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Abstract

In this paper, the scheduling and resource allocation problem for the downlink in a CDMA-based wireless
network is considered. The problem is to select a subset of the users for transmission and for each of the users
selected, to choose the modulation and coding scheme, transmission power, and number of codes used. We refer to
this combination as the physical layer operating point (PLOP). Each PLOP consumes different amounts of code and
power resources. The resource allocation task is to pick the “optimal” PLOP taking into account both system-wide
and individual user resource constraints that can arise in a practical system. This problem is tackled as part of a
utility maximization problem framed in earlier papers that includes both scheduling and resource allocation. In this
setting, the problem reduces to maximizing the weighted throughput over the state-dependent downlink capacity
region while taking into account the system-wide and individual user constraints. This problem is studied for the
downlink of a Gaussian broadcast channel with orthogonal CDMA transmissions. This results in a tractable convex
optimization problem. A dual formulation is used to obtain several key structural properties. By exploiting this
structure, algorithms are developed to find the optimal solution with geometric convergence.

Index Terms

Cellular network, channel-aware scheduling, code division multiple access (CDMA), convex optimization,
resource allocation, utility maximization.

I. I NTRODUCTION

Efficient scheduling and resource allocation are essential components for enabling high-speed data
access in wireless networks. In this setting, scheduling is complicated due to the time-varying fading
of wireless channels. A variety of wireless scheduling approaches have been proposed thatopportunisti-
cally exploit these temporal variations to improve the over-all system performance, e.g. [1]–[20]. These
approaches attempt to transmit to users during periods when they have good channel quality (and can
support higher transmission rates), while maintaining some form of fairness among the users.

Wireless scheduling approaches can be divided into two classes: (i) time-division multiplexed (TDM)
systems, where a single user is transmitted to in each time-slot, as in the HDR system (CDMA 1xEVDO)
[21], [22], and (ii ) systems in which the transmitter can simultaneously transmit to multiple users in
each time-slot, by using a combination of TDM and another multiplexing technique such as CDMA or
OFDMA. In the latter case, in addition to deciding which users to schedule, the available physical layer
resources, such as bandwidth and power, must be divided among the users. In this paper, we consider the
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second class of systems, where CDMA is used to multiplex users within a time-slot.1 Examples of this
type of system include the High Speed Downlink Packet Access (HSDPA) approach developed for W-
CDMA [23, Chapter 11, pp. 279-304] or the 1x-EVDV approach for CDMA2000 [24]. In these systems,
the physical layer resources and information rate assigned to a user are specified by selecting the number
of spreading codes, the fraction of transmission power, and the modulation and coding scheme (MCS).
We refer to a combination of these as the physical layer operating point (PLOP).

The main problem addressed in this paper is to specify the optimal PLOP at each scheduling instant,
which in turn specifies the vector of user transmission rates. This problem must be solved once every
time-slot (e.g., 2msec in HSDPA or 1.25 msec in 1x-EVDV), and so requires a computationally efficient
solution. We consider this in the context of the gradient-based scheduling framework presented in [1],
[2]. In this framework, in each time-slot the objective is to chose the transmission rate vector that has
the largest projection onto the gradient of the total system utility. The utility is a function of each user’s
throughput and is used to quantify fairness. Several such gradient-based scheduling algorithms have been
studied for TDM systems, including the proportionally fair algorithm [22], which is based on a log utility
function. In [1], a larger class of utility functions is considered that allow efficiency and fairness to be
traded-off.

The problem considered here can be viewed as finding the maximum weighted sum throughput for
a downlink (broadcast) channel, where the weights are determined by the gradient of the utility. Our
solution is general in that it also applies to other scheduling algorithms, which may provide these weights
using different approaches. For example, these weights could be based on queue size information as in
the “MaxWeight” scheduling algorithms studied in [3], [4], [17], [26]. For the model studied here, the
feasible rate region is convex; hence, by varying these weights we can determine the boundary of this
region. In related work, the problem of allocating resources to maximize the weighted sum capacity for
the downlink channel has been considered from an information theoretic perspective in [28], [29]. Both
of these works assume the use of optimal information theoretic (multi-user) coding/decoding.2 The work
in [29] also considers several sub-optimal transmission strategies, such as approaches based on TDM,
CDMA without multiuser coding with all users orthogonalized and FDM; the focus in [29] is on deriving
the long-term average throughputs over multiple fading states under a long-term average power constraint.
Here, we focus on optimally allocating resources for the specific fading state realized in each scheduling
time-slot; the total power is constrained within each time-slot as well. The problem within each time-slot
can be viewed as a special case of the CDMA without multiuser coding approach in [29] where the fading
is constant. However, focusing on this case enables us to generate a much simpler optimal algorithm. We
also take into account additional “per-user” power and code constraints that are imposed by the capability
of each mobile in a practical system.3 The algorithms in [29] make use of specific properties of the
function a log(1 + bx) that do not generalize with the addition of these “per-user” constraints.

Simultaneously and independently of our work,4 Kumaran and Viswanathan studied a similar problem
in [31]. They also consider the problem of maximizing the weighted capacity within a time-slot and derive
several related structural characteristics. We note that the work in [31] does not include per-user code
constraints, but does contain an algorithm with a per-user rate constraint.

We begin with formulating the scheduling and resource allocation problem in Section II. This formula-
tion is based on a gradient-based scheduling approach from [1], [2], which we also review. By substituting

1The model in this paper also applies to OFDMA systems when each sub-channel that may be assigned to a user has the same channel
state (this may model a system in which OFDMA sub-channels are formed by interleaving tones from across the frequency band). A more
detailed discussion of such problems for OFDMA systems can be found in [25], [36].

2In the special case of maximizing the equal weight sum capacity in a flat fading channel, the information theoretic optimal approach is to
transmit to only one user in each time-slot [28] and hence, multi-user decoding is not required. However, this is not true if the users are not
weighted equally or for other channel models, such a multiple antenna channel. It also does not hold when additional per user constraints
are present, as is the case here.

3Moreover, these constraints may vary from mobile to mobile. For example, the initial mobile devices for HSDPA can receive up to 5
spreading codes, while future devices may be able to receive up to 15 spreading codes.

4A version of our work was first presented in [30].
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an analytical formula relating the rate, power, codes, and SINR, we obtain an analytically tractable problem
with nice convexity properties. In Sections III-IV, we use a dual formulation to study this problem. We
obtain analytic formulas for many of the quantities of interest. For others we have to resort to a numerical
search (aided with some heuristics based on the structure of the problem). However, these numerical
searches are in a single dimension (due to the dual formulation) rather than over the multidimensional
PLOP space. Also, thanks to the convexity of the problem, these algorithms converge geometrically fast.
Along the way we obtain key structural properties of the optimal solution including:

1) A tight upper bound on the number of users scheduled as a function of the per-user code constraints;
when each user can use all the codes, this bound implies at most two users will be scheduled.

2) Given a code assignment, the optimal power allocation is given by a “water-filling” algorithm, which
is modified to take into account the different weights assigned to each user and any per-user power
constraints.

3) For a fixed code assignment, the optimal “water-level” (Lagrange multiplier) can be found in finite
time. Specifically, we give an iterative algorithm which will terminate in at mostM steps, where
M is the number of users allocated codes.

4) For a given water-level, the users that are scheduled are determined by simply sorting all the users
based on a “per-user metric” that is given analytically.

5) Codes are only time-shared when ‘ties’ occur in the above sort. This corresponds to a point where
the dual function is not differentiable. At these values the optimal time-sharing can be found using
the subgradients of this function. We give a complete characterization of these subgradients.

We conclude the paper with simulation results comparing this algorithm with a base-line heuristic in
Section V.

II. GRADIENT-BASED SCHEDULING AND RESOURCE ALLOCATION PROBLEM

We consider the downlink of a wireless communication system withK users. The channel conditions are
time-varying and modeled by a stochastic channel state vectoret = (e1,t, . . . , eK,t), whereei,t represents
the channel state of theith user at timet. Associated with each channel state vector is a rate-region
R(et) ⊂ RK

+ , which indicates the set of feasible transmission ratesrt = (r1,t, . . . , rK,t).
Our point of departure is the gradient-based scheduling framework in [1], [2]. In this framework, at

each scheduling instant a rate vectorrt ∈ R(et) is selected that has the maximum projection onto the
gradient of a system utility function∇U(Wt), where

U(Wt) =
K∑

i=1

Ui(Wi,t),

and, for each useri, Ui(Wi,t) is a increasing concave utility function of the user’s average throughput,
Wi,t, up to timet. In other words, the scheduling and resource allocation decision is the solution to

max
rt∈R(et)

∇U(Wt)
T · rt = max

rt∈R(et)

∑
i

dUi(x)

dx

∣∣∣∣
x=Wi,t

· ri,t. (1)

For example, one class of utility functions given in [1], [33] is

Ui(Wi,t) =

{
ci

α
(Wi,t)

α, α ≤ 1, α 6= 0,
ci log(Wi,t), α = 0,

(2)

whereα ≤ 1 is a fairness parameter andci is a quality of service (QoS) weight. In this case, (1) becomes

max
rt∈R(et)

∑
i

ci(Wi,t)
α−1ri,t. (3)

With equal QoS weights,α = 1 results in a “maximum throughput” rule that maximizes the total
throughput during each slot. Forα = 0, this results in the proportionally fair rule.
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The preceding policy can be generalized to allow the utility to depend on other parameters such as a
user’s queue size or delay. For example, consider the utility

Ui(Wi,t, Qi,t) =
ci

α
(Wi,t)

α − di

p
(Qi,t)

p,

whereQi,t represents the queue length of useri at time t, di is a QoS weight for useri’s queue length
andp > 1 is a fairness parameter associated with the queue length. In this case, (1) is replaced by5

max
rt∈R(et)

∑
i

(
ci(Wi,t)

α−1 + di(Qi,t)
p−1
)
ri,t. (4)

Special cases of this policy withci = 0 have been shown to be stabilizing policies in a variety of settings
[3], [4], [17], [26]. In [27] it was shown that for specific choices ofci anddi this policy will maximize
the total network utility (

∑
i

ci

α
(Wi,t)

α) subject to a network stability constraint.
In general, we consider the problem

max
rt∈R(et)

∑
i

wi,tri,t, (5)

where wi,t ≥ 0 is a time-varying weight of theith user at timet. In the preceding examples, these
weights are given by the gradient of the utility; however, other methods for generating these weights are
also possible. We note that (5) must be re-solved at each scheduling instant because of changes in both
the channel state and the weights (e.g., the gradient of the utility). The former changes are due to the
time-varying nature of the wireless channel, whereas the latter changes are due to new arrivals and past
service decisions.

The solution to this problem depends on the state dependent capacity regionR(et), which we assume
is known at timet.6 In this paper, we consider a model that is appropriate for a CDMA system, such as
HSDPA or 1xEVDV. This model is parameterized by two sets of physical layer parameters: the number of
spreading codes,ni and the transmission powerpi assigned to each useri. Each choice of these parameters
specifies a PLOP, which must satisfy the following constraints:

ni ≤ Ni, (6)∑
i

ni ≤ N, (7)∑
i

pi ≤ P. (8)

Here, (7) and (8) are system constraints on the total number of spreading codes and the total system
power, while (6) is a per user constraint on the number of codes that can be assigned to useri.

We assume that all spreading codes are mutually orthogonal, so that the only interference is from
other cells. Moreover, in a fully loaded system, the other cells use a constant total power and thus
power allocation per user and code does not have an impact on the interference. Hence, we assume that
the interference power is constant. We then let the channel stateei indicate useri’s received signal-to-
interference plus noise ratio (SINR) per unit power, where we have suppressed the dependence ont for
convenience.7 In this case, the SINR per code for useri is given by SINRi = pi

ni
ei. We model the

achievable rate per code by
ri

ni

= Γ(ζi · SINRi).

5Note that we take the negative of the gradient of the utility with respect to queue length. This is because the queue length is decreasing
in the transmission rate assigned to a user while the throughput is increasing.

6While, in a practical system, the exact channel state will not be perfectly known at the transmitter, some estimate of it is usually available,
for example, via channel quality feedback.

7In other words, if we neglect other cell interference thenei is simply the signal-to-noise ratio (SNR) of useri per unit power.
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Here, Γ corresponds to the Shannon capacity for a Gaussian noise channel with the given SINR, i.e.,
Γ(x) = B log(1+x), whereB indicates the symbol rate (i.e., the chip rate/spreading factor), andζi ∈ (0, 1]
is a scaling factor that can be used to model the “gap from capacity” in a practical system. This is a
reasonable model for systems that use sophisticated coding techniques, such as Turbo codes. Redefining
ei to beeiζi, the rate region is then

R(e) =

{
r ≥ 0 : ri = niB log

(
1 +

piei

ni

)
,

ni ≤ Ni ∀i,
∑

i

ni ≤ N,
∑

i

pi ≤ P

}
.

(9)

Without the per-user code constraints, this is equivalent to the achievable rate-region obtained in [29] for
TDM, CDMA without multiuser coding and FDM, where in each case the user is subject to constant
fading over the available degrees of freedom. Notice that in (9), we allow the number of codes per user
to take on a non-integer value. Of course, in a practical system these must be integer valued. However,
we will show that, in most cases, the solution to this relaxed problem results in integer values forni.

We can now state the optimization problem in (5) as

V ∗ := max
(n,p)∈X

V (n,p) [Primal problem]

subject to: ∑
i

ni ≤ N,∑
i

pi ≤ P,

(10)

where

V (n,p) :=
∑

i

wini ln

(
1 +

piei

ni

)
, (11)

X :=
{
(n,p) ≥ 0 : ni ≤ Ni ∀i

}
, (12)

n is a vector of code allocations, andp is a vector of power allocations. We have normalized the objective
by B/ ln(2) to simplify notation. Note that the constraint setX is convex. It can also be verified thatV
is concave in(n,p).

A. Additional Constraints

In addition to (6)-(8), there may be several other constraints on the feasible PLOPs in a practical system.
This includes the following “per user” constraints:
i.) peak power constraint:

pi ≤ Pi, ∀i.
ii.) maximum SINR (per code) constraint:

SINRi =
piei

ni

≤ Si ⇔ pi ≤ Si
ni

ei

, ∀i.

iii.) maximum rate per code8 constraint:

ri

ni

= ln

(
1 +

piei

ni

)
≤ (R/N)i

⇔ pi ≤ (e(R/N)i − 1)
ni

ei

, ∀i.

8As in the previous section, we continue to normalize the rate,ri, by B/ ln(2).
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iv.) minimum rate per code constraint:

ri

ni

= ln

(
1 +

piei

ni

)
≥ (Ř/N)i

⇔ pi ≥ (e(Ř/N)i − 1)
ni

ei

, ∀i.

v.) maximum rate constraint:

ri = ni ln

(
1 +

piei

ni

)
≤ Ri

⇔ pi ≤ (eRi/ni − 1)
ni

ei

, ∀i.
(13)

vi.) minimum rate constraint:

ri = ni ln

(
1 +

piei

ni

)
≥ Ři

⇔ pi ≥ (eŘi/ni − 1)
ni

ei

, ∀i.

These constraints can arise due to various implementation considerations. For example, a constraint on
the rate per code is imposed by the maximum or minimum rate of the available modulation and coding
schemes: a modulation order limitation usually results in the former and minimum underlying coding rate
results in the latter. On the other hand, a maximum rate constraint arises because there is only a finite
amount of data available to send to each mobile at any time. A minimum rate constraint can be used to
model the case where the system is trying to guarantee a certain level of service to that user.9

All of the above constraints can be viewed as special cases of aper user power constraintwith the
form:

SINRi =
piei

ni

∈ [ši(ni), si(ni)], ∀i,

where the functionsi(ni) is also dependent on the fixed (for a given optimization problem) parameters
Pi, Si, ei, Ri, (R/N)i, and the functioňsi(ni) is dependent on the parametersŘi, (Ř/N)i. Non-negativity
restrictions on power necessarily imply thatši(ni) ≥ 0. We primarily focus on two special cases of this:

I. si(ni) ≡ si and ši(ni) ≡ ši do not depend onni,
II. si(ni) ≡ si = ∞ and ši(ni) ≡ si = 0.

We refer to these as Type I and Type II per-user power constraints, respectively. A Type I constraint
models the case where there is a maximum and minimum constraint on the SINR or rate per code. A
Type II constraint corresponds to no per-user power constraints.

With the per user power constraints, the constraint setX is further restricted to

X :={
(n,p) ≥ 0 : ni ≤ Ni,

ši(ni)ni

ei

≤ pi ≤
si(ni)ni

ei

, ∀i
}

.

The setX continues to be convex ifsi(ni)ni is a concave function ofni and ši(ni)ni is a convex function
of ni. Note thatsi(ni)ni is indeed concave for the two special cases (I-II) mentioned above, as well as the
case of a peak power constraint, andši(ni)ni is always convex in the previous examples. Unless otherwise
mentioned, we will assume this set is convex in the following.

For the maximum rate constraint case (13),si(ni)ni is convex inni, and so the setX will not be
convex. However, one can still get a convex formulation [36] for this case by instead viewing the rate

9Of course, with minimum rate and minimum rate per code constraints the resulting optimization may be infeasible, depending on the
other constraints and the channel states.
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ri as an additional optimization variable, so that the objective is now to maximize
∑

i wiri, whereri is
constrained to satisfy

ri ≤ ni log

(
1 +

piei

ni

)
,

and ri ∈ [0, Ri]. The final solution in this case is quite similar to the analysis that follows in this paper.
However, to simplify our discussion we do not consider this constraint here and simply focus on cases I
and II above.

In addition to these per user power constraints, there may also be a constraint on the maximum number
of usersM scheduled in a time-slot, i.e., users with positive code and power assignments.10 We will prove
later (see Lemma 4.9) that such a constraint will in most cases automatically be satisfied by the optimal
solution (assuming the selected users have enough data to send) as long asM − 1 users can fully utilize
the available code budget, i.e., the sum of theNi’s for any subset ofM − 1 users is greater than or equal
to N . For example, ifNi ≥ 5 for all i andN ≤ 15, then no more than 4 users need to be scheduled in
any time-slot under the optimal scheme.

III. T HE DUAL PROBLEM AND CONVEX OPTIMIZATION

In this section we begin considering the solution to (10), which determines the users to be scheduled as
well as the amount of power and the number of codes to be assigned to each user. We solve the optimization
problem by looking at the dual formulation. The objective is concave and since the constraints are linear,
there will be no duality gap (see [34]). This allows us to use the solution of the dual to compute the
solution of the primal.

A. The Dual Problem

Define a Lagrangian for the primal problem (10) by

L(n,p, λ, µ) :=
∑

i

wini ln

(
1 +

piei

ni

)
+

λ

(
P −

∑
i

pi

)
+ µ

(
N −

∑
i

ni

)
.

(14)

The corresponding dual function is

L(λ, µ) := max
(n,p)∈X

L(n,p, λ, µ). (15)

The dual problem is then given by:

L∗ := min
(λ,µ)≥0

L(λ, µ) [Dual problem]. (16)

Also, with some further abuse of notation, we define

L(λ) := min
µ≥0

L(λ, µ) = min
µ≥0

max
(n,p)∈X

L(n,p, λ, µ). (17)

10For example, in HSDPA such a constraint arises because the system cannot schedule more users than the number of shared control
channels.
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B. Results from duality and convex programming

From standard convex programming (see, e.g., Propositions 5.1.2 and 5.1.3 of [34]), we have the
following:

Proposition 3.1:The dual functionL(λ, µ) is convex over the set{(λ, µ) ≥ 0} and

V ∗ ≤ L(λ) ≤ L(λ, µ), ∀λ, µ ≥ 0.

From the concavity ofV and convexity of the domain of optimization, it is easy to verify that
Assumption 5.3.1 of [34] holds, and therefore, we have from Propositions 5.3.1, 5.1.4, and 5.1.5 in
[34] that

Proposition 3.2:There exists at least one solution to the dual problem and there is no duality gap.
Any optimal dual solution,(λ∗, µ∗) satisfiesV ∗ = L(λ∗, µ∗). Furthermore,((n∗,p∗), (λ∗, µ∗)) is a pair
of optimal primal and optimal dual solutions if and only if

(n∗,p∗) ∈ X ,
∑

i

n∗i ≤ N,
∑

i

p∗i ≤ P
Primal
Feasibility

(18)

(λ∗, µ∗) ≥ 0
Dual
Feasibility

(19)

(n∗,p∗) ∈ arg max
(n,p)∈X

L(n,p, λ∗, µ∗)
Lagrangian
Optimality

(20)

λ∗(P −
∑

i

p∗i ) = 0, µ∗(N −
∑

i

n∗i ) = 0
Complementary
Slackness

(21)

IV. STRUCTURE OF THE PRIMAL AND DUAL PROBLEMS

In this section, we give several properties of the dual problem in (16) and the corresponding primal
problem in (10). First, we compute the dual function,L(λ, µ) in (15) for a givenλ and µ. We then
keepλ fixed and optimize the dual function overµ; this gives usL(λ) in (17). We prove thatL(λ) is
convex and provide bounds on the optimalλ. Using these properties, the optimalλ can be found with a
one-dimensional convex search that has geometric convergence. We find primal variables (n andp) that
maximize the Lagrangian for a givenλ andµ, and finding the optimal primal power allocation for a given
n.

A. Computing the dual function

To evaluate the dual function, we proceed in two steps. First, we optimize the Lagrangian (14) overp,
for a fixed λ, µ, andn. We then optimize overn to obtain the value of the dual function. For the first
step, we define the following two projections of the setX : for a givenn, let Xn = {n ≥ 0 : ni ≤ Ni, ∀i}
and letXp(n) = {p : (n,p) ∈ X}. Then we have:

Lemma 4.1:For a fixedn ∈ Xn and anyλ ≥ 0 and µ ≥ 0, the power allocationp∗ ∈ Xp(n) that
maximizesL(n,p, λ, µ) is given by

p∗i =
ni

ei

s∗
(wiei

λ
, si(ni), ši(ni)

)
, (22)

where

s∗
(wiei

λ
, si(ni), ši(ni)

)
:= max

{
min

{(wiei

λ
− 1
)

, si(ni)
}

, ši(ni)
}

.

This lemma follows directly from the Kuhn-Tucker conditions for the optimization problem. Note that
the “min” is not needed for Type II per user power constraints, i.e.,si(n) = ∞. However, the maximum
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Fig. 1. An example of the optimal power allocation,p∗i in (22) as a function ofλ for both a Type I and type II power constraint.

is still necessary even if̌si(ni) = 0, to restrict attention to non-negative power values. The solution can be
viewed as a modified version of a water-filling power allocation across the users [32], where the “water-
level” is modified to take into account each users weight,wi, and the per-user power constraints are also
taken into account. In the case of a Type I per-user power constraint (si(ni) ≡ si and ši(ni) ≡ ši), the
resulting SINR per code for a fixedλ, µ, andn is given by

p∗i ei

ni

= s∗
(wiei

λ
, si(ni), ši(ni)

)
= s∗

(wiei

λ
, si, ši

)
, (23)

which does not depend on the number of codesni. It follows that, in the Type I case, for a givenλ the
total power allocated to a user scales linearly in the number of codes.

An example ofp∗i as a function ofλ is shown in Fig. 1 for both a Type I and Type II constraint. The
horizontal segments ofp∗i under the Type II constraint correspond to when the maximum and minimum
per user power constraints are active; when these are not active, the two curves overlap.

Substituting (22) into the Lagrangian we have

L(n,p∗, λ, µ)

=
∑

i

wini ln

(
1 +

p∗i ei

ni

)

+ λ

(
P −

∑
i

p∗i

)
+ µ

(
N −

∑
i

ni

) (24)

=
∑

i

(winih(wiei, si(ni), ši(ni), λ)− µni)

+ λP + µN,

(25)

where

h(wiei, si(ni), ši(ni), λ) :=
ln(1 + ši(ni))− λ

wiei
ši(ni), λ ≥ wiei

1+ši(ni)
,

λ
wiei

− 1− ln λ
wiei

, λ ∈ [ wiei

1+si(ni)
, wiei

1+ši(ni)
),

ln(1 + si(ni))− λ
wiei

si(ni), λ < wiei

1+si(ni)
.

(26)
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Fig. 2. An example ofh(wiei, si, ši, λ) as a function ofλ under a Type I and Type II power constraint.

Notice that for a Type I per-user power constraint,h(wiei, si(ni), ši(ni), λ) = h(wiei, si, ši, λ) also does
not depend onni. For a Type II per-user power constraint,11

h(wiei, si, ši, λ) =

[
λ

wiei

− 1− ln

(
λ

wiei

)]
1{wiei>λ}.

An example ofh(wiei, si, ši, λ) as a function ofλ is shown in Fig. 2 for both a Type I and Type II
per-user power constraint. In both caseswiei = 5. When wiei

1+si
≤ λ ≤ wiei

1+ši
the two curves overlap. For

λ < wiei

1+si
, h grows without bound under a Type II constraint, while it is linear in this range under a Type

I constraint. Forλ > wiei

1+ši
, h decreases linearly under a Type II constraint, while under a Type I constraint

it converges to 0 atλ = wiei. For a Type II constraint,h crosses thex-axis atλ = ln(1+ši)wiei

ši
. In either

of these cases, since (25) is linear inn, it is straightforward to optimize overn.
Lemma 4.2:With a per-user power constraint of Type I or II, the vector of code allocations,n∗, that

maximizes (25) is given by

n∗i =

{
0, µi(λ) < µ,
Ni, µi(λ) > µ,

(27)

where
µi(λ) = wih(wiei, si, ši, λ). (28)

If µ = µi(λ), every choice ofni such that0 ≤ ni ≤ Ni maximizes the Lagrangian.

In other words, givenµ, the optimal code allocation is determined for each useri by checking ifµi(λ)
is greater than or less thanµ. The last part of this lemma follows because whenµ = µi(λ), (25) is not
dependent onni. Using (27) we have12

win
∗
i ln

(
1 +

p∗i ei

n∗i

)
− λp∗i − µn∗i = [µi(λ)− µ]+Ni.

Substituting this into (25) yields the following characterization of the dual functionL(λ, µ).
Lemma 4.3:With a Type I or II per-user power constraint,

L(λ, µ) =
∑

i

[µi(λ)− µ]+ Ni + µN + λP. (29)

11The notation1X denotes the indicator function of the eventX.
12We use the notation[x]+ = max(x, 0).
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Fig. 3. An example ofµi(λ) for a system withK = 4 users and a Type I per-user power constraint.

B. Optimizing overµ

We now turn to optimizing the dual function overµ. We restrict our attention to either a Type I or Type
II per-user power constraint, so that the dual function is given by (29). To begin, we sort the users in
decreasing order ofµi(λ) in (28), where ties are broken arbitrarily. Assume that the users are numbered
corresponding to their position in this ordering, i.e. so thatµi(λ) ≥ µi+1(λ) for all i.13

Let j∗ − 1 be the largest integer such thatµj∗−1(λ) ≥ 0 and
∑j∗−1

i=1 Ni < N. If no such user can be
found, setj∗ = 1. Note that if ši = 0 for all i, thenµi(λ) ≥ 0 for all i, in which casej∗ will be the first
user that would fill up the total code budget if all users received their maximum per-user code allocation.
By convention setµK+1(λ) = −1− [µK(λ)]−, where[x]− = [−x]+. Let N ′

j∗ := N −
∑j∗−1

i=1 Ni.
Lemma 4.4:With a Type I or Type II per-user power constraint,

L(λ) := min
µ≥0

L(λ, µ)

=

j∗−1∑
i=1

µi(λ)Ni + [µj∗(λ)]+ N ′
j∗ + λP,

(30)

and the minimizingµ is given byµ∗(λ) := [µj∗(λ)]+ .

Proof: For µi(λ) < µ < µi−1(λ), from (29) it can be seen that the derivative ofL(λ, µ) in µ is given
by N−

∑i−1
j=1 Ni. Hence,j∗ is the largest integer for whichL(λ, µ) will be increasing in the corresponding

interval, i.e.,L(λ, µ) will be increasing if and only ifµ > µj∗(λ). The lemma then follows.
From Lemma 4.2,µ is a threshold separating the users that get their full code allocation from the users

that get allocated no codes. Asµ is decreased, more users will be allocated their full code allocation.
Lemma 4.4 shows that the thresholdµ∗(λ) that minimizes the dual function is such that the full code
budget is utilized.

Figure 3 shows an example of the curvesµi(λ) as a function ofλ for a system withK = 4 users,
under a Type I per-user power constraint. Also indicated on the figure are the values ofλ for which each
curve µi(λ) crosses thex-axis. Consider the case whereNi = N for all i. In this case,j∗ = 1 (i.e. the
user with the maximum value ofµi(λ) for the given value ofλ. Therefore, forλ < ln(1+š2)w2e2

š2
, µ∗(λ)

will be the upper envelope of the curves shown in the figure. Forλ > ln(1+š2)w2e2

š2
all of the µi(λ) will be

less than0 and soµ∗(λ) = 0.

13Of course, asλ changes this ordering will change, in which case we must re-number the users.
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Remark:When wi ≥ wj, ei > ej, andsi ≥ sj then it can be shown thatµi(λ) ≥ µj(λ), for all λ. It
follows that in this case, useri will be always be given a full code allocation before allocating any codes
to userj. Furthermore, assume the scheduling rule is the “maximum throughput” version of (3), i.e. the
case whereα = 1 and the class weights are all equal, so that thewi’s are constant and identical across
users. In this case, (still assuming that ifei > ej thensi ≥ sj) packing users into the code budget in order
of decreasingei’s is optimal.

C. Finding a Lagrangian Optimal Primal Solution.

We next consider finding primal values(n∗,p∗) such that

(n∗,p∗) = arg max
(n,p)∈X

L(n,p, λ, µ∗(λ)) (31)

for a givenλ ≥ 0. Here,µ∗(λ) is the optimalµ given by Lemma 4.4. Given the optimalλ = λ∗, then from
Proposition 3.2, such an(n∗,p∗) will be an optimal solution for the primal problem if it also satisfies
primal feasibility (18) and complimentary slackness (21). We give a procedure for selecting such a pair
in the following. If theλ 6= λ∗, this procedure can also be used to find a candidate feasibleñ. In the next
section, we construct a feasiblẽp corresponding tõn. From Proposition 3.1, we have14

V ∗ − V (ñ, p̃) ≤ L(λ)− V (ñ, p̃).

We continue restricting our attention to Type I or II per-user power constraints.
From the results in Sections IV-A and IV-B, it can be seen that a solution to (31) is equivalent to

finding

n∗ = arg max
{n∈X}

∑
i

(µi(λ)− µ∗(λ))+ ni, (32)

and settingp∗ as in Lemma 4.1.
As in the previous section, we again assume that the users are ordered in decreasing order ofµi(λ)

so thatµ∗(λ) = µj∗(λ). When15 µj∗−1(λ) > µj∗(λ) > µj∗+1(λ) and µj∗(λ) 6= 0, then there is a unique
feasiblen∗ that optimizes (32) and satisfiesµ∗(λ)(N −

∑
n∗i ) = 0. This is given by

n∗i =


Ni, i < j∗,
N ′

j∗ , i = j∗ andµ∗(λ) 6= 0,
0, i = j∗ andµ∗(λ) = 0,
0, i > j∗.

(33)

Note that this solution will always satisfy
∑

n∗i ≤ N , with equality if µ∗(λ) > 0. Also note thatn∗i in
(33) is always an integer code allocation.

Definition 4.1: A scalard ∈ R is a subgradientof L(λ) at λ if

L(λ̃) ≥ L(λ) + (λ̃− λ)d, ∀ λ̃ ≥ 0.

Proposition 4.1:Let (n̂, p̂) be a solution to (31) for a givenλ which satisfies
∑

n̂i ≤ N , andµ∗(λ)(N−∑
n̂i) = 0. ThenP −

∑
i p̂i is a subgradient ofL(λ) at λ.

14This can be used as a stopping criterion in a practical iterative algorithm.
15Recall that by conventionµK+1(λ) = −1− [µK ]−.
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Proof: Using the definition ofµ∗(λ) we have

L(λ̃) = L(λ̃, µ∗(λ̃))

= max
(n,p)∈X

L(n,p, λ̃, µ∗(λ̃))

≥ L(n̂, p̂, λ̃, µ∗(λ̃))

= V (n̂, p̂) + λ̃(P −
∑

i

p̂i)

+ µ∗(λ̃)(N −
∑

i

n̂i)

≥ V (n̂, p̂) + λ̃(P −
∑

i

p̂i) (34)

= V (n̂, p̂) + λ(P −
∑

i

p̂i)

+ (λ̃− λ)(P −
∑

i

p̂i)

= L(λ) + (λ̃− λ)(P −
∑

i

p̂i). (35)

The inequality in (34) follows becauseN −
∑

i n̂i ≥ 0 and µ∗(λ̃) ≥ 0; equality in (35) holds because
µ∗(λ)(N −

∑
n̂i) = 0.

Note that the code allocation given by (33) and the corresponding power allocation in Lemma 4.1
satisfy the assumptions of Proposition 4.1 and so provide a subgradient ofL(λ). Later in Corollary 4.1,
we show that all subgradients ofL(λ) can be found in this way.

When there is a tie and more than oneµj(λ) = µ∗(λ), then there may be multiplen∗ that optimize
(32) and satisfyµ∗(λ)(N −

∑
n∗i ) = 0 and

∑
i n

∗
i ≤ N . There will also be multiple candidates forn∗

if there is no tie, butµj∗ = 0.16 However, for the optimalλ∗, every suchn∗ may not result in a power
allocation that is feasible and satisfies complimentary slackness. For an arbitraryλ, different choices of
n∗ will result in different subgradients forL(λ). Next, we examine resolving such ties. First, we show
how to resolve these ties to find the maximum and minimum subgradients ofL(λ).17

Let there bel ≥ 0 users withi < j∗ and k ≥ 1 users withi ≥ j∗ whoseµi(λ) are tied withµj∗(λ),
wherel + k ≥ 1, i.e.,18

µj∗−l−1(λ) > µj∗−l(λ) = µj∗(λ)

= µj∗+k−1(λ) > µj∗+k(λ).

Let Iλ = [j∗ − l, j∗ + k − 1] denote the set of these users. The objective in (32) will not depend onni,
for i ∈ Iλ. Note that the ordering of these users based onµi(λ) is arbitrary.

First we consider resolving this tie to find the maximum subgradient ofL(λ) at λ. It follows from

16It can be seen that if̌si = 0, then the case ofµj∗(λ) = 0 is trivial because userj∗ will not receive any power regardless of its code
allocation.

17That these are indeed the maximum and minimum follows from Corollary 4.1.
18The case wherel + k = 1 captures the situation where there are no ties andµj∗ = 0.



14 TECHNICAL REPORT - JUNE 2009

Lemma 4.1 and Corollary 4.1 that this is the solution to the following linear program (LP):

max
{ni|i∈Iλ}

Pres −
∑
i∈Iλ

s∗
(wiei

λ
, si, ši

) ni

ei

[LPmax]

subject to:0 ≤ ni ≤ Ni, i ∈ Iλ∑
i∈Iλ

ni ≤ Nres,

µ∗(λ)(Nres −
∑
i∈Iλ

ni) = 0.

Here, Pres := P −
∑

i<j∗−l s
∗ (wiei

λ
, si, ši

)
Ni

ei
and Nres := N −

∑
i<j∗−l Ni are the residual power and

codes available for the users in the tie. The minimum subgradient can also be found via a LP given by

min
{ni|i∈Iλ}

Pres −
∑
i∈Iλ

s∗
(wiei

λ
, si, ši

) ni

ei

. [LPmin ]

subject to the same constraints as in LPmax.
The structure of these linear programs permits a simple greedy solution. For LPmax, ifµ∗(λ) = 0, then

the solution to LPmax is clearly to assign̂ni = 0 for all i ∈ Iλ. Otherwise, ifµ∗(λ) > 0, order the users
in Iλ in increasing order ofs∗

(
wiei

λ
, si, ši

)
1
ei

. Let Θ̂ : Iλ 7→ Iλ be a permutation ofIλ according to this
ordering, so that ifs∗

(
wiei

λ
, si, ši

)
1
ei

< s∗
(wjej

λ
, sj, šj

)
1
ej

, thenΘ̂(i) < Θ̂(j). For LPmin, we instead order

the users indecreasingorder of s∗
(

wiei

λ
, si, ši

)
1
ei

and denote this ordering by the permutationΘ̌. Let ĵ

be the smallest integer such that
∑ĵ

i=j∗−l NΘ̂−1(i) ≥ Nres; if no such integer exists, set̂j = j∗ + k − 1.
Let ǰ denote the corresponding integer using theΘ̌ ordering. Fori ∈ Iλ, set

n̂i =


Ni, Θ̂(i) < ĵ,

N ′
i , Θ̂(i) = ĵ,

0, Θ̂(i) > ĵ,

(36)

whereN ′
Θ̂−1(ĵ)

= min{Nres −
∑ĵ−1

i=j∗−l NΘ̂−1(i), NΘ̂−1(ĵ)}. Let ňi denote the corresponding code allocation

using theΘ̌ ordering.
Lemma 4.5:The code allocation̂ni in (36) solves LPmax forµ∗(λ) > 0; the corresponding code

allocation ňi solves LPmin, for all values ofµ∗(λ). Whenµ∗(λ) = 0, the solution to LPmax iŝni = 0
for all i ∈ Iλ.

The proof of this lemma follows from a simple interchange argument. Finding both of these solutions
involves a sort over the users involved in a tie, and thus each have a complexity ofO(|Iλ| log(|Iλ|)).
Typically, if a tie occurs, only a small number of users will be involved. To gain some intuition as to why
this is the case, note that ties occur whenever two or more ofµi(λ) curves in Fig. 3 cross for a given
value ofλ. Moreover, it can be shown that any two such curves will only cross at one point. Hence, it
follows that if the parameterswi andei are independently chosen according to an absolutely continuous
distribution, then with probability one a tie will not involve more than two users.

Given the solution to LPmax in (36), let

n∗i =


Ni, i < j∗ − l,

n̂i, j∗ − l ≤ Θ̂(i) ≤ j∗ + k − 1,
0, i ≥ j∗ + k.

(37)

denote the corresponding complete code allocation. In two special cases, this will be a primal optimal
code allocation.

Lemma 4.6:The pair(n∗,p∗) given by (37) and (22) are a primal optimal solution if either
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1) λ = 0 and LPmax has a non-negative solution,
2) The solution to LPmax is zero.

This lemma follows directly from noting that in both of these cases, the solution will satisfy both
the complimentary slackness and primal feasibility conditions in Prop. 3.2. Note that whenλ = 0,
s∗(wiei

λ
, si, ši) = si for all i,19 and thus theΘ̂-ordering corresponds to sorting the users based onsi

ei
.

A corresponding code allocation can be defined based onΘ̌ and ňi; if this results in a solution to LPmin
of zero, then it will also be primal optimal.

If the solution to LPmax is negative, then all the subgradients ofL(λ) at λ will be negative. Likewise,
if the solution to LPmin is positive, then all the subgradients will be positive. However, if LPmax has a
positive solution and LPmin has a negative one, thenL(λ) will have a zero subgradient atλ; a feasible
code allocation corresponding to this zero subgradient will be primal optimal. In this case, there must
exist anα ∈ [0, 1] such that

Pres = α

(∑
i∈It

s∗
(wiei

λ
, si, ši

) n̂i

ei

)

+ (1− α)

(∑
i∈It

s∗
(wiei

λ
, si, ši

) ňi

ei

)
.

Solving for α above, set
ñi = αn̂i + (1− α)ňi (38)

for all i ∈ It and letn∗ denote the corresponding complete code allocation as in (37).
Lemma 4.7:If the solution to LPmax is positive and the solution to LPmin is negative, thenn∗

constructed using (38) and the correspondingp∗ are a primal optimal solution.
Once again, this follows from noting that by construction the code and power allocations satisfy the

assumptions in Prop. 3.2. This gives a primal optimal solution; but depending on the number of users
involved in the tie, it may not be the primal solution with the minimum number of users scheduled. As
discussed in Sect. II-A, in practice there may be constraints on this number. The next lemma gives an
upper bound on the minimum number of users scheduled in an optimal solution. Using typical parameter
values for a HSDPA system, this bound will be no greater than 4.

Lemma 4.8:For a Type I or II power constraint, an optimal code allocation can always be found such
that at mostdN/Nmine+ 1 users will be scheduled, whereNmin := mini Ni.

Proof: At the optimalλ∗, if the conditions in Lemma 4.6 are satisfied then the code assignment in
(37) is optimal and will result in no more thandN/Nmine+ 1 users scheduled. Therefore, we need only
consider the case where these conditions are not satisfied, i.e.,λ∗ > 0 and the solution to LPmax is strictly
greater than 0.

When λ∗ > 0, from complementary slackness and Prop. 4.1, a primal optimal code allocation must
result in a zero subgradient ofL(λ). Such a code allocation is a solution to the following feasibility
problem:

maximizen 1

subject to:P −
∑

i

ni
1

ei

s∗
(wiei

λ∗
, si, ši

)
= 0∑

i

ni = N

0 ≤ ni ≤ Ni, ∀i.

19This will arise only with a Type I power constraint.
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This is a LP and the feasible set is aK dimensional bounded polyhedron.20 By Lemma 4.7, this polyhedron
is non-empty, i.e. the LP has a solution. However, the solution given in Lemma 4.7 may result in more
thandN/Nmine+ 1 users scheduled. In this case, we show that this LP must have another solution with
the desired property. In particular, it must have an extreme point solution; we consider such an extreme
point code allocation. At an extreme point, at leastK constraints must be binding, two of which are the
two equality constraints. This means that at leastK−2 users must haveni set equal to either 0 orNi and
so at most 2 users will have a fractional code assignment. First, assumeN/Nmin is an integer. IfN/Nmin

users haveni = Ni, then clearly to satisfy the second constraint, no other users can have positive code
allocations. Likewise, if no more thanN/Nmin − 1 users haveni = Ni, then from the above argument at
mostN/Nmin − 1 + 2 = N/Nmin + 1 users will have a positive code allocation. Similarly, ifN/Nmin is
not an integer, then at mostdN/Nmine − 1 users can haveni = Ni to satisfy the second equality, and so
at mostdN/Nmine+ 1 users will have a positive code allocation.

Though in general (37) may result in more thandN/Nmine + 1 users being scheduled, in several key
special cases this solution will also involve no moredN/Nmine+1 users. This is useful in practice, since
determining the solution in (37) is less complex than solving the LP in the proof of Lemma 4.8.21

Lemma 4.9:For a Type I or II power constraint, the code allocation in (37) results in no more than
dN/Nmine+ 1 users being scheduled in either of the following cases:

1) At most two users are involved in a tie;
2) For all usersi ∈ Iλ, Ni ≥ Nres.
The second condition in this lemma implies that the per-user code constraints will be inactive for any

solution to LPmax or LPmin.22 In this case, the solution to LPmax and LPmin will involve one user each
and the combination in (38) will involve only these two users.23 Note that whenNi = N , this condition
will always be satisfied.

Based on the above discussion, we outline a procedure for finding a primal feasiblen∗ given an arbitrary
λ. This can be used to construct a feasible solution in a sub-optimal algorithm, which does not find the
optimal λ.

Tie breaking rule:
1) Solve LPmax, if the solution is non-positive, orλ = 0, resolve the tie usinĝni.
2) Otherwise, solve LPmin,

a) If the solution is negative usẽni in (38) to resolve the tie,
b) otherwise usěni.

For a givenλ, we denote byn∗(λ) the code allocation given by using this tie breaking rule. If the
optimal choice ofλ is used,n∗(λ) will be an optimal code allocation. Otherwise, it is the allocation
that corresponds to the minimum positive subgradient (if all subgradients are positive) or the maximum
negative subgradient (if all subgradients are negative).

D. Optimizing the power allocation

In this section, we consider the optimal primal power allocation,p, given a fixed non-negative code
allocationn, i.e., we want to solve

V ∗(n) := max
p∈Xp(n)

V (n,p)

subject to:
∑

i

pi ≤ P.
(39)

20Note, for convenience we formulate this LP as a function of allK users instead of just the|Iλ| users involved in the tie.
21Solving this involves listing all the extreme points and determining the one that works.
22In practical systems, this condition will often be satisfied. For example, in a HSDPA system withN = 15 andNi = 15 or 10, then this

condition will always be satisfied.
23If µ∗(λ) = 0, then the solution of LPmax will involve zero users, and the combination in (38) will involve only one user.
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This can be solved by findingλ∗(n) using the dual formulation and then computing the optimalp∗(n)
as in Lemma 4.1. We note that the results in this section are not restricted to Type I or Type II per
user power constraints but will hold for any reasonable per-user constraints.24 not just those discussed in
Section II-A.

Without loss of generality, we remove any users with zero code allocations. LetM be the number of
remaining users with positive code allocation, and assume these are numberedi = 1, . . . ,M . We first
need to check if the problem is infeasible, i.e., if

M∑
i=1

pmin
i :=

∑
i

ni

ei

ši(ni) ≥ P.

If this is the case, then (39) will have no feasible solutions. We also check if the sum power constraint
is inactive, i.e.,

M∑
i=1

pmax
i :=

∑
i

ni

ei

si(ni) ≤ P.

If this is the case, the optimal power allocation is simplyp∗i = ni

ei
si(ni). Henceforth, we assume the

problem is feasible and the power constraint is active. In this case, the sum power constraint must be
satisfied with equality for the optimal powers, otherwise at least one of the powers can be increased
resulting in a larger value of the objective function.

We can now construct a Lagrangian for (39) as

Ln(p, λ) :=
M∑
i=1

wini ln

(
1 +

piei

ni

)

+ λ

(
P −

∑
i

pi

)
.

(40)

Notice that if µ(N −
∑

i ni) = 0, Ln(p, λ) will be equal to the original Lagrangian in (14). The dual
function corresponding to (40) is given by

Ln(λ) := max
p∈Xp(n)

Ln(p, λ). (41)

Also, note that when optimizing over powers, the constraint set is always convex regardless of the function
si(ni)ni. Maximizing Ln(p, λ) overp is essentially the same as the problem forL(p,n, λ, µ) covered in
Section IV-A. The optimalp is given by (22) as before. Substituting this into (41) yields

Ln(λ) =
M∑
i=1

winih(wiei, si(ni), ši(ni), λ) + λP.

From basic convex optimization theory, we know thatLn(λ) is convex inλ. Furthermore, it can be shown
that Ln(λ) is continuously differentiable inλ. To see this note that from (26), for eachi,

d h(wiei, si(ni), λ)

d λ
=

− ši(ni)
wiei

, wiei

1+ši(ni)
≤ λ,

1
wiei

− 1
λ
, wiei

1+si(ni)
≤ λ < wiei

1+ši(ni)
,

− si(ni)
wiei

, λ < wiei

1+si(ni)
,

(42)

24By reasonable constraints we refer to constraints such that0 ≤ ši(ni) ≤ si(ni).
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which is continuous in the three intervals as well as at the two break points. This allows us to conclude
that Ln(λ) is minimized by the set points at which the derivative is zero. Note that for each useri, (42)
is constant in two of the three intervals; hence, it is possible that there are multiple points at which the
derivative is zero. The following lemma gives an alternative characterization of theλ which minimizes
Ln(λ). Let ai and bi be the two break points for each useri = 1, . . . ,M , i.e., ai := wiei

1+si(ni)
, and

bi = wiei

1+ši(ni)
.

Lemma 4.10:A λ > 0 is the solution to the dual problemminλ≥0 Ln(λ) if and only if

λ =
P

i niwi1[ai,bi)
(λ)

P−
P

i
ni
ei

(si(ni)1[0,ai)
(λ)−ši(ni)1[bi,∞)(λ)+1[ai,bi)

(λ))
, (43)

where, by convention, if numerator and denominator of the right-hand side are both zero, then we set this
equal toλ.

Proof: Note that while the optimalλ∗ may not be unique, the set of optimizers must form an interval
by the convexity ofLn(λ). Since for any givenλ, the p∗ that maximizes the Lagrangian is unique, it
follows from complementary slackness thatλ∗ > 0 is optimal if and only if the correspondingp∗ satisfies∑

i p
∗
i = P . Substituting inp∗i from (22) we have thatλ > 0 is optimal if and only if

P =
∑

i

ni

ei

si(ni)1[0,ai)(λ) +
∑

i

ni

ei

ši(ni)1[bi,∞)(λ)

+
∑

i

ni

ei

(
wiei

λ
− 1)1[ai,bi)(λ).

(44)

The desired result then follows from simple algebra. Note that if the right-hand side of (43) is0
0
, then the

first term on the left-hand side of (44) must be zero. This corresponds to all users either being assigned
their maximum or minimum individual power, in such a way that the total power constraint is exactly
met. Such a power allocation, will not depend on small variations inλ, provided thatλ does not enter a
new interval in (42) for some user.25

Let λ∗(n) denote an optimal value ofλ for a given code allocation, and letp∗(n) denote the correspond-
ing optimal power allocation given by (22). This lemma says that ifλ∗(n) > 0, it must satisfy (43). Next
we show that a solution to this equation can be found in finite-time. Sort the set{ai, bi|i = 1, . . . ,M} into
a decreasing set of numbers{x[l]; l = 1, . . . , 2M}, where ties are resolved arbitrarily. Forl = 1, . . . , 2M ,
let Psum[l] denote the total power

∑
i p

∗
i wherep∗i is given by (22) withλ = x[l]. Let l∗ be the smallest

value of l such thatPsum[l] ≥ P . (Assuming thatλ∗(n) > 0 such anl∗ must exist.)
Lemma 4.11:For a givenn, if the sum power constraint is active,26 an optimalλ∗(n) can be found in

finite-time and is given by the right-hand side of (43) withλ = x[l∗].
Proof: Note that asλ decreases, the right-hand side of (43) is right-continuous and only changes values

when λ = x[l], l = 1, . . . , 2M. (During any interval when the right-hand side is0
0
, by our convention,

the value changes continuously inλ; but this does not effect the following argument.) Hence, an optimal
λ must be given by evaluating the right-hand side of (43) withλ = x[l] for somel = 1, . . . , 2M . Also,
note that asλ decreases, the total power,

∑
i p

∗
i is increasing. By assumption the sum power constraint is

active at the optimal solution. Thus, we have

x[l∗ − 1] > λ∗(n) ≥ x[l∗].

Combining these observations, the lemma follows.
The idea behind this lemma is illustrated in Fig. 4, which shows an example where only two users

have positive code allocations. The optimal power allocation for each user,p∗i from (22) is shown as a
function of λ, as well as the total powerp∗1 + p∗2. In this example, for a total power ofP , x[l∗] = a1, and
the optimalλ can then be calculated using Lemma 4.10.

25Indeed, it follows that this is the only case in which the optimalλ∗ is not unique.
26We make this assumption for simplicity of exposition. The algorithm can easily be modified to take into account the case where this

constraint is not active and will still complete in finite time.
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Fig. 4. Example illustrating Lemma 4.11.

Lemma 4.11 provides an algorithm for solving (43) by calculatingPsum[l] starting with l = 1 and
stopping when the total power constraint is violated. Also, note that with the above ordering, the right-
hand side of (43) can be recursively calculated asl increases. The algorithm complexity isO(M log M)
due to the sort of{x[l]}. Recall,M is the number of users with positive code allocations. As discussed
after Lemma 4.9, this will typically be on the order of 1-4. Also, note that under a type II per-user power
constraint,ai = 0. Thus with no per-user power constraints, only theM values ofx[i] corresponding to
the bi’s need to be considered in the above search, and a simpler algorithm results.

E. Optimizing the dual overλ

Recall,L(λ) is the minimum of the dual function overµ ≥ 0. The solution to the dual problem,L∗ is
thus given by

L∗ = min
λ≥0

L(λ).

We consider this problem and several characteristics ofL(λ) in the following. First we show thatL(λ)
is convex inλ.27

Lemma 4.12:With a Type I or Type II per-user power constraint,L(λ) is convex inλ.
Proof: From Lemma 4.4,

L(λ) =

j∗−1∑
i=1

µi(λ)Ni + [µj∗(λ)]+ N ′
j∗ + λP,

where the users are re-ordered according toµi(λ) for eachλ. This can be re-written as:

L(λ) = max
n∈N

∑
i

µi(λ)ni + λP

= max
n∈N

Ln(λ), (45)

where,

N =

{
n :
∑

i

ni ≤ N, 0 ≤ ni ≤ Ni, ∀i

}
.

27This lemma also follows from Prop. 4.1, since a function will only have a subgradient at every point if it is convex. Here we give an
alternative proof that does not rely on subgradients.
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We have already established in Sect. IV-D that for eachn, Ln(λ) is convex inλ. Since the maximum of
a set of convex functions is also convex, it follows thatL(λ) is convex.

In (45),L(λ) is expressed as the maximum of an infinite number of the functionsLn(λ). Next we show
that in fact only a finite number of such functions are needed to characterizeL(λ), e.g.

L(λ) = max
n∈NΠ

Ln(λ) (46)

whereNΠ is a finite subset ofN . Specifically, from Lemma 4.4, it follows that for each permutation of
the users, we only need to consider a single greedy code allocations which uses all the codes, i.e. a code
allocation as in (33) that sequentially assigns each user the maximum feasible number of codes until the
code budget is full. We can then setNΠ to be the set of such code allocations, one for each permutation.

Now we turn to finding the optimalλ. From Lemma 4.12, this is the minimum of an univariate
convex function, and so it can be found by using a one-dimensional convex search technique, such as the
bisection method or a Fibonacci search [34]. Also note that, from (22) ifλ > ln(1+ši)

ši
wiei, then useri

will be allocated zero power. Therefore the optimalλ∗, must satisfy

0 ≤ λ∗ ≤ max
i

ln(1 + ši)

ši

wiei ≤ max
i

wiei. (47)

These bounds provide a starting point for the algorithms considered in the next section.
As noted in Section IV-D,Ln(λ) is continuously differentiable. From (46), we then have:
Lemma 4.13:With a Type I or II per user power constraint,L(λ) is differentiable for allλ for which

there exists a uniquen ∈ NΠ, with Ln(λ) = L(λ).
When there is not a uniquen ∈ NΠ, this is exactly the tie case discussed in Section IV-C. This is

illustrated in Fig. 5. Shown are three curvesLn(λ) corresponding to different code allocations;L(λ) is
the upper envelope of these curves which is shown in bold.L(λ) is differentiable, except for at the two
indicated places where a tie occurs. At the tie values, the derivatives of theLn(λ) curves involved in the
tie will be the corresponding subgradients discussed in Section IV-C. Indeed, as the next corollary shows,
any subgradient ofL(λ) can be found in this way.

Corollary 4.1: Given any subgradientd of L(λ) at λ, there exists primal values(n̂, p̂) that satisfy the
assumptions of Proposition 4.1 so thatP −

∑
i p̂i = d.

Proof: At any λ, if Ln(λ) = L(λ) for somen ∈ NΠ, then the primal values(n,p) which define
Ln(λ) will satisfy the assumptions of Proposition 4.1 and give a subgradient ofL(λ) that corresponds to
the derivative ofLn(λ) at λ.

If there is a uniquen ∈ NΠ, with Ln(λ) = L(λ), then from Lemma 4.13,L(λ) is differentiable and
so has only one subgradient, which is given by the above.

Next consider the case where there are multiplen ∈ NΠ such thatLn(λ) = L(λ). Since eachLn(λ) is
continuously differentiable and convex andL(λ) is the maximum of these, it follows that the maximum
subgradient ofL(λ) must be given by the derivative ofLn+(λ), wheren+ is one of then involved in
the tie that satisfiesL(λ + ε) = Ln+(λ + ε) for small enoughε. Likewise, the minimum subgradient
must be given by the derivative ofLn−(λ), wheren− is one of then involved in the tie that satisfies
L(λ − ε) = Ln−(λ − ε) for small enoughε. Any other subgradient can be found by considering a code
allocation that is an appropriate convex combination of the maximum and minimum.

As λ decreases from the upper bound in (47), users receive a positive code allocation based on the
ordering of ln(1+ši)

ši
wiei. For large enoughλ this ordering can determine the optimal code allocation.

To be precise, for the remainder of this section, consider the case whereši = 0 for all i. In this case,
ln(1+ši)

ši
wiei = wiei (by taking a limit ašsi → 0). Assume the users are ordered in decreasing order ofwiei,

in the case of a tie, order the users in decreasing order ofwi. If the wi’s are also tied, then order the users
arbitrarily. Let Φ be a permutation of the users corresponding to this ordering. Using this permutation,
let j∗ denote the smallest valuej such that

j∗−1∑
i=1

NΦ−1(i) < N ≤
j∗∑

i=1

NΦ−1(i).
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Fig. 5. An example of showingLn(λ) versusλ for three different code allocations and the correspondingL(λ).

Define the code allocation vectorn0, where for eachi,

n0,i =


Ni, Φ(i) < j∗,

N −
∑j−1

i=1 Ni, Φ(i) = j∗,
0, Φ(i) > j∗.

(48)

Lemma 4.14:Under a Type I or II per user power constraint withši = 0 for all i, the code allocation
vectorn0 is primal optimal if and only if

d L(λ)

d λ
= P −

∑
i

n0,i

ei

(
wiei

λ
− 1)1{ wiei

1+si(n0,i)
≤λ<wiei}

−
∑

i

n0,i

ei

si1{λ<
wiei
1+si

}

≤ 0,

for either
1) λ = wΦ−1(j∗)eΦ−1(j∗) whenn0,Φ−1(j∗) < NΦ−1(j∗), or
2) λ = wΦ−1(j∗+1)eΦ−1(j∗+1) whenn0,Φ−1(j∗) = NΦ−1(j∗).

Proof: When λ ≥ wΦ−1(j∗)eΦ−1(j∗), only those users withΦ(i) < j∗ will have non-zero values of
µi(λ). Hence for this case,n0 must be an optimal solution to (45). It can also be seen thatn0 must be
an optimal solution to (45) ifn0,Φ−1(j∗) = NΦ−1(j∗) andλ ≥ wΦ−1(j∗+1)eΦ−1(j∗+1). In either case,

L(λ) =
∑

i

wih(wiei, si, λ)n0,i + λP = Ln0(λ).

Differentiating this we have,28

d L(λ)

d λ
= P −

∑
i

n0,i

ei

si1{λ<
wiei
1+si

}

−
∑

i

n0,i

ei

(
wiei

λ
− 1)1{ wiei

1+si(n0,i)
≤λ<wiei}.

(49)

28For simplicity, we assume that atλ a tie does not occur and soL(λ) is differentiable. If this is not the case, the lemma is still true,
except that (49) will be a subgradient ofL(λ)
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SinceL(λ) is convex,d L(λ)
d λ

≤ 0 at λ = λ̃ if and only if λ∗ ≥ λ̃. Thus the condition in the lemma is both
necessary and sufficient forn0 to be optimal.

The conditions in Lemma 4.14 are easily computable, and can help with the search for the optimal
allocation. We will discuss this more in the next section.

It also follows from (49) that forλ ≥ wΦ−1(1)eΦ−1(1),

d L(λ)

d λ

∣∣∣∣
λ>wΦ−1(1)eΦ−1(1)

= P > 0.

This verifies thatλ∗ < maxi wiei, and using convexity provides another proof that ifλ∗ is greater than 0,
then it occurs at a point whereL(λ) has a zero subgradient.

V. A LGORITHMS

We next discuss algorithms for solving the primal problem (10). First, we present a family of optimal
algorithms all with a geometric convergence rate. Several variations of these algorithms are discussed.
Following this we give a class oftruncatedsuboptimal algorithms which have a lower complexity. Finally,
we give a family of baseline greedy algorithms that are based on splitting the scheduling and resource
allocation decision into two parts.

A. Optimal Algorithm

The optimal algorithms we consider are all based on finding the dual optimal solution,L∗ in (16), by
solving

min
λ≥0

L(λ),

whereL(λ) is defined in (17). By strong duality this gives us the optimal primal value,V ∗, and, given the
dual optimal(λ∗, µ∗), the primal optimal(p∗,n∗) are given by optimizing the Lagrangian as discussed in
Sect. IV-C.

For Type I and II per-user power constraints,L(λ) is given by Lemma 4.4. As shown in Section IV-E,
this is a univariate convex function, and thus can be minimized using a convex search technique. Here
we consider a bisection method, where at thekth iteration, the algorithm identifies a range[λLB

k , λUB
k ]

known to contain the optimalλ∗. We also identify an estimate ofλ∗ given by λk ∈ [λLB
k , λUB

k ]. These
parameters are updated from iteration to iteration, by considering a candidateλcand

k in either [λLB
k , λk] or

[λk, λ
UB
k ], and then updating these parameters, depending on the relative values ofL(λ). Choosingλcand

k

as the midpoint of the larger sub-interval ensures geometric convergence to the optimal dual solution.
Note that each iteration of such an algorithm requires evaluatingL(λ). This can be done using Lemma
4.4, which has a complexity ofO(K log(K)) due to the required sort based onµi(λ). Also, note that as
shown in Sect. IV-E,λ∗ < maxi wiei; thus we can use the pointsλmin = 0 and λmax = maxi wiei to
begin our search. We have just described one optimal algorithm, which we will refer to as a pure bisection
algorithm. In the following we discuss several enhancements to this algorithm, which further exploit the
structure of the problem.

The first enhancement we consider is based on first checking if the code allocation vectorn0 in (48)
is optimal. As shown in Lemma 4.14, this can be easily done. If this code allocation is optimal, then we
need simply calculate the optimal primal power allocation,p∗(n0), as in Section IV-D. and we are done.
If n0 is not optimal, thenλ∗ must be less thanwΦ−1(j∗)eΦ−1(j∗), wherej∗ is as given in Lemma 4.14.29.
Thus, instead ofλmax, we can usewΦ−1(j∗)eΦ−1(j∗) as an upper-bound for beginning our search. Notice
that calculatingn0 requires a sort to generate theΦ ordering and so has a complexity ofO(K log K). If

29More over, if n0,Φ−1(j∗) = NΦ−1(j∗), then we haveλ∗ < wΦ−1(j∗+1)eΦ−1(j∗+1)
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n0 is optimal, finding the optimal power allocation also requires a sort over theM users with non-zero
code allocation, which has a complexity ofO(M log M) 30.

The next enhancement we consider is to evaluate a feasible primal solutionnk = n∗(λk) as in
Section IV-C, for each iterationk. This serves two purposes which are as follows:

1) Stopping Criterion : This can be used for a stopping criteria. We give two possibilities here:
a.) Calculate a primal feasiblepk = p∗(nk), as in Section IV-D. Stop when the primal value and

the dual value are sufficiently close, i.e.,

V (nk,p
∗(nk)) < (1− ε)L(λk).

Note that we need a sort operation in the optimal power calculation leading to additional
complexity.

b.) Calculate a power allocationpk as given by Lemma 4.1. Stop when

|P −
∑

i

pi,k| < ε.

From Prop. 4.1,P −
∑

i pi,k a subgradient ofL(λ) at λk; thus, the stopping criteria checks if
the subgradient is near zero.31 Note thatpk is different fromp∗(nk).

Note that we have two different methods of obtaining a power vectorpk associated with the different
stopping criteria.

2) Update λk: The second use of calculatingnk is to use this as a guide for picking the nextλk. Once
again there are several possibilities; we give two that correspond to the cases (a.) and (b.) above.
a.) For case (a.), we consider the candidate

λcand
k = λ∗(nk) = λ∗(n∗(λk)) =: T (λk), (50)

whereλ∗(n) is given by Lemma 4.11. Note that any fixed point of the mapT will correspond
to an optimalλ∗. If λcand

k lies in the interval[λLB
k , λUB

k ], we can consider it instead of the
bisection point of a sub-interval.32 Note that evaluating this map using the iteration in Lemma
4.11 again has a complexity ofO(M log M).

b.) For case (b.), we can use the subgradientdk = P −
∑

i pi,k to aid in choosing the next candidate
λ. In particular, ifdk < 0 then the optimalλ must lie in[λk, λ

UB
k ], and ifdk > 0 then the optimal

λ must lie in [λLB
k , λk]. We can makeλk the mid-point of the appropriate interval, or we could

“move in the subgradient direction using an appropriate step-size rule” [34].
Combining the above steps, we have an optimal algorithm with the basic structure shown in Fig. 6.

The stopping criterion check and updating steps can be performed in either of the two ways discussed
above.

B. Truncated Optimal Algorithm

As shown in Section IV-E, optimizing the Lagrangian for a givenλ reduces to simply sorting the
users based on the metricµi(λ) and then packing the code budget. Searching for the optimalλ can then
be thought of as trying to find the optimal permutation of the users. Based on this, we next describe a
truncated optimalalgorithm with a structure as shown in Fig. 7. This algorithm begins by generating a
set of J initial permutations based on various heuristic sort metrics, and then packing the code budget
according to orderings. Some possible metrics include

30The Φ ordering can be used in the power allocation to accelerate the algorithm.
31As noted in Sect. IV-D, whenn0 is not optimal, thenL(λ) having a zero subgradient atλ∗ is both necessary and sufficient forλ∗ to

be optimal.
32Geometric convergence can still be guaranteed by only consideringλcand

k is chosen such that it is sufficiently in the interior[λLB
k , λUB

k ]
so the current interval will be reduced by a given percentage.
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1) IF n0 is optimal, THEN STOP.
2) Initialize λLB

0 , λUB
0 , λ0.

3) Set k = 0, nk = n∗(λk), and Choosepk.
4) WHILE Stopping Criterion fails DO

i k = k +1;
ii Update λk.

iii Update λLB
k and λUB

k .
iv Calculate nk = n∗(λk).

5) END WHILE

Fig. 6. Basic structure of optimal algorithm.

1) Generate initial code allocations, nx, x = 1, . . . , J .
2) For each x, calculate λ∗(nx), and V (nx,p∗(nx)).
3) SET n∗ = arg maxnx V (nx,p∗(nx)).
4) SET λJ+1 = λ∗(n∗).
5) Calculate nJ+1 = n∗(λJ+1), V (nJ+1,p∗(nJ+1)).
6) SET n∗ = arg max{V (n∗,p∗(n∗)), V (nJ+1,p∗(nJ+1))}.

Fig. 7. Basic structure of the truncated algorithm.

i.) decreasing order ofwiei, i.e., using theΦ ordering;
ii.) decreasing order ofwiNi

(
ln
(
1 + Piei

Ni
∧ si(Ni)

))
;

iii.) decreasing order ofwiN log
(
1 + Pei

N

)
.

The first sort is the same asΦ which used in the optimal algorithm to calculaten0. Although we do not
show this step in Fig. 7, we should again check if this code allocation is optimal using Lemma 4.14, and
if so terminate the algorithm. The second and third sort metrics correspond to finding the maximum rate
for each user assuming it was the only user in the system (TDM case) as is traditionally done for the
user sort metric in a split scheduling and resource allocation algorithm. The two variations correspond
to whether we include only the system constraints (iii) or also the per user constraints in calculating the
maximum rate (ii). Given the set of initial feasible code allocations, we then select the allocation with
the maximum primal value. This allocation is then updated as in the optimal algorithm in Fig. 6, where
the updating is done using the transformation in (50).

For the truncated optimal algorithm, in all we considerJ + 1 possible allocations and select the best
from amongst those. The number of allocations can be chosen to trade-off complexity with performance.
The simplest solution will be to just pick one of these; in this case the complexity isO(M log M) for the
resource allocation, in addition to theO(MK) for picking the topM in the “sort” traditionally done for
scheduling. In both the optimal and truncated optimal we do not really have to do a full sort over allK
eligible users. We at most need to pick the topM users, whereM is the maximum number of users that
can be scheduled in a time-slot. So everywhere we mention a sort over users, we really mean picking at
most the topM users in the order of the suggested “sort metric”.

Several variations of these algorithms can also be considered. This includes:
1) In both the optimal and truncated optimal we could initially pick the topm (2M ≤ m ≤ K) users

using one of the sort metrics and then do all of the subsequent optimizations over thosem users
instead of allK users. This will reduce the complexity of finding the maximum. For instance, if
we takem = 2M , the complexity of each iteration in the optimal algorithm isO(m log m) =
O(M log M).

2) If after Step 1 in the truncated algorithm, we obtain a code allocationn that fully packs the code
budget but not the power budget, i.e.,

∑
i ni = N but

∑
i nisi(ni)/ei < P , then we should reduce
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one or more of thenis and consider allocating these to the user next as per the “sort metric” in
consideration. For instance, we could pick the user with the smallestsi(ni) and decrease itsni till
the power budget is packed. Other schemes are also possible.

3) In a practical system a final “polish up” step can be added at the end of the algorithms to take
into account other constraints such as projecting the code allocation onto an integer solution and
including any per-user rate constraints and re-optimizing over the power allocation.

C. Greedy Baseline Algorithm

In this section we describe a class of baseline greedy algorithms. These algorithms are based on splitting
the scheduling decision and the resource allocation into two parts. First a scheduling order for the users is
found. This can be done by ordering the users according to a given metric such as those in the previous
section. Given the scheduling order, the resource allocation is then done by taking each user in order and
choosing a PLOP that maximizes the transmission rate the user can receive, using the residual power and
codes that are available. The main steps of the algorithm are the following:

1) Sort the users according to some metric (e.g., any of the metrics in Section V-B).
2) Seti = 1, Pres = P andNres = N wherePres andNres denote the residual power and code resources

at every stage.
3) Find the maximum rate that is feasible for useri with pi ≤ Pres andni ≤ Nres.
4) If there is a unique PLOP (ni, pi) that achieves the maximum rate, then we are done.
5) In case of multiple PLOPs achieving the maximum rate, we maximizef((Pres − pi), (Nres − ni)).

An example off is f(p, n) = λp + µn, in which case maximizingf is equivalent to minimizing
λpi + µni.

6) ReducePres by pi andNres by ni, respectively.
7) If Pres > 0, Nres > 0 and i is not the last user, seti = i + 1 and repeat from Step 3. If any of the

checks fails, then exit.
It can be shown that in case the amount of data a user can transmit is not a constraint (i.e. there is no
maximum rate constraint), the PLOP that maximizes the rate is unique. In the case where the amount of
data is a constraint, the PLOP that maximizesf can easily be solved for analytically in the case ofµ = 0,
i.e., we are interested in a minimum power solution. More generally, the solution can either be obtained
by a search or by a table lookup. Since the search is for a convex function, it takeslog N steps. A table
look up or analytic formula isO(1). So assuming we use an analytic solution or a table look up, the
complexity for each of the steps isO(1) and the complexity of the entire resource allocation algorithm
is O(M) (this does not include the “sorting” operation).

We provide the details next; here we include all of the per-user constraints discussed in Section II-A.
Let i be the user selected in theith stage of the algorithm with residual powerPres and residual codes
Nres. The resource constraints for this user can be calculated as follows:

N ′
i = min(Ni, Nres)

S ′
i = min

(
Si,
(
e( R

N
)i − 1

))
P ′

i = min

(
Pi, Pres,

S ′
iN

′
i

ei

)
whereNi, Pi, Si, and( R

N
)i are as defined in Section II-A. Based on these the highest rate useri can get

is

R′
i = N ′

i ln

(
1 +

P ′
iei

N ′
i

)
.

So, if the users maximum rate constraint isRi andRi ≥ R′
i, then by choosingni = N ′

i , pi = P ′
i , we are

done. In this is not the case, we set

pi(ni) =
ni

ei

(
e

Ri
ni − 1

)
,
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and minimizeλpi(ni) + µni subject to the above “trade-off” between power and codes while satisfying
the constraints:

ni ≤ N ′
i ,

eipi(ni)

ni

≤ S ′
i,

pi(ni) ≤ P ′
i .

It can be seen that forµ = 0, the solution to this is to setni = N ′
i ; thus, in this case the problem has

complexityO(1). Also, for anyλ ≥ 0 andµ ≥ 0, the cost function is convex inni and so the problem
can be solved with a ”bisection type” search with complexityO(log N). As noted above, the optimalni

can also be obtained by a table lookup in(Ri, ei), which is alsoO(1).

VI. SIMULATION RESULTS

We provide simulation results for the optimal and sub-optimal algorithms discussed above. Specifically,
we consider

1) The optimal algorithm from Section V-A. However, for the simulation we modified the algorithm
by projecting to integral code assignments. We expect this solution to be very close to the real
optimum.

2) The truncated optimal algorithm from Section V-B withJ = 6 initial code allocations; three of
the initial code allocations correspond to the 3 examples given in Section V-B, the other three
correspond to the code allocations obtained by applying the mapT from (50) to each of these
initial code allocations. In our simulations we omitted steps (4.) and (5.) of the algorithm.

3) The greedy baseline algorithm from Section V-C. We sort the users using the third sort metric
from Section V-B and setµ = 0 (i.e, we maximize the residual power) so that the algorithm has
complexityO(M).

We simulate each of these algorithms for a single cell system with K=40 users and with parameters
chosen to match a HSDPA system. In particular we setN = 15, Ni = 5, P = 11.9W, ši = 0 and
si = 1.59. We assign each user a utility with the form given in (2); for a given simulation all the users have
identical QoS weights (ci) and fairness parameters (α). We simulate the combined scheduling and resource
allocation for a single cell model that includes both large-scale and small scale fading. In particular, to
model location-based attenuation and shadowing, each user receives and average SINR according to a
distribution that is based upon measurements seen in more complex and realistic simulators. This is then
modulated with a Rayleigh variable with the Clarke spectrum to yield a time-varying SINR representative
of the variations mobiles encounter in real systems. Since we are assuming that one slot duration is long
enough for information-theoretic analysis, we do not model transmission errors and retransmissions.

In Table 1, we give several performance metrics for each algorithm and for different choices of the
fairness parameterα. Shown are:

• Utility: We calculate the time average utility given by1
T−K

∑T
t=K+1 U(Wt).

• Log Utility: We calculate the time average log utility given by1
T−K

∑T
t=K+1 ln(Wt). We use this

metric to compare the long-term throughputs achieved for different utility functions.
• Number Scheduled (M ): The average number of users scheduled per time-slot.
• Total Codes (Ns): The average total number of codes used by all users in the sector (Ns :=∑K

i=1
1
T

∑T
t=1 ni,t).

• Sum Power (Ps): The average sum power over all users in the sector
(Ps :=

∑K
i=1

1
T

∑T
t=1 pi,t).

• Sector Throughput: We calculate the sum throughput over all users in the sector given by1
K

∑K
i=1

1
T

∑T
t=1 ri,t.

Each quantity is averaged over 20 Monte Carlo drops. Also, in Figure 8, we show the empirical CDF of
the user throughput for each algorithm in theα = 0 case.
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TABLE I
SIMULATION RESULTS

α Algorithm Utility Log Utility M Ns Ps Sector
Throughput
(Mbps)

0.0 Optimal 231.944 231.944 3.35461 15 11.8997 8.8145

0.0 Truncated optimal229.282 229.282 3 15 11.2689 7.87875

0.0 Greedy baseline 222.222 222.222 3 15 10.9659 6.36075

0.25 Optimal 173.646 231.669 3.33331 15 11.8998 9.28545

0.25 Truncated optimal170.275 228.886 3 15 10.7793 8.54505

0.25 Greedy baseline 163.798 222.663 3 15 10.6948 7.2903

0.5 Optimal 806.085 228.404 3.36408 15 11.899 11.1392

0.5 Truncated optimal749.531 224.379 3 15 9.83421 9.127

0.5 Greedy baseline 725.4 220.801 3 15 9.72985 8.6008

0.75 Optimal 4129.16 213.411 3.36341 15 11.8903 12.6934

0.75 Truncated optimal3579.71 207.866 3 15 7.82554 10.1799

0.75 Greedy baseline 3538.96 201.87 3 15 7.79743 10.2524
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Fig. 8. Empirical CDF of users throughputs forα = 0.

In these results, the optimal algorithm gives a higher utility as well as a higher sector throughput
compared to the other algorithms. For theα = 0 case (proportional fair) we get a 34% improvement
over the greedy baseline algorithm. The truncated optimal algorithm is close to optimal and usually
also gives a higher sector throughput than the greedy baseline algorithm. Forα = 0, we get a 23.87%
improvement over the greedy baseline algorithm. Furthermore, not only is sector throughput higher for
the optimal algorithm, but in fact, from Fig. 8 we see that all user throughputs are larger (in a stochastic
ordering sense). In Figures 9, 10 and 11 we plot the user throughput distributions for other utility functions
parameterized byα = 0.25, 0.5, and0.75. In general, the optimal is better than truncated optimal which,
in turn, is better than the greedy baseline when we compare user throughputs. In Figure 12 concentrating
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Fig. 9. Empirical CDF of users throughputs forα = 0.25.
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Fig. 10. Empirical CDF of users throughputs forα = 0.5.

on the optimal algorithm we compare the effect of different values ofα. Since anα closer to1 emphasizes
total system bit rate more than fairness amongst users, we find that the distributions get more spread out
as we increaseα. We also observe that the optimal algorithm schedules 3 or 4 users whereas the other
algorithms only schedule 3 users. From Table 1, we see that the optimal algorithm does a better job of
filling the power budget and that all algorithms used up all the codes.

VII. C ONCLUSIONS

In this paper we studied optimally allocating codes and power for the downlink of a CDMA system,
taking into account both system-wide and individual user constraints. The objective was to maximize the
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Fig. 11. Empirical CDF of users throughputs forα = 0.75.
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Fig. 12. Empirical CDF of users throughputs for the optimal algorithm with differentα’s.

weighted sum throughput, where the weights were determined by a gradient-based scheduling algorithm.
By formulating this as a convex optimization problem, we were able use a dual approach to characterize
the optimal solution. This provides a tight upper-bound on system performance that can be used as a
benchmark for designing other low-complexity sub-optimal algorithms. We were also able to characterize
several key structural properties of the optimal solution. In particular, a greedy code assignment was
shown to be optimal based on a simple ordering of the users; the optimal power assignment was shown
to be a modified water-filling allocation. Additionally, we showed that at mostdN/Nmine+ 1 users need
to be scheduled in any time-slot and all but two will have their full code allocation. Furthermore, for a
fixed code assignment, we gave a finite-time algorithm to determine the optimal power allocation and
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we characterized several properties of the dual functions arising in our analysis. Based on the results,
we presented several variations of an optimal algorithm with geometric convergence. We also proposed
severallower complexity heuristics. In numerical results, we observed that these algorithms yield better
performance than a greedy baseline approach which splits the scheduling and resource allocation into two
steps.

Here, we focused on the downlink in a CDMA-based systems. Related problems also arise for the
uplink and for other multiplexing techniques such as OFDM [25], [36]. Also, we assumed perfect channel
quality feedback and did not address retransmissions. In particular, approaches based on hybrid ARQ are
part of most high-speed wireless data standards. One heuristic approach for dealing with this is to “bump
up” ei for packets that that are retransmitted, since they should require a lower SINR to be decoded
successfully.
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