5, 6. (25)

For instance, ifw4 ≥ w5 ≥ w6, then R4 = log(1 + 4α∗P ), R5 = log
(
1 + (1−α∗)P

1+4α∗P

)
, R6 =

log
(
1 + (1−α∗)P

1+(3α∗+1)P

)
.

Next, to findα∗, we solve

max
α∈[0,1]

6∑
i=4

w[i] log

(
1 +

P[i](α)

1 +
∑

j<i P[j](α)

)
. (26)

Let L(α) be the objective in (26). For the case ofw4 ≥ w5 ≥ w6, it can be verified thatL(α)

is concave inα over [0, 1], and thatL′(α) ≥ 0 for all α ∈ [0, 1]. Thus,α∗ = 1, i.e. all power is

allocated to cooperative transmissionover the MAC. In other cases,L(α) may not be concave,
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and one needs to solve for the stationary points ofL(α) and compare the value ofL(α) at the

stationary points with its values on the boundaries.

Let L∗CMAC(w4, w5, w6) be the optimal objective of (26). Using the above arguments, it is

easy to see that the following is true:

Lemma 2:Consider the symmetric four node network in Example 1 where the feasible link

capacity region is given byconv(C1∪C2), with the regionsC1 andC2 given by (4)-(6). Let the dif-

ferential queue backlogs bew1, w2, . . . , w6. If (maxi=1,2,3 wi) log(1 + P ) ≥ L∗CMAC(w4, w5, w6),

then the optimal solutionR∗ to (21) is such thatR∗
i∗ = log(1+P ) andR∗

i = 0 otherwise, where

i∗ = arg maxi=1,2,3 wi. Otherwise,R∗ = (0, 0, 0, R∗
4, R

∗
5, R

∗
6), whereR∗

[i] is given by (25) and

α∗ is given by (26).

C. n + 2 Node Parallel Relay Network with Multiaccess/Broadcast

Finally, we consider the generalization of the four node network considered in Section IV-B

to the n relay case. The resultingn + 2 node parallel relay network was first introduced in

Example 4 in Section II. Assuming half-duplexing constraints at then relay nodes, and allowing

for time-sharing within a slot, the link capacity region is again given byC = conv(C1∪C2), where

C1 corresponds to activation setA1 = {1} andC2 corresponds to activation set{1, . . . , n}. As

mentioned in Example 4, in this case, any subset of then relays can potentially form a cooperative

link. Let U ⊆ {1, . . . , n} be the set of all cooperation subsets. For simplicity of notation, we

include all direct links, i.e. singleton subsets, inU .

Without loss of generality, assumeha1 ≤ · · · ≤ han. Let CBC be the capacity region of the

n-user Gaussian broadcast channel corresponding to the model. It follows that the rate vector

((RaS)S∈U ,0) ∈ R2|U|
+ lies in C1 if and only if (RaS)S∈U satisfies

Ri =
∑
S∈Ui

RaS, i = 1, . . . , n and (R1, . . . , Rn) ∈ CBC (27)

whereUi = {S ∈ U : i = min S}. For a symmetric network (ha1 = · · · = han), C1 reduces to

the set of all((RaS)S∈U ,0) ∈ R2|U|
+ satisfying the simplex constraint

∑
S∈U

RaS ≤ log(1 + ha1P ). (28)

.
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For the multiaccess side of the parallel relay network, letα = (αi
S)S3i,i=1,...,n be the vector of

power splitting parameters, whereαi
SP is the power allocated by nodei to cooperation setS 3 i.

The multiaccess capacity regionCCMAC(α) for a givenα is the set of all(0, (RSb))S∈U ∈ R2|U|
+

such that ∑
S∈V

RSb ≤ log

(
1 +

∑
S∈V

PS(α)

)
∀V ⊆ U . (29)

Note that CCMAC(α) is defined by as many as22n−1 − 1 constraints! Finally, the overall

multiaccess regionC2 = ∪αCCMAC(α).

Let ua be the queue backlog at nodea and uS be the queue backlog corresponding to

cooperative setS. The CMDB policy can now be expressed as

max
R∈C

∑
S∈U

(ua − |S|uS)RaS + |S|uSRSb. (30)

As before, the solutionR∗ to (30) lies in conv(C1, CCMAC(α∗)) for someα∗. SinceC1 and

CCMAC(α∗) are orthogonal and the objective is linear,R∗ lies either inC1 or in CCMAC(α∗).

We again consider two cases.

Case 1: R∗ lies in C1. In the symmetric case,R∗ takes the formR∗
aS∗ = log(1 + ha1P ) and

R∗
aS = 0 otherwise, whereS∗ = arg maxS∈U [ua−|S|uS]. Thus, at any time, only one cooperative

set (or direct link) is active. In the asymmetric case, due to the linear constraint in (27), (30)

reduces to

max
(R1,...,Rn)∈CBC

n∑
i=1

(
max
S∈Ui

[ua − |S|uS]

)
·Ri. (31)

Let (R∗
1, . . . , R

∗
n) be the solution to (31). Then the optimal solution to (30) has the formR∗

aS∗ =

R∗
i for S∗ = arg maxS∈Ui

[ua − |S|uS] and R∗
aS = 0 for all other S ∈ Ui, i = 1, . . . , n. That

is, at any time, multiple cooperative sets (or direct links) can be active, buteach relay nodei

participates in only one cooperative set (or direct link), namely the cooperative set (or direct

link) in Ui with the largest differential backlogua− |S|uS. For a general broadcast regionCBC ,

the optimization in (31) can be solved using the greedy technique from [24], [25]. Note that even

though the number of variables(RaS)S∈U in the original optimization (30) can be exponentially

large inn, the actual resulting optimization problem in (31) is onlyn-dimensional.

Case 1: R∗ lies in CCMAC(α∗). In this case, the optimization in (30) reduces to

max
(0,RSb)S∈U∈CCMAC(α∗)

∑
S∈U

|S|uSRSb (32)
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As mentioned above,CCMAC(α∗) is potentially defined by a doubly exponential number of

constraints. However, sinceCCMAC(α∗) is a polymatroid[23], the maximization in (32) merely

involves asorting of the coefficients|S|uS. The solution to (32) is then given by successively

decoding the cooperative sets (or direct links) in increasing order of the coefficients|S|uS [23].

Since there are at most2n − 1 coefficients|S|uS, the maximization in (32) can be solved in

O(n) (linear) time.

V. CONCLUSIONS

In this paper, we considered throughput optimal control for a model of wireless networks

with cooperative relaying and stochastically varying traffic. This model applies to a general

network topology and several different types of cooperative scenarios. We established the network

stability region and gave a variation of the Maximum Differential Backlog policy, which we

proved to be throughput optimal. This policy is modified to incorporate the potential gains

of cooperative communication. Specifically, under this policy the size of the cooperative set

is included when determining the differential backlog metric. In this paper, we focused on a

centralized implementation. In practice, a distributed solution is more desirable, particularly for

managing the complexity of a cooperative network. Moreover, in a large network, there may be

many potential cooperative sets. Allowing all of these would likely result in prohibitively high

complexity. A useful direction for future work would be to develop a means for determining the

most “fruitful” of these sets which are to be used. Finally, as we noted above, we considered

only decode and forward models for cooperation. Incorporating other cooperative models into

this framework is also of interest.
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