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Abstract—We add to a line of work considering the impact
of observation imperfections in models of Bayesian observational
learning. In particular, we study a discrete-time model in which in
each time-slot, an agent may randomly arrive. Agents who arrive
have the opportunity to buy a given item. If an agent chooses
to buy, this action is recorded for subsequent agents. However,
the decisions of agents that choose not to buy are not recorded.
Hence, if no one buys in a given slot, agents are unaware if this
was due to no agent arriving or an agent choosing not to buy.
We study the impact of this uncertainty on the emergence of
information cascades. Using a Markov chain based analysis, we
show that the probability of incorrect cascades and the expected
time until a cascade happens are not monotonic in the arrival
probability of a user. We find that adding a small uncertainty
in the arrival information from the perfect information setting
will make a buy cascade happen with higher probability than
a not-buy cascade. However, if the agents’ private signals are
weak, then a not-buy cascade is more likely to occur for most
arrival rates, resulting in wrong cascades dominating when the
item is good and vice-versa when the item is bad.

I. INTRODUCTION

A key feature of many on-line platforms is that they provide
users with data about the actions of the other users such as
how many users bought a given item or a summary of the
users’ experiences via reviews. A subsequent user can then
attempt to learn from this data about the action she should
take, e.g., whether to buy an item or not. Such settings can be
studied under the framework of Bayesian observational learn-
ing, which has its roots in the economics literature (e.g. [2],
[3]). In this framework, the agents are viewed as players in a
dynamic game with incomplete information who form beliefs
about the value of different actions based on observations
of the actions of other players as well as their own private
signals. In the simplest setting, these agents sequentially make
a binary decision while perfectly observing the actions of all
prior agents. A key result, first shown in [2] and [3], is that
such models may exhibit information cascades, meaning that
at some point an agent ignores their own private information
about the item and chooses an action solely dependent on their
type, which for homogenous agents results in blindly following
the actions of the preceding agents. Moreover, for the models
in [2] and [3], once a cascade starts, all subsequent agents also
cascade, leading to herding. Though individually optimal, this
may result in the agents making a choice that is not socially
optimal, i.e., a “wrong cascade" where an item is bought even
when it is not beneficial to do so or vice versa.

Many variations of these types of models have been studied,
such as differences in the types of signals received by each
agent [4] or allowing agents to observe only a subset of past
actions [6]. In [5] and [7], the agents can see only a random
sample of past observations, which are of unknown order. In
this paper, we instead assume that agents may randomly arrive
in discrete time even though the order of arrivals is public
information. In previous work [9], we considered another
variation in which the arrivals were deterministic but there
were random errors in the observations of the actions of other
agents, hence imperfect observations. This led to the following
counter-intuitive result: the probability of a wrong cascade is
non-monotonic in the error level, i.e., in some cases, a higher
error rate is beneficial. In this work, we consider a different
way in which the observations of the agents may be imperfect.

Our work is motivated by on-line platforms that report
information on how many users have bought a given item, but
do not specify how many users have considered buying the
item and did not buy. For example, e-commerce websites do
not publicize their products’ landing pages conversion rates.
Specifically, we consider a discrete-time model in which at
each time-slot an agent randomly arrives with a given proba-
bility (and doesn’t arrive with the complementary probability).
If an agent arrives it has the opportunity to either buy an item
or not. If she chooses to buy, this action is recorded for all
subsequent agents to see. On the other hand, if either no agent
arrives in a certain epoch or one arrives and chooses not to
buy, the subsequent agents will observe an “empty slot" in
such an epoch. This introduces uncertainty in the observation
history: if there is an empty slot, the agents are unsure as to
whether it was because an agent chose not to buy or simply
because no agent arrived.

In our model, as in [2], [3], [9], all agents receive the same
value from buying the given item, which is determined by
an unknown binary state of the world that takes values from
{Good, Bad}. If the state is Good, agents benefit from buying
the item, while if it is Bad, agents are better off not buying.
Each agent receives an independent, identically distributed
binary signal about this state of the world. Our Bayes-rational
agents then determine the a posteriori probability distribution
of the state of the world given their private signal and
observations, and choose to buy the item if their expected
pay-off is greater from that action than from not buying.

In our prior work [9], random errors occurred in the



observations, where the error rate is assumed to be the same
for each action choice (“buy" or “not buy"). This led to a
symmetry in the model: an observation of an agent buying
and not buying conveys the same amount of information if
agents are not herding. In this paper, instead the uncertainty
in the observations is asymmetric. A slot in which an agent
arrives and buys conveys more information than an “empty"
slot. Further, the information in an empty slot decreases as the
arrival probability decreases.

We show that as in [2], [3], [9], an information cascade
will eventually occur with probability one, and once started,
such a cascade will persist forever, i.e., the agents will herd.
We then study the probability of a wrong cascade. To do this
we utilize a Markov chain based analysis in which herding
corresponds to absorbing states. Using this, we show that the
probability of wrong/incorrect herding is not monotonic in
the probability that an agent arrives in any time epoch. In
some cases having a higher arrival probability (and thus more
information conveyed in empty slots) increases the probability
of a wrong cascade. We also discover that if the private signals
are weak, the probability of a wrong cascade can be higher
than that of a correct cascade. Moreover, we find that adding a
small uncertainty will make a buy cascade happen with higher
probability than a not-buy cascade due to a bias toward buy
actions in the history.

We organize the paper as follows. In Section II we specify
our model. The model’s properties and an information theo-
retic explanation are presented in Section III. The main results
are presented in Section IV. We conclude in Section V. The
technical details can be found in the archived version [10].

II. MODEL

We consider a variation of the model in [9] in which time
is divided into discrete slots indexed n = 1, 2, . . . . Different
from [9], we assume that in each time slot n, an agent is
present with a probability a ∈ [0, 1].1 If an agent is present
at the time slot n, he chooses an action An of either buying
(Y ) or not buying (N ) a new item. The true value (V ) of the
item can be either good (G) or bad (B) and is the same for
all agents. For simplicity, both possibilities are assumed to be
equally likely.

The agents are Bayes-rational utility maximizers2 whose
payoff structure is based on the agent’s action and the true
value V . If an agent chooses N , his pay-off is 0. On the other
hand, if he chooses Y , he faces a cost of C = 1/2 and gains
one of two amounts depending on the true value of the item:
his gain is 0 if V = B and 1 if V = G. The total pay-off of
an agent choosing Y is then the gain minus the cost. Thus,
the ex ante expected pay-off of each agent is 0.

To reflect the agents’ prior knowledge about V , if an
agent arrives at time n, he receives a private signal Sn ∈

1Two special cases need highlighting: i) a = 0, where the model is
degenerate with no incoming agents; and ii) a = 1, where the agents are
always present and yields the model in [2] with symmetry in both states of
the world.

2This assumption leads to a Perfect Bayesian Equilibrium that uses the
common information based belief to determine strategies, as proved in [6].

{1 (high), 0 (low)} through a binary symmetric channel (BSC)
with crossover probability 1− p, where 0.5 < p < 1. In other
words, we have

P(Sn = 1|V = G) = P(Sn = 0|V = B) = p, and
P(Sn = 0|V = G) = P(Sn = 1|V = B) = 1− p. (1)

Thus, the private signals are informative, but not revealing.
Denote an observation at the time slot n as On, we have

either On = Y when an agent is present at time n and chooses
to buy the item, or On = E denoting an empty slot if either
there is no agent arriving at time n or there is one who chooses
not to buy the item. Denote the observation history after time
n as Hn = {O1, . . . , On}. Similar to [9], we assume that
Hn is recorded via a common database that is available to all
subsequent agents but without any further imperfections.

III. MODEL PROPERTIES AND BAYESIAN UPDATES

In this section, we present the properties of our model. In
particular, the observation history Hn can be summarized by a
sufficient statistic that is a weighted difference of the number
of Y s and Es in the history, which we will elaborate on
shortly. As in [9], both Y and N cascades are permanent.
However, different from [9], there is an asymmetry in the type
of observations. As the probability that an agent is present in
any time slot, a, decreases, an empty slot On = E conveys less
information even though an observation On = Y conveys the
same amount of information. As a result, it requires a greater
number of empty slots to create an N cascade as a decreases.

A. Public likelihood ratio as a Markov process

Let q = 1−p. Similar to [9], agents’ decisions are based on
Bayes updates of the posterior probability of V = B versus
V = G given the observed history Hn. However, due to the
conditional independence of signals from the public history
given the value of V , if present agent n+1 can instead compare
the public likelihood ratio, `n, and his private belief, βn+1,
of V = B versus V = G. There is one subtle difference,
however. In [8] and [9], `n denotes the ratio after an agent
n has decided. In this paper, `n is the public likelihood ratio
after the discrete time slot n, as an agent may not be present
at time n. Since V being B or G is equally likely, `0 = 1 and
we can rewrite `n and βn+1 as follows:

`n =
P[Hn|V = B]

P[Hn|V = G]
, and βn+1 =

P[Sn+1|V = B]

P[Sn+1|V = G]
. (2)

The higher `n is, the more likely that V = B. Moreover,
since Hn is public information, if after slot n − 1 a cascade
does not happen, `n can be updated as:

`n =

{
1−aq
1−ap`n−1, if On = E,
q
p`n−1, if On = Y

(3)

Otherwise, if agent n − 1 cascades, then `n = `n−1 with
probability 1. Given `n, one can determine if an agent cascades
or not. Thus, {`n} is a Markov process. Moreover, this is
also true, if in addition, we condition on the value of V . In



addition, we can show that {`n} (resp. {1/`n}) is a martingale
conditioned on V = G (resp. V = B). On the other hand,
βn+1 = q/p (resp. p/q) if Sn+1 = 1 (resp. Sn+1 = 0).

B. Agents’ decision rule and cascades’ condition

By (3), any cascading action provides no information about
V , and a cascade is permanent. Thus, conditioned on a cascade
not occurring before time n− 1, let an be a random variable
denoting the number of Y actions in the history until n. In
addition, let en = n − an denote the number of empty slots
at time n in the history. We have the following lemma:

Lemma 1. Let y = logp/q
1−aq
1−ap ∈ (0, 1) for a ∈ (0, 1). Then:

1) `n = (q/p)
hn , where the exponent hn = an − yen;

2) Conditioned on V , (an, en) and hn are 2-D and 1-D
Markov chains, respectively, for n ≥ 0; and

2) Agent n+ 1, if present, cascades Y if hn > 1, cascades
N if hn < −1, and follows his signal if hn ∈ [−1, 1] .

Proof. 1) By (3), `n = (q/p)
an [(1− ap)/(1− aq)]en , thus

hn can be written in terms of an and en as above.
2) This is a direct consequence of the fact that {`n} is a

Markov process and that, from the first property, there is a 1-1
correspondence between `n and hn. Further, since an and en
are integer-valued it follows that hn only takes on a countable
number of values.

3) Since agent n + 1, if present, makes a decision by
comparing `nβn+1 to 1, she cascades Y if `n < q/p, cascades
N if `n > p/q, and follows her signal if `n ∈ [q/p, p/q]. By
1), this translates to the given condition on hn.

Note that y is an indicator of how weak an empty slot is
with respect to the signals. That is, the lower y is, the weaker
the empty slots are relative to the signals. In addition, y is an
increasing function of a, and y = 0 (resp. 1) if and only if a =
0 (resp. 1). For a generic y, the dynamics of the process {`n}
can be studied by investigating the 2-D Markov chain (en, an).
However, for special values of y, this can be simplified. We
will study a few of such scenarios in Section IV.

Note that both Y and N cascades are permanent and the
probabilities of reaching each cascade is positive. In addition,
in contrast to [9] where Y and N observations in succession
cancel each other out, here Y and E observations in succession
leads to a bias towards a Y cascade. Hence, a sufficiently
long sequence of Y and E pairs can also create a Y cascade.
In Section IV, we present results on the probability of each
cascade conditioned on the state of the world.

C. An information theoretic view on the parameter y

Recall that given a cascade has not occurred, the sufficient
statistic is hn = an − yen, where we can rewrite y as:

y = [log(1− aq)− log(1− ap)] / [log(p)− log(q)] . (4)

This is the exponent of the public likelihood ratio, `n. More
precisely, let Ln = log `n, be the public log-likelihood ratio,
then we have

Ln = hn log(q/p) = −hn(log(p)− log(q)). (5)

Next we give an information theoretic interpretation of these
results. Following [1], we can express the public log-likelihood
ratio given an observation sequence xn in terms of relative
entropies (K-L divergenges) as follows:

Ln(x
n) = n [D(Pxn |PB)−D(Pxn |PG)] (6)

where Pxn is the empirical distribution of the observations, and
PG and PB are the probability of an observation conditioned
on V being equal to G and B, respectively.

Given a public observation history at time n consisting of
an Y actions and en empty slots, we have that n = an + en,
Pxn(y) = an

an+en
and Pxn(e) = en

an+en
. Moreover, we have

that PB(y) = aq and PB(e) = 1− aq. Likewise, PG(y) = ap
and PB(e) = 1− ap. Using these in (6) gives

Ln(x
n) = an log(

an/(an + en)

aq
) + en log(

en/(yn + en)

1− aq
)

−
(
an log(

an/(an + en)

ap
) + en log(

en/(an + en)

1− ap
)

)
= an log(p/q)− en log((1− aq)/(1− ap)).

Note the parameter y in (4) is exactly the ratio between the
weights given to the an and en terms here and using this we
have the relationship in (5), as expected.

Using this we can further interpret this parameter as fol-
lows. Let Pe denote the empirical distribution given a single
observation of an empty slot (i.e., this is simply a single atom
on e). Then we have

D(Pe|PB)−D(Pe|PG) = log(
1

1− aq
)− log(

1

1− ap
) (7)

= − log((1− aq)/(1− ap)). (8)

Likewise, let Py denote the empirical distribution given a
single observation of a Y action, so that

D(Py|PB)−D(Py|PG) = log(1/aq)−log(1/ap) = log(p/q).

Comparing with the above we have that

−y = [D(Pe|PB)−D(Pe|PG)] / [D(Py|PB)−D(Py|PG)]

i.e., y gives the ratio of the value of observing a single empty
slot to that from observing a single Y action.

IV. ANALYSIS AND RESULTS

In general, the underlying Markov chain is a 2-D chain
with the states being the pairs (en, an), which denote the
number of empty slots and the number of Y actions in the
history. For rational values of y, the state space of the chain
can be enumerated and this facilitates the analysis of the
chain’s asymptotic properties. The following lemma further
simplifies the 2-D chain to a 1-D chain with the states being
hn = an − yen, and then enumerates these states.

Lemma 2. Let y = k
l , where k, l are integers satisfy-

ing gcd(k, l) = 1. Then the non-cascading state space of
the underlying 1-D Markov chain is the finite set A

4
=

{−1,− l−1
l , . . . ,

l−1
l , 1}.
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Figure 1: The 2-D MC for rational values y = k/l and V = G,
where l = kb+ c, c = 0, . . . , k − 1, b = 1, 2, . . .

Given that hn ∈ [−1, 1], its values must belong to a subset
of A . Lemma 2 further states that the state space before a
cascade happens is exactly A for all rational values of y.
Proof. See Appendix A in our archived version [10].

In Fig. 1, we show the state space and the transition
dynamics of the underlying Markov chain for rational values
of y = k/l. A related state space simplification was given
for the model in [8]; however, a different approach is required
here. In [8], the state transitions in a Y -cascade region follow a
simple birth-death chain; this allows the recurrence equations
to convert any states hn > 1 to a corresponding state in
[−1, 1]. In this paper, there is no birth-death chain. However,
for any rational y the states will eventually repeat themselves
in a structured way as shown in Fig. 1. We rely on this
observation to simplify those states to a finite subset, based on
which a finite set of linear equations can be written down and
solved to get P and Eτ . In the remainder of this section, we
provide closed-form expressions for P and Eτ for a few values
of y when V = G. Note that for V = B, similar expressions
can be derived and these are given in the appendices of our
archived version [10].

A. Probability of wrong cascades

For a rational value of y, we can use Lemma 2 to numeri-
cally solve for and plot the wrong cascade probabilities, P. As
a result, we can show that the probability of wrong/incorrect
cascade is not monotonic in the probability that an agent
arrives in any time epoch, as demonstrated in Fig. 2 for a
low value of the signal quality (i.e., p = 0.51). The dashed
lines in these figures show the corresponding probability when
a = 1. There are points of discontinuity which happen when
the y value changes. In addition, for a sufficiently low value
of p = 0.51, as shown in Fig. 2, the probability of a wrong
cascade can be higher than that of a correct cascade. Moreover,
adding a small uncertainty will make a Y cascade happen with
higher probability than a N cascade due to the bias toward Y
actions in the history. Results for different values of p can be
found in our archived version [10].

For special values of y, we can derive closed-form expres-
sions of this probability, which give additional insights on the
discontinuities seen in the numerical results. In particular when
V = G, let α = ap denote the probability of having one
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Figure 2: Wrong cascade probability versus a, the probability of an
agent being present in each time slot, for V = G, p = 0.51.

more Y action in the history before a cascade happens. For
any positive integer l, the following two propositions provide
closed-form formulae for the probability of wrong cascade, P,
when y = 1/l and y = (l − 1)/l, respectively.

Proposition 1. Let y = 1/l, where l is any positive integer.
When V = G, the probability of wrong cascades, P, satisfies:

P = (1− α)l+1/
[
1− α(1− α)l(1 + l)

]
. (9)

Proof. See Appendix B in our archived version [10].

Proposition 2. Let y = (l − 1)/l, where the positive integer
l ≥ 3.3 Let x = α(1 − α). When V = G, the probability of
wrong cascades, P, satisfies:

P =
(1− α)2

[
2 1−xl−2

1−x + 2αl−2(1− α)l−1 − 1
]

1− 4αl−1(1− α)l
. (10)

Proof. See Appendix C in our archived version [10].
For a fixed p, both Propositions 1 and 2 show that P

decreases as a increases such that we always satisfy y =
1/l, (l − 1)/l, respectively. In other words, P is increasing
in l in Proposition 1 and is decreasing in l in Proposition 2.
More insights into the discontinuities at a = 0 and a = 1 can
be gained by studying the limits of P when y = 1/l, (l− 1)/l
as l → ∞ for a fixed p. In particular, in the first scenario,
let l → ∞ when y = 1/l; this yields a ↓ 0+. Using
Proposition 1, lima↓0+ P = 1

p(log q−log p)
p−q +( p

q )
p

p−q
, which is

higher than the value of P = q when a = 0. In the second
scenario, let l → ∞ when y = (l − 1)/l; this yields a ↑ 1−.
Using Proposition 2, we have lima↑1− P = q2(1+pq)

1−pq , which is

lower than the value of P = q2

q2+p2 when a = 1.4 Therefore
both scenarios again demonstrate discontinuities that happen
at a = 0 and a = 1, as shown in Fig. 2. More importantly,
both limits also show that a lower wrong cascade probability
can be achieved if a is near one of these discontinuities by

3If l = 1 then y = 0, a = 0 and this reduces to a trivial case of no
observation history. If l = 2, then y = 1/2 and one can refer to Proposition
1 for an expression of P.

4This expression is a consequence of the wrong cascade probability in [2],
[3], and in [9] for the special case where there are no observations errors (i.e.,
ε = 0.)
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Figure 3: Expected time until a cascade happens versus a, for p =
0.70.

reducing it a small amount so that P moves to the left hand
side of the discontinuity. In other words, agents can do better
if a controlled amount of uncertainty is introduced through
reducing the probability of arrival a. This observation applies
for the case V = G. However, in contrast, when V = B, one
can show that reducing uncertainty through increasing a leads
to better outcomes.

B. Expected time until a cascade happens, Eτ
Using similar approach, one can numerically solve for the

expected time until a cascade occurs, Eτ . The results are
shown in Fig. 3 for p = 0.70. Depending on the range of a,
different values of V ∈ {G,B} can lead to higher Eτ . There
are points of discontinuity which happen as different values of
a cause changes in the underlying state space. One interesting
observation is that unlike the case V = G, for V = B the
expected time Eτ is higher as p increases, given a fixed a. (See
Figs. 22, 24, 26 in Appendix G in [10].) The reason being a
higher signal quality leads to more agents having low signals;
therefore a higher number of empty slots induces a longer time
to N cascades. Furthermore for values of y ∈ {1/l, (l−1)/l},
one again can write down the closed-form expressions for Eτ .
These expressions are given in the next two propositions.

Proposition 3. Let y = 1/l, where l is any positive integer.
When V = G, the expected time until a cascade, Eτ , satisfies:

Eτ =
2− (l + 1)(1− α)l + (l − 1)(1− α)l+1

α [1− (l + 1)α(1− α)l]
. (11)

Proof. See Appendix D in our archived version [10].

Proposition 4. Let y = (l − 1)/l, where the positive integer
l ≥ 3. Let x = α(1 − α). When V = G, the expected time
until a cascade, Eτ , satisfies:

Eτ =
2 1−xl

1−x + 2(1− α)x−x
l−1

1−x + 2αl−2(1− α)l

1− 4αl−1(1− α)l
. (12)

Proof. See Appendix E in our archived version [10].
For a fixed p, Proposition 3 shows that Eτ is increasing in

l (i.e., decreasing in a). Similarly, Proposition 4 shows that
Eτ is decreasing in l (i.e., decreasing in a). More insights
into the discontinuities at a = 1 can be gained by studying

the limits of Eτ when y = (l − 1)/l as l → ∞ for a fixed
p.5 In particular, let l → ∞ when y = (l − 1)/l; this yields
a ↑ 1−. Using Proposition 4 gives lima↑1− Eτ = 2+ 2p pq

1−pq ,
which is lower than the value of Eτ = 2

1−2pq when a = 1.
Therefore, adding a little uncertainty leads to a faster expected
time toward either type of cascades. Moreover, we can also
show that lima↑1− Eτ is not monotonically decreasing in p.
This means when a little uncertainty is present, a higher signal
quality does not necessarily lead to a faster time to a cascade.
(See Fig. 17 in Appendix G in [10].)

V. CONCLUSIONS AND FUTURE WORK

This paper considers Bayesian observational learning in
which agents arrive in discrete time-slot and only one action
(“buying”) is recorded. This introduces an asymmetry in the
observation history as a slot in which an agent arrives and
buys conveys more information than an “empty" slot. Further,
the information in an empty slot decreases as the arrival
probability decreases. We show that an information cascade
will eventually occur with probability one, and once started
such a cascade will persist forever, i.e., the agents will herd.
We then utilize a Markov chain based analysis to study the
probability of a wrong cascade and the expected time until
a cascade happens. We show that both quantities are not
monotonic in the probability that an agent arrives in any
time epoch. In some cases, having a higher arrival probability
(and thus more information conveyed in empty slots) leads
to worse outcomes. Moreover, we also discover that if the
private signals are weak, the probability of a wrong cascade
can be higher than that of a correct cascade. In the future,
we are interested in generalizations where agents also arrive
randomly and leave reviews (as in [8]) that are observable (but
not their actions).
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