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Abstract

In this paper, the scheduling and resource allocation problem for the downlink in a CDMA-based wireless
network is considered. The problem is to select a subset of the users for transmission and for each of the users
selected, to choose the modulation and coding scheme, transmission power, and number of codes used. We refer to
this combination as the physical layer operating point (PLOP). Each PLOP consumes different amounts of code and
power resources. The resource allocation task is to pick the “optimal” PLOP taking into account both system-wide
and individual user resource constraints that can arise in a practical system. This problem is tackled as part of a
utility maximization problem framed in earlier papers that includes both scheduling and resource allocation. In this
setting, the problem reduces to maximizing the weighted throughput over the state-dependent downlink capacity
region while taking into account the system-wide and individual user constraints. This problem is studied for the
downlink of a Gaussian broadcast channel with orthogonal CDMA transmissions. This results in a tractable convex
optimization problem. A dual formulation is used to obtain several key structural properties. By exploiting this
structure, algorithms are developed to find the optimal solution with geometric convergence.

Index Terms

Cellular network, channel-aware scheduling, code division multiple access (CDMA), convex optimization,
resource allocation, utility maximization.

. INTRODUCTION

Efficient scheduling and resource allocation are essential components for enabling high-speed data
access in wireless networks. In this setting, scheduling is complicated due to the time-varying fading
of wireless channels. A variety of wireless scheduling approaches have been propossgptnatnisti-
cally exploit these temporal variations to improve the over-all system performance, e.g. [1]-[20]. These
approaches attempt to transmit to users during periods when they have good channel quality (and car
support higher transmission rates), while maintaining some form of fairness among the users.

Wireless scheduling approaches can be divided into two clag$dsné-division multiplexed (TDM)
systems, where a single user is transmitted to in each time-slot, as in the HDR system (CDMA 1xEVDO)
[21], [22], and (i) systems in which the transmitter can simultaneously transmit to multiple users in
each time-slot, by using a combination of TDM and another multiplexing technique such as CDMA or
OFDMA. In the latter case, in addition to deciding which users to schedule, the available physical layer
resources, such as bandwidth and power, must be divided among the users. In this paper, we consider th
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second class of systems, where CDMA is used to multiplex users within a time&kamples of this

type of system include the High Speed Downlink Packet Access (HSDPA) approach developed for W-
CDMA [23, Chapter 11, pp. 279-304] or the 1x-EVDV approach for CDMA2000 [24]. In these systems,
the physical layer resources and information rate assigned to a user are specified by selecting the numbe
of spreading codes, the fraction of transmission power, and the modulation and coding scheme (MCS).
We refer to a combination of these as the physical layer operating point (PLOP).

The main problem addressed in this paper is to specify the optimal PLOP at each scheduling instant,
which in turn specifies the vector of user transmission rates. This problem must be solved once every
time-slot (e.g., 2msec in HSDPA or 1.25 msec in 1x-EVDV), and so requires a computationally efficient
solution. We consider this in the context of the gradient-based scheduling framework presented in [1],
[2]. In this framework, in each time-slot the objective is to chose the transmission rate vector that has
the largest projection onto the gradient of the total system utility. The utility is a function of each user’s
throughput and is used to quantify fairness. Several such gradient-based scheduling algorithms have beel
studied for TDM systems, including the proportionally fair algorithm [22], which is based on a log utility
function. In [1], a larger class of utility functions is considered that allow efficiency and fairness to be
traded-off.

The problem considered here can be viewed as finding the maximum weighted sum throughput for
a downlink (broadcast) channel, where the weights are determined by the gradient of the utility. Our
solution is general in that it also applies to other scheduling algorithms, which may provide these weights
using different approaches. For example, these weights could be based on queue size information as ir
the “MaxWeight” scheduling algorithms studied in [3], [4], [17], [26]. For the model studied here, the
feasible rate region is convex; hence, by varying these weights we can determine the boundary of this
region. In related work, the problem of allocating resources to maximize the weighted sum capacity for
the downlink channel has been considered from an information theoretic perspective in [28], [29]. Both
of these works assume the use of optimal information theoretic (multi-user) coding/deéddiegwork
in [29] also considers several sub-optimal transmission strategies, such as approaches based on TDM
CDMA without multiuser coding with all users orthogonalized and FDM,; the focus in [29] is on deriving
the long-term average throughputs over multiple fading states under a long-term average power constraint.
Here, we focus on optimally allocating resources for the specific fading state realized in each scheduling
time-slot; the total power is constrained within each time-slot as well. The problem within each time-slot
can be viewed as a special case of the CDMA without multiuser coding approach in [29] where the fading
is constant. However, focusing on this case enables us to generate a much simpler optimal algorithm. We
also take into account additional “per-user” power and code constraints that are imposed by the capability
of each mobile in a practical systehilhe algorithms in [29] make use of specific properties of the
function alog(1 + bzx) that do not generalize with the addition of these “per-user” constraints.

Simultaneously and independently of our wérKumaran and Viswanathan studied a similar problem
in [31]. They also consider the problem of maximizing the weighted capacity within a time-slot and derive
several related structural characteristics. We note that the work in [31] does not include per-user code
constraints, but does contain an algorithm with a per-user rate constraint.

We begin with formulating the scheduling and resource allocation problem in Section Il. This formula-
tion is based on a gradient-based scheduling approach from [1], [2], which we also review. By substituting

The model in this paper also applies to OFDMA systems when each sub-channel that may be assigned to a user has the same channe
state (this may model a system in which OFDMA sub-channels are formed by interleaving tones from across the frequency band). A more
detailed discussion of such problems for OFDMA systems can be found in [25], [36].

%In the special case of maximizing the equal weight sum capacity in a flat fading channel, the information theoretic optimal approach is to
transmit to only one user in each time-slot [28] and hence, multi-user decoding is not required. However, this is not true if the users are not
weighted equally or for other channel models, such a multiple antenna channel. It also does not hold when additional per user constraints
are present, as is the case here.

3Moreover, these constraints may vary from mobile to mobile. For example, the initial mobile devices for HSDPA can receive up to 5
spreading codes, while future devices may be able to receive up to 15 spreading codes.

4A version of our work was first presented in [30].
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an analytical formula relating the rate, power, codes, and SINR, we obtain an analytically tractable problem
with nice convexity properties. In Sections IlI-1V, we use a dual formulation to study this problem. We
obtain analytic formulas for many of the quantities of interest. For others we have to resort to a numerical
search (aided with some heuristics based on the structure of the problem). However, these numerical
searches are in a single dimension (due to the dual formulation) rather than over the multidimensional
PLOP space. Also, thanks to the convexity of the problem, these algorithms converge geometrically fast.
Along the way we obtain key structural properties of the optimal solution including:

1) Atight upper bound on the number of users scheduled as a function of the per-user code constraints;
when each user can use all the codes, this bound implies at most two users will be scheduled.

2) Given a code assignment, the optimal power allocation is given by a “water-filling” algorithm, which
is modified to take into account the different weights assigned to each user and any per-user power
constraints.

3) For a fixed code assignment, the optimal “water-level” (Lagrange multiplier) can be found in finite
time. Specifically, we give an iterative algorithm which will terminate in at mStsteps, where
M is the number of users allocated codes.

4) For a given water-level, the users that are scheduled are determined by simply sorting all the users
based on a “per-user metric” that is given analytically.

5) Codes are only time-shared when ‘ties’ occur in the above sort. This corresponds to a point where
the dual function is not differentiable. At these values the optimal time-sharing can be found using
the subgradients of this function. We give a complete characterization of these subgradients.

We conclude the paper with simulation results comparing this algorithm with a base-line heuristic in
Section V.

II. GRADIENT-BASED SCHEDULING AND RESOURCE ALLOCATION PROBLEM

We consider the downlink of a wireless communication system Witlsers. The channel conditions are
time-varying and modeled by a stochastic channel state vegter(e; 4, ..., ek ), wheree;; represents
the channel state of thé&h user at timet. Associated with each channel state vector is a rate-region
R(e;) C R, which indicates the set of feasible transmission rates (r;,...,7x.;).

Our point of departure is the gradient-based scheduling framework in [1], [2]. In this framework, at
each scheduling instant a rate vectore R(e;) is selected that has the maximum projection onto the
gradient of a system utility functioWU(W,), where

U(W,) = Z Us(Wiy),

and, for each user, U;(W;,) is a increasing concave utility function of the user’s average throughput,
Wi, up to timet. In other words, the scheduling and resource allocation decision is the solution to

2, VOV = e S o (1)
For example, one class of utility functions given in [1], [33] is
] : _ %(‘/Ifi,t)aa a S 17 a 7& 07
UZ(Wz,t> - { C; IOg(m,t)v a = 07 (2)
wherea < 1 is a fairness parameter andis a quality of service (QoS) weight. In this case, (1) becomes
max ci(VVi,t)o‘_lrm. (3)

ri€R(er) -

With equal QoS weightsqe = 1 results in a “maximum throughput” rule that maximizes the total
throughput during each slot. Far= 0, this results in the proportionally fair rule.
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The preceding policy can be generalized to allow the utility to depend on other parameters such as a
user’'s queue size or delay. For example, consider the utility

C;

d;
UWip, Qir) = E(V[/i,t)a — ;(Qi,t)py

where @, , represents the queue length of uset timet, d; is a QoS weight for usei's queue length
andp > 1 is a fairness parameter associated with the queue length. In this case, (1) is repfaced by

(W) 4 di(Qid)” ) i 4
2835 20 (V) 4 d(Qu ™) @

Special cases of this policy with = 0 have been shown to be stabilizing policies in a variety of settings
[3], [4], [17], [26]. In [27] it was shown that for specific choices @fandd; this policy will maximize
the total network utility § . % (1W;,)*) subject to a network stability constraint.

In general, we consider the problem

ri€R(et)

max Z Wi T4t (5)
1

wherew,, > 0 is a time-varying weight of theth user at timet. In the preceding examples, these
weights are given by the gradient of the utility; however, other methods for generating these weights are
also possible. We note that (5) must be re-solved at each scheduling instant because of changes in botl
the channel state and the weights (e.g., the gradient of the utility). The former changes are due to the
time-varying nature of the wireless channel, whereas the latter changes are due to new arrivals and pas
service decisions.

The solution to this problem depends on the state dependent capacity Te@gn which we assume
is known at timet.® In this paper, we consider a model that is appropriate for a CDMA system, such as
HSDPA or 1XEVDV. This model is parameterized by two sets of physical layer parameters: the number of
spreading codes,; and the transmission powgy assigned to each userEach choice of these parameters
specifies a PLOP, which must satisfy the following constraints:

Sa < N, (7)
< P (8)

Zpi

Here, (7) and (8) are system constraints on the total number of spreading codes and the total systerr
power, while (6) is a per user constraint on the number of codes that can be assignedito user

We assume that all spreading codes are mutually orthogonal, so that the only interference is from
other cells. Moreover, in a fully loaded system, the other cells use a constant total power and thus
power allocation per user and code does not have an impact on the interference. Hence, we assume the
the interference power is constant. We then let the channel statelicate useri’s received signal-to-
interference plus noise ratio (SINR) per unit power, where we have suppressed the dependefare on
conveniencé. In this case, the SINR per code for useis given by SINR; = Pie;. We model the
achievable rate per code by '

LT SINR)).

n;

®Note that we take the negative of the gradient of the utility with respect to queue length. This is because the queue length is decreasing
in the transmission rate assigned to a user while the throughput is increasing.

®While, in a practical system, the exact channel state will not be perfectly known at the transmitter, some estimate of it is usually available,
for example, via channel quality feedback.

’In other words, if we neglect other cell interference tlers simply the signal-to-noise ratio (SNR) of useper unit power.
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Here, ' corresponds to the Shannon capacity for a Gaussian noise channel with the given SINR, i.e.,
I'(x) = Blog(1+z), whereB indicates the symbol rate (i.e., the chip rate/spreading factor);;ando, 1]

is a scaling factor that can be used to model the “gap from capacity” in a practical system. This is a
reasonable model for systems that use sophisticated coding techniques, such as Turbo codes. Redefinin
e; to bee;(;, the rate region is then

R(e) = {r >0:r; =n;Blog (1 + piéi) ;

7

Without the per-user code constraints, this is equivalent to the achievable rate-region obtained in [29] for
TDM, CDMA without multiuser coding and FDM, where in each case the user is subject to constant
fading over the available degrees of freedom. Notice that in (9), we allow the number of codes per user
to take on a non-integer value. Of course, in a practical system these must be integer valued. However,
we will show that, in most cases, the solution to this relaxed problem results in integer valugs for

We can now state the optimization problem in (5) as

(9)

V*:= max V(n,p) [Primal problem]

(n,p)eX
subject to:
Zni <N, (10)
where
V(n,p) = Zwini In (14 2% (12)
Y - nl )
X = {(n,p)ZO:niSNi W}, (12)

n is a vector of code allocations, apds a vector of power allocations. We have normalized the objective
by B/In(2) to simplify notation. Note that the constraint s&tis convex. It can also be verified that
is concave in(n, p).

A. Additional Constraints

In addition to (6)-(8), there may be several other constraints on the feasible PLOPs in a practical system.
This includes the following “per user” constraints:
i.) peak power constraint:
p; < P, Vi.

ii.) maximum SINR (per code) constraint:
SINR, = Y% < 5, = p, < 5,11 i
n €;

K3 K3

iii.) maximum rate per codeconstraint:

i (1+piei) < (R/N);

n; i

IN

& p < (BN 1)E, Vi.

€;

8As in the previous section, we continue to normalize the rateby B/ In(2).
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iv.) minimum rate per code constraint:

5 (1+piei) > (R/N);

n; n;

V.) maximum rate constraint:

r; = n;ln <1 +piei) < R;

VN pi < (efilm — 12 i

(13)

vi.) minimum rate constraint:

These constraints can arise due to various implementation considerations. For example, a constraint or
the rate per code is imposed by the maximum or minimum rate of the available modulation and coding
schemes: a modulation order limitation usually results in the former and minimum underlying coding rate
results in the latter. On the other hand, a maximum rate constraint arises because there is only a finite
amount of data available to send to each mobile at any time. A minimum rate constraint can be used to
model the case where the system is trying to guarantee a certain level of service to tRat user.

All of the above constraints can be viewed as special casespef aiser power constraintvith the
form: ..

SINR; = 2% ¢ [5,(ny), s(ni)], Vi,

n;

where the functiors;(n;) is also dependent on the fixed (for a given optimization problem) parameters
P, Si, e, R;, (R/N);, and the functiors;(n;) is dependent on the parametédts (R/N);. Non-negativity
restrictions on power necessarily imply thatn,;) > 0. We primarily focus on two special cases of this:

l. s;(n;) = s; and 3;(n;) = §; do not depend om,,

Il s;(n;) =s; =00 and §;(n;) = s; = 0.
We refer to these as Type | and Type Il per-user power constraints, respectively. A Type | constraint
models the case where there is a maximum and minimum constraint on the SINR or rate per code. A
Type Il constraint corresponds to no per-user power constraints.

With the per user power constraints, the constraintises further restricted to

X =

{3 0 <y, S0 sl

€; €;

The setX continues to be convex i;(n;)n; is a concave function af; ands;(n;)n; is a convex function
of n;. Note thats;(n;)n; is indeed concave for the two special cases (I-Il) mentioned above, as well as the
case of a peak power constraint, afath;)n; is always convex in the previous examples. Unless otherwise
mentioned, we will assume this set is convex in the following.

For the maximum rate constraint case (18)n;)n; is convex inn;, and so the sef’ will not be

convex. However, one can still get a convex formulation [36] for this case by instead viewing the rate

°0Of course, with minimum rate and minimum rate per code constraints the resulting optimization may be infeasible, depending on the
other constraints and the channel states.
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r; as an additional optimization variable, so that the objective is now to maximjze,r;, wherer; is

constrained to satisfy
T S nllog (1 + pi€i> s

1

andr; € [0, R;]. The final solution in this case is quite similar to the analysis that follows in this paper.
However, to simplify our discussion we do not consider this constraint here and simply focus on cases |
and Il above.

In addition to these per user power constraints, there may also be a constraint on the maximum number
of usersM scheduled in a time-slot, i.e., users with positive code and power assignthéveswill prove
later (see Lemma 4.9) that such a constraint will in most cases automatically be satisfied by the optimal
solution (assuming the selected users have enough data to send) as ldng asisers can fully utilize
the available code budget, i.e., the sum of #és for any subset of\/ — 1 users is greater than or equal
to N. For example, ifN; > 5 for all  and N < 15, then no more than 4 users need to be scheduled in
any time-slot under the optimal scheme.

[11. THE DUAL PROBLEM AND CONVEX OPTIMIZATION

In this section we begin considering the solution to (10), which determines the users to be scheduled as
well as the amount of power and the number of codes to be assigned to each user. We solve the optimizatior
problem by looking at the dual formulation. The objective is concave and since the constraints are linear,
there will be no duality gap (see [34]). This allows us to use the solution of the dual to compute the
solution of the primal.

A. The Dual Problem

Define a Lagrangian for the primal problem (10) by

i€i

1

Ln,p, A\, p) == Zwmi In (1 + b

)+

(14)
A (P—Zpi> +u (N—Zni) .

The corresponding dual function is

L(A, p) := max L(n,p,A,p). (15)
(n,p)eX

The dual problem is then given by:
L*:= min L(A Dual blem)]. 16
Jnin (A,p)  [Dual problem| (16)

Also, with some further abuse of notation, we define

L(A\) := min L(A, #) = min max L(n, p, A, p). (17)

u>0 #>0 (n,p)eXx

For example, in HSDPA such a constraint arises because the system cannot schedule more users than the number of shared contrc
channels.
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B. Results from duality and convex programming

From standard convex programming (see, e.g., Propositions 5.1.2 and 5.1.3 of [34]), we have the
following:
Proposition 3.1: The dual functionL(\, ) is convex over the seft(\, ) > 0} and

V* <L) <L), YA =0.

From the concavity ofl/ and convexity of the domain of optimization, it is easy to verify that
Assumption 5.3.1 of [34] holds, and therefore, we have from Propositions 5.3.1, 5.1.4, and 5.1.5 in
[34] that

Proposition 3.2: There exists at least one solution to the dual problem and there is no duality gap.
Any optimal dual solution(\*, *) satisfiesV* = L(\*, u*). Furthermore((n*, p*), (\*, x*)) is a pair
of optimal primal and optimal dual solutions if and only if

CRSEED SR AD DY it (18)
(A7) 20 I?(i;libility (19)

(n*,p*) € arg (Ig?gXL(n, P, A", 1) (L)?iﬁlﬁf; (20)
V(P =3 0p]) = 0.7 (N = 3 mi) =0 gl ety @)

IV. STRUCTURE OF THE PRIMAL AND DUAL PROBLEMS

In this section, we give several properties of the dual problem in (16) and the corresponding primal
problem in (10). First, we compute the dual functidin\, i) in (15) for a given\ and p. We then
keep )\ fixed and optimize the dual function over, this gives usL()) in (17). We prove that.()) is
convex and provide bounds on the optimalUsing these properties, the optimalcan be found with a
one-dimensional convex search that has geometric convergence. We find primal vanasaitebp) that
maximize the Lagrangian for a givenand, and finding the optimal primal power allocation for a given
1.

A. Computing the dual function

To evaluate the dual function, we proceed in two steps. First, we optimize the Lagrangian (1p) over
for a fixed A\, x4, andn. We then optimize oven to obtain the value of the dual function. For the first
step, we define the following two projections of the g&tfor a givenn, let X, = {n > 0: n; < N,, Vi}
and letX,(n) = {p: (n,p) € X}. Then we have:

Lemma 4.1:For a fixedn € X, and anyA > 0 and . > 0, the power allocatiorp* € X),(n) that
maximizesL(n, p, A, i) is given by

N, (Wi€y

p; =—5 ( \ 751‘(”1),51(”1)), (22)

€

where
s (?, sl(nz),él(nz)>

‘= max {min { (w;-\ei — 1) 751'(7%)} ,§Z(nz)} .

This lemma follows directly from the Kuhn-Tucker conditions for the optimization problem. Note that
the “min” is not needed for Type Il per user power constraints, ##€n) = co. However, the maximum
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o p:i, type | constralr’nt
e P type Il constraint

wie w;e; X
1+s; 1+3; w;e; A

Fig. 1. An example of the optimal power allocatigsj, in (22) as a function of\ for both a Type | and type |l power constraint.

is still necessary even ;(n;) = 0, to restrict attention to non-negative power values. The solution can be
viewed as a modified version of a water-filling power allocation across the users [32], where the “water-
level” is modified to take into account each users weight,and the per-user power constraints are also
taken into account. In the case of a Type | per-user power constraint)(= s; and s;(n;) = 3;), the
resulting SINR per code for a fixell, 1, andn is given by

p;—? = S* (%, 81(7%), éz(nz)) = S* (%, Si, §z> s (23)
which does not depend on the number of codgdt follows that, in the Type | case, for a giventhe
total power allocated to a user scales linearly in the number of codes.

An example ofp; as a function of\ is shown in Fig. 1 for both a Type | and Type Il constraint. The
horizontal segments qff under the Type Il constraint correspond to when the maximum and minimum
per user power constraints are active; when these are not active, the two curves overlap.

Substituting (22) into the Lagrangian we have

L<n7 p*7 >\7 ILL)

i M

(24)
= Z (winsh(wies, si(ng), 5i(ni), A) — pn;)
: (25)
+ AP + uN,
where
h(wiei, si(ni), éz(nz), /\) =
In(l + &(n)) — 2 8i(ng), A > e
A A Wi€;4 Wi (26)
w;e; - 1 - ln w;e; )\ € [1+si(ni)’ 1+§i(m))7

In(1+ s;(n;)) — A si(ng), A< 2%

w;e; 14s;(ng)”
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- - - Type | constraint
— Type Il constraint

wie; wiei  In(143;)w;e;

1+s; 1+3; 3 A

Fig. 2. An example ofi(w;es, s;, 3;, A) as a function of\ under a Type | and Type Il power constraint.

Notice that for a Type | per-user power constraiw;e;, s;(n;), $:(n;), A) = h(wse;, s;, $;, A) also does
not depend om,. For a Type Il per-user power constratft,

A A
h(wie’i7 Siy é’i? /\) = |: —1—-In < )1 1{wi€z‘>/\}'
Wi€;

Ww;i€;

An example ofh(w;e;, s;, $;, A) as a function of) is shown in Fig. 2 for both a Type | and Type Il
per-user power constraint. In both cases; = 5. When “f"l <A< “f’ the two curves overlap. For
A < 455, h grows without bound under a Type Il constraint, while it is linear in this range under a Type
| constraint. For\ > %<, h decreases linearly under a Type Il constraint, while under a Type | constraint

it converges to O aI\ = wzeZ For a Type Il constrainth crosses ther-axis at\ = w In either
of these cases, since (25) is lineaminit is straightforward to optimize ovat.

Lemma 4.2:With a per-user power constraint of Type | or Il, the vector of code allocatinfsthat
maximizes (25) is given by

" { N, pi(A) > p, @7
where
1i(A) = wih(wie;, 54, 55, A). (28)

If = p;(\), every choice of; such that) < n; < N; maximizes the Lagrangian.

In other words, given, the optimal code allocation is determined for each ud®r checking ify; ()
is greater than or less than The last part of this lemma follows because wher- 1;()), (25) is not
dependent om,;. Using (27) we havé

win? In (1 B el) —pE — it = [(\) — @] N
n

)

Substituting this into (25) yields the following characterization of the dual funclion ).
Lemma 4.3:With a Type | or |l per-user power constraint,

LA ) =Y [s(A) = ™ Ni+ pN + AP, (29)

7

The notationl x denotes the indicator function of the evexit
2We use the notatiofir]* = max(z, 0).
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4 A
In(1+34)wges In(14+33)wses In(1+31)wier  In(1+32)wzes
34 53 31 32

Fig. 3.  An example ofu;()\) for a system withK = 4 users and a Type | per-user power constraint.

B. Optimizing oven

We now turn to optimizing the dual function over We restrict our attention to either a Type | or Type
Il per-user power constraint, so that the dual function is given by (29). To begin, we sort the users in
decreasing order qf;()\) in (28), where ties are broken arbitrarily. Assume that the users are numbered
corresponding to their position in this ordering, i.e. so thdt\) > u;.,()\) for all .13

Let j* — 1 be the largest integer such thaf_;(\) > 0 and zg;;l N; < N. If no such user can be
found, set;j* = 1. Note that ifs; = 0 for all 7, theny;(\) > 0 for all 7, in which casej* will be the first
user that would fill up the total code budget if all users received their maximum per-user code allocation.
By convention sefix1(A) = —1 — [ux(\)]~, where[z]™ = [—z]". Let N}. :== N — S Y

Lemma 4.4:With a Type | or Type Il per-user power constraint,

L(A) = min L(A, p)
iy (30)
= Z pi(AN; + [ (A]F N + AP,

and the minimizingu is given by u*(\) = [i;-(\)] " .

Proof: For ;(\) < < p;—1(A), from (29) it can be seen that the derivativeldf\, 1) in . is given
by N—Z;.;ll N;. Hencej* is the largest integer for which(\, 1) will be increasing in the corresponding
interval, i.e.,L(\, ) will be increasing if and only ifu > s;«(\). The lemma then follows. [ |

From Lemma 4.2 is a threshold separating the users that get their full code allocation from the users
that get allocated no codes. Asis decreased, more users will be allocated their full code allocation.
Lemma 4.4 shows that the threshqld(\) that minimizes the dual function is such that the full code
budget is utilized.

Figure 3 shows an example of the curye$)\) as a function of\ for a system withK' = 4 users,
under a Type | per-user power constraint. Also indicated on the figure are the valnderoivhich each
curve 1;(\) crosses the-axis. Consider the case whehs = N for all 7. In this casey* = 1 (i.e. the
user with the maximum value qgf;(\) for the given value of\. Therefore, for\ < W pw(N)

will be the upper envelope of the curves shown in the figure. )Fnrm all of the u;(\) will be
less thar) and sop*(A) = 0.

130f course, as\ changes this ordering will change, in which case we must re-number the users.
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Remark:Whenw,; > w;, e; > ¢;, ands; > s; then it can be shown that;(\) > u;(A), for all A. It
follows that in this case, usérwill be always be given a full code allocation before allocating any codes
to userj. Furthermore, assume the scheduling rule is the “maximum throughput” version of (3), i.e. the
case wherex = 1 and the class weights are all equal, so thatihie are constant and identical across
users. In this case, (still assuming that,if> e; thens; > s;) packing users into the code budget in order
of decreasing;’s is optimal.

C. Finding a Lagrangian Optimal Primal Solution.

We next consider finding primal valuéa*, p*) such that
(n,p)eX

for a given\ > 0. Here,.*(\) is the optimalu given by Lemma 4.4. Given the optimal= \*, then from
Proposition 3.2, such am*, p*) will be an optimal solution for the primal problem if it also satisfies
primal feasibility (18) and complimentary slackness (21). We give a procedure for selecting such a pair
in the following. If the A # \*, this procedure can also be used to find a candidate feasibbiethe next
section, we construct a feasibfecorresponding ta. From Proposition 3.1, we havé

V*—V(n,p) < L\ — V(i,p).

T

We continue restricting our attention to Type | or Il per-user power constraints.
From the results in Sections IV-A and IV-B, it can be seen that a solution to (31) is equivalent to
finding

n’ = arg max : (1i(A) — 1" (N)) 4 i, (32)

and settingp* as in Lemma 4.1.

As in the previous section, we again assume that the users are ordered in decreasing prder of
so thatu*(A) = pj«(A). Whent® pjx 1 (A) > p«(N) > pj1(X) and pi«(X) # 0, then there is a unique
feasiblen* that optimizes (32) and satisfieg(\)(N — > n!) = 0. This is given by

Niv 7’<J*a
. N, i=j"andpu*(\) #0,
— J
i 0, i=j*andu*(\) =0, (33)
0, i>j".

Note that this solution will always satisfy_ n} < N, with equality if x*(\) > 0. Also note that:} in
(33) is always an integer code allocation.
Definition 4.1: A scalard € R is asubgradientof L(\) at A if

L(A) > L) + (A= \)d, YA > 0.

Proposition 4.1: Let (n, p) be a solution to (31) for a givehwhich satisfies ~n; < N, andu*(A) (N —
>.n;) =0. ThenP — . p; is a subgradient of.(\) at \.

This can be used as a stopping criterion in a practical iterative algorithm.
®Recall that by conventiopg +1(\) = —1 — [ux] ™.
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Proof: Using the definition ofu*(\) we have

(NN — _ i)
> V(f,p) + (P = _hi) (34)
=V(h,p) + A(P - pi)

+(A=A)(P - pi)
= L)+ (A= \)(P - pi). (35)

The inequality in (34) follows becaus¥ — .7, > 0 and p*(A) > 0; equality in (35) holds because
P AN =32 7i) = 0. =
Note that the code allocation given by (33) and the corresponding power allocation in Lemma 4.1
satisfy the assumptions of Proposition 4.1 and so provide a subgradiént\pfLater in Corollary 4.1,
we show that all subgradients éf \) can be found in this way.

When there is a tie and more than ong\) = p*(A), then there may be multipla* that optimize
(32) and satisfyu*(A\)(N — > nf) = 0 and)_.nf < N. There will also be multiple candidates far
if there is no tie, butu;- = 0.1 However, for the optimah*, every suchn* may not result in a power
allocation that is feasible and satisfies complimentary slackness. For an arbitrdifferent choices of
n* will result in different subgradients foL(\). Next, we examine resolving such ties. First, we show
how to resolve these ties to find the maximum and minimum subgradiert$\oft’

Let there bel > 0 users with: < j* andk > 1 users withi > j* whosey;(\) are tied with;-(A),
wherel +k > 1, i.e.18

/vbj*—l—l(/\) > Mj*—l(/\) = M+ ()\)
= e ik—1(A) > pjern(N).

Let Z, = [j* — [, j* + k — 1] denote the set of these users. The objective in (32) will not depend,on
for i € Z,. Note that the ordering of these users based.dn) is arbitrary.

First we consider resolving this tie to find the maximum subgradient (0f) at A. It follows from

81t can be seen that i§; = 0, then the case ofi;+(\) = 0 is trivial because usef* will not receive any power regardless of its code
allocation.

That these are indeed the maximum and minimum follows from Corollary 4.1.
®The case wheré+ k = 1 captures the situation where there are no ties @pd= 0.
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Lemma 4.1 and Corollary 4.1 that this is the solution to the following linear program (LP):
W;€; n;
Pres - * (_Z Z, i Vi) - LPmax
sy P 2 (T 5 (LPma
i€y
subject to:0 <n; < N;, €I,

Z n; S Nres7

1€Ty

M*(/\)(Nres - Z nz) = 0.

1€Ty

Here, Pes := P — ), T (“’ff,sl,sz) ]eV and N,os == N — ZK .., N; are the residual power and

codes available for the users in the tie. The minimum subgradlent can also be found via a LP given by

w;€; n;
1 Pres - * <_Z l, s Vi) —z. LPmin
min Zs Si, i) - [ ]

€T A ;
{nilieZy} 1€y v

subject to the same constraints as in LPmax.

The structure of these linear programs permits a simple greedy solution. For LPm& )if= 0, then
the solution to LPmax is clearly to assign = 0 for all i € Z,. Otherwise, ifu*(\) > 0, order the users
in Zy in increasing order of* (wi‘fi Si, ;) el Let © : 7, — 7, be a permutation of, according to this
ordering, so that it* (%, s;,8;) = < 5™ (“57, sj,éj) 61] then©(i) < ©(j). For LPmin, we instead order
the users indecreasingorder of s* (“’lel Siy 8 L) and denote this ordering by the permutationLet ;

be the smallest integer such th@Z e lN@,l(i) > N, if No such integer exists, sgt= j* + k — 1.
Let ; denote the corresponding integer using éerdering. Fori € 7,, set

ny =< NI, (i) =J, (36)
0, O(i)>j,

where N - ()_mln{Nres Zl e IV,

using the@ ordering.

Lemma 4.5:The code allocatiom; in (36) solves LPmax for*(\) > 0; the corresponding code
allocationn; solves LPmin, for all values of*(\). When p*(\) = 0, the solution to LPmax is; = 0
for all i € 7,.

The proof of this lemma follows from a simple interchange argument. Finding both of these solutions
involves a sort over the users involved in a tie, and thus each have a complexity@fl log(|Z,|)).
Typically, if a tie occurs, only a small number of users will be involved. To gain some intuition as to why
this is the case, note that ties occur whenever two or more;(Of) curves in Fig. 3 cross for a given
value of A. Moreover, it can be shown that any two such curves will only cross at one point. Hence, it
follows that if the parameters; ande; are independently chosen according to an absolutely continuous
distribution, then with probability one a tie will not involve more than two users.

Given the solution to LPmax in (36), let

A),Né,lm}. Let n;, denote the corresponding code allocation

Z

Ni, i<,
np =9 h, - 1<O0) <j k-1, (37)
0, i>j"+k.

denote the corresponding complete code allocation. In two special cases, this will be a primal optimal
code allocation.
Lemma 4.6:The pair(n*, p*) given by (37) and (22) are a primal optimal solution if either



TECHNICAL REPORT - JUNE 2009 15

1) A =0 and LPmax has a non-negative solution,
2) The solution to LPmax is zero.

This lemma follows directly from noting that in both of these cases, the solution will satisfy both
the complimentary slackness and primal feasibility conditions in Prop. 3.2. Note that ivheno,
s* ("%, 54, 5;) = s; for all i,1° and thus theO-ordering corresponds to sorting the users basec{;—zjon
A corresponding code allocation can be defined base® amd;; if this results in a solution to LPmin
of zero, then it will also be primal optimal.
If the solution to LPmax is negative, then all the subgradient&(af) at A will be negative. Likewise,
if the solution to LPmin is positive, then all the subgradients will be positive. However, if LPmax has a
positive solution and LPmin has a negative one, thé¢h) will have a zero subgradient at a feasible
code allocation corresponding to this zero subgradient will be primal optimal. In this case, there must

exist ana € [0,1] such that
= (T () )

€Ly ¢

Solving for o above, set

for all i € Z, and letn* denote the corresponding complete code allocation as in (37).

Lemma 4.7:1f the solution to LPmax is positive and the solution to LPmin is negative, then
constructed using (38) and the correspondirigare a primal optimal solution.

Once again, this follows from noting that by construction the code and power allocations satisfy the
assumptions in Prop. 3.2. This gives a primal optimal solution; but depending on the number of users
involved in the tie, it may not be the primal solution with the minimum number of users scheduled. As
discussed in Sect. II-A, in practice there may be constraints on this number. The next lemma gives an
upper bound on the minimum number of users scheduled in an optimal solution. Using typical parameter
values for a HSDPA system, this bound will be no greater than 4.

Lemma 4.8:For a Type | or Il power constraint, an optimal code allocation can always be found such
that at most{ N/N,..,| + 1 users will be scheduled, wher€,,;,, := min; ;.

Proof: At the optimal \*, if the conditions in Lemma 4.6 are satisfied then the code assignment in
(37) is optimal and will result in no more thanV/N,,;, | + 1 users scheduled. Therefore, we need only
consider the case where these conditions are not satisfiedy*i:2.) and the solution to LPmax is strictly
greater than 0.

When \* > 0, from complementary slackness and Prop. 4.1, a primal optimal code allocation must
result in a zero subgradient df()\). Such a code allocation is a solution to the following feasibility
problem:

maximize, 1

1
subject to:P — i—S" (
) Zn €i8

w;i€;

T,Si,@) =0

%This will arise only with a Type | power constraint.
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This is a LP and the feasible set igadimensional bounded polyhedréhBy Lemma 4.7, this polyhedron

is hon-empty, i.e. the LP has a solution. However, the solution given in Lemma 4.7 may result in more
than [N/N,...] + 1 users scheduled. In this case, we show that this LP must have another solution with
the desired property. In particular, it must have an extreme point solution; we consider such an extreme
point code allocation. At an extreme point, at le&Stconstraints must be binding, two of which are the
two equality constraints. This means that at lgd@st 2 users must have; set equal to either 0 aV; and

so at most 2 users will have a fractional code assignment. First, asSuiig;, is an integer. IfN/N,,;,

users havey; = N;, then clearly to satisfy the second constraint, no other users can have positive code
allocations. Likewise, if no more thaN/N,,;, — 1 users havey; = N, then from the above argument at
Most N/N,uin — 1 + 2 = N/N,,:in + 1 users will have a positive code allocation. Similarly N/ N,,;,, is

not an integer, then at mo$tV/N,,;,] — 1 users can have, = N, to satisfy the second equality, and so

at most[N/N,...] + 1 users will have a positive code allocation. [ |

Though in general (37) may result in more thaN/N,,;,| + 1 users being scheduled, in several key
special cases this solution will also involve no moré/N,,;,,| + 1 users. This is useful in practice, since
determining the solution in (37) is less complex than solving the LP in the proof of Lemm&'4.8.

Lemma 4.9:For a Type | or Il power constraint, the code allocation in (37) results in no more than
[N/N.in] + 1 users being scheduled in either of the following cases:

1) At most two users are involved in a tie;

2) For all usersi € 7, N; > Nie.

The second condition in this lemma implies that the per-user code constraints will be inactive for any
solution to LPmax or LPmir?? In this case, the solution to LPmax and LPmin will involve one user each
and the combination in (38) will involve only these two us&rdlote that whenV; = N, this condition
will always be satisfied.

Based on the above discussion, we outline a procedure for finding a primal fa@sdileen an arbitrary
A. This can be used to construct a feasible solution in a sub-optimal algorithm, which does not find the
optimal \.

Tie breaking rule:
1) Solve LPmax, if the solution is non-positive, ar= 0, resolve the tie using,.
2) Otherwise, solve LPmin,
a) If the solution is negative usg; in (38) to resolve the tie,
b) otherwise usei;.

For a given)\, we denote byn*()\) the code allocation given by using this tie breaking rule. If the
optimal choice of)\ is used,n*(\) will be an optimal code allocation. Otherwise, it is the allocation
that corresponds to the minimum positive subgradient (if all subgradients are positive) or the maximum
negative subgradient (if all subgradients are negative).

D. Optimizing the power allocation

In this section, we consider the optimal primal power allocatipngiven a fixed non-negative code
allocationn, i.e., we want to solve

V*(n) :ng}(f:f{n) V(n,p)

subject to: Zpi <P (39)

*Note, for convenience we formulate this LP as a function offéllisers instead of just the,| users involved in the tie.

Z1S0lving this involves listing all the extreme points and determining the one that works.

22In practical systems, this condition will often be satisfied. For example, in a HSDPA systenVwithi 5 and N; = 15 or 10, then this
condition will always be satisfied.

ZIf 14*(\) = 0, then the solution of LPmax will involve zero users, and the combination in (38) will involve only one user.
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This can be solved by finding*(n) using the dual formulation and then computing the optipigin)
as in Lemma 4.1. We note that the results in this section are not restricted to Type | or Type Il per
user power constraints but will hold for any reasonable per-user constfaimis just those discussed in
Section II-A.

Without loss of generality, we remove any users with zero code allocations\/Libé the number of
remaining users with positive code allocation, and assume these are numberéd .., M. We first
need to check if the problem is infeasible, i.e., if

mem : Z B 3i(n;) > P.

’L

If this is the case, then (39) will have no feasible solutions. We also check if the sum power constraint

is inactive, i.e.,
2)””—Z}ﬂmaéP

Z

If this is the case, the optimal power allocation is simply= “:s;(n;). Henceforth, we assume the
problem is feasible and the power constraint is active. In this' case, the sum power constraint must be
satisfied with equality for the optimal powers, otherwise at least one of the powers can be increased
resulting in a larger value of the objective function.

We can now construct a Lagrangian for (39) as

M
bi€;
(p,\) ;wn n( + ni)

A (P—zi:pZ).

Notice that if u(N — > . n;) = 0, La(p, A) will be equal to the original Lagrangian in (14). The dual
function corresponding to (40) is given by

(40)

La(A) := max Ln(p,\). (41)

PEXp(n)

Also, note that when optimizing over powers, the constraint set is always convex regardless of the function
si(n;)n;. Maximizing L, (p, \) over p is essentially the same as the problem £@p, n, \, ;1) covered in
Section IV-A. The optimabp is given by (22) as before. Substituting this into (41) yields

M

i=1

From basic convex optimization theory, we know tihgt \) is convex in\. Furthermore, it can be shown
that L,,(\) is continuously differentiable in\. To see this note that from (26), for eath

d h(wiei, Si(ni), )\)

d A
— S < (42)
wilez- - i’ #?:%) SA< 1+l;i?:%)’
_%7 A< 1&%@)’

4By reasonable constraints we refer to constraints suchOtha; (n;) < s;(n.).
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which is continuous in the three intervals as well as at the two break points. This allows us to conclude
that L,,(\) is minimized by the set points at which the derivative is zero. Note that for each,uge)
is constant in two of the three intervals; hence, it is possible that there are multiple points at which the
derivative is zero. The following lemma gives an alternative characterization of tlikich minimizes

L,(X). Let a; and b; be the two break points for each user= 1,..., M, i.e, a; = 1+?~?Z->’ and
by = i
¢ 148i(m) . . . .
Lemma 4.10:A X > 0 is the solution to the dual problemin,>q L,()\) if and only if
‘niwilig. 5.y (A
\ — 2o [a;.b;) (M) 43)

P B (si(ni) 0,0, (V) =80 (i) 1jp; 00y M) FLiag 5 (V)

where, by convention, if numerator and denominator of the right-hand side are both zero, then we set this
equal to\.

Proof: Note that while the optimal* may not be unique, the set of optimizers must form an interval
by the convexity ofL,()). Since for any given\, the p* that maximizes the Lagrangian is unique, it
follows from complementary slackness thét> 0 is optimal if and only if the corresponding* satisfies
>, pf = P. Substituting inp; from (22) we have thah > 0 is optimal if and only if

P = Z—s 1i)1[0,0,)( —l—Z—s i) 1[b;,00) (A)

nz w’le’b

+ Z (0 = Dl ).
The desired result then follows from simple algebra. Note that if the right-hand side of (%Sph'en the
first term on the left-hand side of (44) must be zero. This corresponds to all users either being assigned
their maximum or minimum individual power, in such a way that the total power constraint is exactly
met. Such a power allocation, will not depend on small variations, iprovided that\ does not enter a
new interval in (42) for some usét. [ ]

Let \*(n) denote an optimal value of for a given code allocation, and lgt(n) denote the correspond-
ing optimal power allocation given by (22). This lemma says that'{in) > 0, it must satisfy (43). Next
we show that a solution to this equation can be found in finite-time. Sort thgisét|i = 1,..., M} into
a decreasing set of numbefrs|l];l = 1,...,2M}, where ties are resolved arbitrarily. Foe 1,...,2M,
let P[] denote the total powey . p: wherep; is given by (22) withA = z[l]. Let [* be the smallest
value of( such thatP;,,,[l] > P. (Assuming that\*(n) > 0 such an/* must exist.)

Lemma 4.11:For a givenn, if the sum power constraint is acti¥é an optimal\*(n) can be found in
finite-time and is given by the right-hand side of (43) with= z[l*].

Proof: Note that as\ decreases, the right-hand side of (43) is right-continuous and only changes values

when A = z[l],l = 1,...,2M. (During any interval when the right-hand sidegls by our convention,
the value changes continuously A but this does not effect the following argument.) Hence, an optimal
A must be given by evaluating the right-hand side of (43) with x[l/] for somel = 1,...,2M. Also,
note that as\ decreases, the total power;, p; is increasing. By assumption the sum power constraint is
active at the optimal solution. Thus, we have

z[l* — 1] > A*(n) > z[l"].

Combining these observations, the lemma follows. [ |

The idea behind this lemma is illustrated in Fig. 4, which shows an example where only two users
have positive code allocations. The optimal power allocation for each piséom (22) is shown as a
function of \, as well as the total power; + p5. In this example, for a total power d?, z[l*] = a,, and
the optimal\ can then be calculated using Lemma 4.10.

(44)

ZIndeed, it follows that this is the only case in which the optimvalis not unique.
Z\We make this assumption for simplicity of exposition. The algorithm can easily be modified to take into account the case where this
constraint is not active and will still complete in finite time.



TECHNICAL REPORT - JUNE 2009 19

NN

r p*,(\) I
39 RSO
3 1p

Fig. 4. Example illustrating Lemma 4.11.

Lemma 4.11 provides an algorithm for solving (43) by calculatitg,,[!] starting withl = 1 and
stopping when the total power constraint is violated. Also, note that with the above ordering, the right-
hand side of (43) can be recursively calculated axreases. The algorithm complexity (& M log M)
due to the sort of z[l]}. Recall, M is the number of users with positive code allocations. As discussed
after Lemma 4.9, this will typically be on the order of 1-4. Also, note that under a type Il per-user power
constraint,a; = 0. Thus with no per-user power constraints, only fifevalues ofz|i] corresponding to
the b,’s need to be considered in the above search, and a simpler algorithm results.

E. Optimizing the dual ovek

Recall, L(\) is the minimum of the dual function over > 0. The solution to the dual problend,* is
thus given by
L* = min L(\).

A>0

We consider this problem and several characteristics(of in the following. First we show that()\)
is convex in\.2’
Lemma 4.12:With a Type | or Type Il per-user power constraitit,\) is convex inA.
Proof: From Lemma 4.4,

=1

L(X) = Z AN + [ (V] Nj. + AP,

where the users are re-ordered according{d) for each\. This can be re-written as:

= max Ln(N), (45)
where,

Z'This lemma also follows from Prop. 4.1, since a function will only have a subgradient at every point if it is convex. Here we give an
alternative proof that does not rely on subgradients.
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We have already established in Sect. IV-D that for eacli, () is convex in\. Since the maximum of
a set of convex functions is also convex, it follows tigt\) is convex. [ |

In (45), L()\) is expressed as the maximum of an infinite number of the functigis). Next we show
that in fact only a finite number of such functions are needed to charactefize e.g.

L(A) = max Ln(}) (46)

where N is a finite subset of\/. Specifically, from Lemma 4.4, it follows that for each permutation of

the users, we only need to consider a single greedy code allocations which uses all the codes, i.e. a cod

allocation as in (33) that sequentially assigns each user the maximum feasible number of codes until the

code budget is full. We can then s&f; to be the set of such code allocations, one for each permutation.
Now we turn to finding the optimah. From Lemma 4.12, this is the minimum of an univariate

convex function, and so it can be found by using a one-dimensional convex search technique, such as the

bisection method or a Fibonacci search [34]. Also note that, from (22)f In( ”S )wzel, then useri

will be allocated zero power. Therefore the optimé&l must satisfy

O<A*<maXM

g w;e; < max w;e;. 47
These bounds provide a starting point for the algorithms considered in the next section.

As noted in Section IV-DL,,()) is continuously differentiable. From (46), we then have:

Lemma 4.13:With a Type | or Il per user power constrairt(\) is differentiable for all\ for which
there exists a uniqua € Ny, with L,(\) = L(A).

When there is not a unique € N, this is exactly the tie case discussed in Section IV-C. This is
illustrated in Fig. 5. Shown are three curveg(\) corresponding to different code allocations()) is
the upper envelope of these curves which is shown in hb(d) is differentiable, except for at the two
indicated places where a tie occurs. At the tie values, the derivatives d@f,thg curves involved in the
tie will be the corresponding subgradients discussed in Section IV-C. Indeed, as the next corollary shows,
any subgradient of.(\) can be found in this way.

Corollary 4.1: Given any subgradient of L()\) at A, there exists primal valug&, p) that satisfy the
assumptions of Proposition 4.1 so that- ). p; = d.

Proof: At any A, if L,(\) = L()\) for somen € N, then the primal value$n, p) which define
L, () will satisfy the assumptions of Proposition 4.1 and give a subgradieh{ of that corresponds to
the derivative ofL,(\) at \.

If there is a uniquen € Ny, with L,(\) = L()), then from Lemma 4.13L()\) is differentiable and
so has only one subgradient, which is given by the above.

Next consider the case where there are multiple Ay such thatZ,(\) = L(\). Since eachL,()) is
continuously differentiable and convex afid)\) is the maximum of these, it follows that the maximum
subgradient ofZL(\) must be given by the derivative df,+()\), wheren™ is one of then involved in
the tie that satisfied. (A + ¢) = L,+(\ + €) for small enoughe. Likewise, the minimum subgradient
must be given by the derivative di,-(\), wheren™ is one of then involved in the tie that satisfies
L(A —€) = L,-(\ — €) for small enoughe. Any other subgradient can be found by considering a code
allocation that is an appropriate convex combination of the maximum and minimum. [ |

As )\ decreases from the upper bound in (47), users receive a positive code allocation based on the
ordering of 1“(1“1)@0261 For large enough\ this ordering can determine the optimal code allocation.
To be precise, ‘for the remainder of this section, consider the case wheré for all i. In this case,
ln(“sl)w,ez = w;e; (by taking a limit ass; — 0). Assume the users are ordered in decreasing ordejepf
in the case of a tie, order the users in decreasing ordet.df the w;’s are also tied, then order the users
arbitrarily. Let ® be a permutation of the users corresponding to this ordering. Using this permutation,
let j* denote the smallest valuesuch that

J-1

Z N@fl(i) <N < JZN(pl(i).
=1 =1
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Fig. 5. An example of showind., () versus for three different code allocations and the correspondify).

Define the code allocation vectag, where for each,

Ni, (i) <77,
o = N — Z] 1N ®(i) = j*, (48)
0, O(i) > j*.

Lemma 4.14:Under a Type | or Il per user power constraint with= 0 for all ¢, the code allocation
vectorn, is primal optimal if and only if

d L . no,q wzez 1
= — Z ) {1+S (no )_>\<wlel}

n .
— E 0728i1{)\<“’i‘3i}
- €; I+s;
7

<0

Y

for either
1) A= We—1(j*)p—1(5*) Whennoq> 1(5%) < Ng-1 L(§*)s or
2) A= We—1(j*4+1)Ed—1(j*+1) WhennO,‘P L*) — N D-1(5*)-

Proof: When A > wg-1(;+)eq-1(;+), only those users witkb(i) < j* will have non-zero values of
1;(A). Hence for this casen, must be an optimal solution to (45). It can also be seenihanust be
an optimal solution to (45) ifig¢-1(;+) = No-1(j+) and XA > wg-1(j-;1y€0-1(;+41)- IN €ither case,

— Z wih(wiei, Si, )\)no,i + AP = Lno ()\)

Differentiating this we havé®

d L(\ i
( ) P Zno 81{/\<wz€1}

d
TLU w;e;
- § Z — )1{ <A<w;e; e
1+s; (nO ) v

2Eor simplicity, we assume that at a tie does not occur and so(\) is differentiable. If this is not the case, the lemma is still true,
except that (49) will be a subgradient 6{)\)

(49)
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SinceL() is convex,”2X < 0 at A = X if and only if A* > \. Thus the condition in the lemma is both

necessary and sufficient fax, to be optimal. [ |

The conditions in Lemma 4.14 are easily computable, and can help with the search for the optimal
allocation. We will discuss this more in the next section.

It also follows from (49) that fol\ > we-1(1yea-1(1),

d L()\)

_p=o.
d -

/\>w¢_1<1)e¢_1(1)

This verifies that\* < max; w;e;, and using convexity provides another proof thak’ifis greater than 0,
then it occurs at a point wherk(\) has a zero subgradient.

V. ALGORITHMS

We next discuss algorithms for solving the primal problem (10). First, we present a family of optimal
algorithms all with a geometric convergence rate. Several variations of these algorithms are discussed.
Following this we give a class d@funcatedsuboptimal algorithms which have a lower complexity. Finally,
we give a family of baseline greedy algorithms that are based on splitting the scheduling and resource
allocation decision into two parts.

A. Optimal Algorithm

The optimal algorithms we consider are all based on finding the dual optimal soldtian, (16), by

solving
Y

whereL(\) is defined in (17). By strong duality this gives us the optimal primal valig,and, given the
dual optimal(\*, *), the primal optimal(p*, n*) are given by optimizing the Lagrangian as discussed in
Sect. IV-C.

For Type | and Il per-user power constrainfg\) is given by Lemma 4.4. As shown in Section IV-E,
this is a univariate convex function, and thus can be minimized using a convex search technique. Here
we consider a bisection method, where at fitie iteration, the algorithm identifies a range-”, \V?|
known to contain the optimal*. We also identify an estimate of given by A, € [\:P, A\VP]. These
parameters are updated from iteration to iteration, by considering a candjdten either [\LZ ;] or
[\, AVP], and then updating these parameters, depending on the relative valii€s) oChoosing\ (™
as the midpoint of the larger sub-interval ensures geometric convergence to the optimal dual solution.
Note that each iteration of such an algorithm requires evaludting. This can be done using Lemma
4.4, which has a complexity ad(K log(K)) due to the required sort based pr()). Also, note that as
shown in Sect. IV-E\* < max; w;e;; thus we can use the poings,;, = 0 and \,,,, = max; w;e; t0
begin our search. We have just described one optimal algorithm, which we will refer to as a pure bisection
algorithm. In the following we discuss several enhancements to this algorithm, which further exploit the
structure of the problem.

The first enhancement we consider is based on first checking if the code allocation g atof48)
is optimal. As shown in Lemma 4.14, this can be easily done. If this code allocation is optimal, then we
need simply calculate the optimal primal power allocatiph(n,), as in Section IV-D. and we are done.
If ng is not optimal, them\* must be less thawg-1(;- ep-1(;+), Wherej* is as given in Lemma 4.1%4.
Thus, instead of\,,.,, We can usevs-1(;+)es-1(;+) @S an upper-bound for beginning our search. Notice
that calculatingn, requires a sort to generate ttheordering and so has a complexity Of K log K). If

*More over, ifng g-1(;+) = Np-1(;+), then we have\” < wg—1 ¢« 1y€q-1(;+11)
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n, is optimal, finding the optimal power allocation also requires a sort ovei\fhesers with non-zero
code allocation, which has a complexity Of M log M) *°.

The next enhancement we consider is to evaluate a feasible primal solytion n*(\;) as in
Section IV-C, for each iteratiok. This serves two purposes which are as follows:

1) Stopping Criterion: This can be used for a stopping criteria. We give two possibilities here:

a.) Calculate a primal feasiblp, = p*(ny), as in Section IV-D. Stop when the primal value and
the dual value are sufficiently close, i.e.,

V(ng, p*(ng)) < (1 —¢e)L(Ag).

Note that we need a sort operation in the optimal power calculation leading to additional
complexity.
b.) Calculate a power allocatiop; as given by Lemma 4.1. Stop when

|P — szk| <e.
i

From Prop. 4.1 — . p; a subgradient of.(\) at \;; thus, the stopping criteria checks if
the subgradient is near zetbNote thatp,, is different fromp*(ny).
Note that we have two different methods of obtaining a power vasi@ssociated with the different
stopping criteria.
2) Update )\,: The second use of calculating, is to use this as a guide for picking the next Once
again there are several possibilities; we give two that correspond to the cases (a.) and (b.) above.

a.) For case (a.), we consider the candidate
And = N () = N (n*(\g)) = T (M), (50)

where\*(n) is given by Lemma 4.11. Note that any fixed point of the nfawvill correspond
to an optimal\*. If \¢? lies in the interval[\:Z, \VP], we can consider it instead of the
bisection point of a sub-intervaf.Note that evaluating this map using the iteration in Lemma
4.11 again has a complexity 6f(M log M).

b.) For case (b.), we can use the subgradignt: P —5 . p; , to aid in choosing the next candidate
A. In particular, ifd; < 0 then the optimah must lie in[\;, A\{?], and ifd;, > 0 then the optimal
A must lie in[A\EB )\, ]. We can make\, the mid-point of the appropriate interval, or we could
“move in the subgradient direction using an appropriate step-size rule” [34].

Combining the above steps, we have an optimal algorithm with the basic structure shown in Fig. 6.
The stopping criterion check and updating steps can be performed in either of the two ways discussed
above.

B. Truncated Optimal Algorithm

As shown in Section IV-E, optimizing the Lagrangian for a giverreduces to simply sorting the
users based on the metri¢(\) and then packing the code budget. Searching for the optinean then
be thought of as trying to find the optimal permutation of the users. Based on this, we next describe a
truncated optimallgorithm with a structure as shown in Fig. 7. This algorithm begins by generating a
set of J initial permutations based on various heuristic sort metrics, and then packing the code budget
according to orderings. Some possible metrics include

%0The & ordering can be used in the power allocation to accelerate the algorithm.

31As noted in Sect. IV-D, whem, is not optimal, thenL()\) having a zero subgradient at is both necessary and sufficient faf to
be optimal.

32Geometric convergence can still be guaranteed by only considaffii§ is chosen such that it is sufficiently in the interioi ®, A7 ]
so the current interval will be reduced by a given percentage.
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1) IF ng is optimal, THEN STOP.
2) Initialize \5B,AJ5) No.
3) Setk =0, n, = n*(\), and Choosepy.
4) WHILE Stopping Criterion fails DO
i k=k+1;

i Update ).

i Update \:Z and AY5.

iv Calculate n, = n*(\).
5) END WHILE

Fig. 6. Basic structure of optimal algorithm.

1) Generate initial code allocations, n*, z =1,...,J.

2) For each z, calculate A*(n®), and V (n”, p*(n?)).

3) SET n* = arg maxy. V(n*, p*(n®)).

4) SET M/ = \*(n*).

5) Calculate n/*! = n*(A\/*1), V(n/*! p*(n/*)).

6) SET n* = argmax{V (n*, p*(n*)), V(n/*! p*(n’/*1))}.

Fig. 7. Basic structure of the truncated algorithm.

i.) decreasing order afe;, i.e., using thed ordering;

ii.) decreasing order af; N; (111 (1 + Ijve A s,»(NZ»)));

iii.) decreasing order af; N log (1 + £&).

The first sort is the same @s which used in the optimal algorithm to calculaig. Although we do not

show this step in Fig. 7, we should again check if this code allocation is optimal using Lemma 4.14, and
if so terminate the algorithm. The second and third sort metrics correspond to finding the maximum rate
for each user assuming it was the only user in the system (TDM case) as is traditionally done for the
user sort metric in a split scheduling and resource allocation algorithm. The two variations correspond
to whether we include only the system constraints (iii) or also the per user constraints in calculating the
maximum rate (ii). Given the set of initial feasible code allocations, we then select the allocation with

the maximum primal value. This allocation is then updated as in the optimal algorithm in Fig. 6, where

the updating is done using the transformation in (50).

For the truncated optimal algorithm, in all we conside# 1 possible allocations and select the best
from amongst those. The number of allocations can be chosen to trade-off complexity with performance.
The simplest solution will be to just pick one of these; in this case the complexityig log M) for the
resource allocation, in addition to thi&( )/ K') for picking the top)M in the “sort” traditionally done for
scheduling. In both the optimal and truncated optimal we do not really have to do a full sort ovér all
eligible users. We at most need to pick the tapusers, wheré\/ is the maximum number of users that
can be scheduled in a time-slot. So everywhere we mention a sort over users, we really mean picking at
most the topM users in the order of the suggested “sort metric”.

Several variations of these algorithms can also be considered. This includes:

1) In both the optimal and truncated optimal we could initially pick the tof2M < m < K) users
using one of the sort metrics and then do all of the subsequent optimizations ovemthaosers
instead of allK" users. This will reduce the complexity of finding the maximum. For instance, if
we takem = 2M, the complexity of each iteration in the optimal algorithm@$m logm) =
O(M log M).

2) If after Step 1 in the truncated algorithm, we obtain a code allocatidhat fully packs the code
budget but not the power budget, i.8.,.n; = N but > . n;s;(n;)/e; < P, then we should reduce
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one or more of they;s and consider allocating these to the user next as per the “sort metric” in
consideration. For instance, we could pick the user with the smaillest) and decrease its; till
the power budget is packed. Other schemes are also possible.

3) In a practical system a final “polish up” step can be added at the end of the algorithms to take
into account other constraints such as projecting the code allocation onto an integer solution and
including any per-user rate constraints and re-optimizing over the power allocation.

C. Greedy Baseline Algorithm

In this section we describe a class of baseline greedy algorithms. These algorithms are based on splitting
the scheduling decision and the resource allocation into two parts. First a scheduling order for the users is
found. This can be done by ordering the users according to a given metric such as those in the previous
section. Given the scheduling order, the resource allocation is then done by taking each user in order anc
choosing a PLOP that maximizes the transmission rate the user can receive, using the residual power an
codes that are available. The main steps of the algorithm are the following:

1) Sort the users according to some metric (e.g., any of the metrics in Section V-B).

2) Seti =1, P, = P andN,.; = N whereP,,, and N, denote the residual power and code resources

at every stage.

3) Find the maximum rate that is feasible for usewith p;, < P, andn; < N,.

4) If there is a unique PLOPn(, p;) that achieves the maximum rate, then we are done.

5) In case of multiple PLOPs achieving the maximum rate, we maximfiiZ&,.cs — pi), (Nres — 14))-

An example off is f(p,n) = Ap + un, in which case maximizing’ is equivalent to minimizing
Api + pn;.
6) ReduceP,. by p; and N, by n;, respectively.
7) If P >0, Ny > 0 andi is not the last user, sét= i + 1 and repeat from Step 3. If any of the
checks fails, then exit.
It can be shown that in case the amount of data a user can transmit is not a constraint (i.e. there is no
maximum rate constraint), the PLOP that maximizes the rate is unique. In the case where the amount of
data is a constraint, the PLOP that maximiZesan easily be solved for analytically in the caseucf 0,
i.e., we are interested in a minimum power solution. More generally, the solution can either be obtained
by a search or by a table lookup. Since the search is for a convex function, itltak®¥ssteps. A table
look up or analytic formula igD(1). So assuming we use an analytic solution or a table look up, the
complexity for each of the steps 3(1) and the complexity of the entire resource allocation algorithm
is O(M) (this does not include the “sorting” operation).

We provide the details next; here we include all of the per-user constraints discussed in Section II-A.
Let : be the user selected in thith stage of the algorithm with residual powgr,, and residual codes
N,.s. The resource constraints for this user can be calculated as follows:

Nz/ = min(Ni; Nres)

S! = min <S¢, (e(%)i — 1))

"N!
‘Pi, = min (Pzﬁpres’ Sl l)
e

where N;, P;, S;, and(%)i are as defined in Section II-A. Based on these the highest rate gser get
is
Ple;
R;—Ngln(1+ Ne,)

So, if the users maximum rate constraintisand R; > R, then by choosing,; = N/, p; = P/, we are
done. In this is not the case, we set

. R;
pz(m) = fhi (6"71' - 1) )

€;




26 TECHNICAL REPORT - JUNE 2009

and minimize\p;(n;) + pun; subject to the above “trade-off” between power and codes while satisfying
the constraints:
eipi(ni) <9,
2
pi(n;) < P

It can be seen that for = 0, the solution to this is to set; = N/; thus, in this case the problem has
complexity O(1). Also, for anyA > 0 and . > 0, the cost function is convex in; and so the problem
can be solved with a "bisection type” search with complexitylog V). As noted above, the optimal,
can also be obtained by a table lookup(i;, ¢;), which is alsoO(1).

VI. SIMULATION RESULTS

We provide simulation results for the optimal and sub-optimal algorithms discussed above. Specifically,

we consider

1) The optimal algorithm from Section V-A. However, for the simulation we modified the algorithm
by projecting to integral code assignments. We expect this solution to be very close to the real
optimum.

2) The truncated optimal algorithm from Section V-B with= 6 initial code allocations; three of
the initial code allocations correspond to the 3 examples given in Section V-B, the other three
correspond to the code allocations obtained by applying the fdpm (50) to each of these
initial code allocations. In our simulations we omitted steps (4.) and (5.) of the algorithm.

3) The greedy baseline algorithm from Section V-C. We sort the users using the third sort metric
from Section V-B and set = 0 (i.e, we maximize the residual power) so that the algorithm has
complexity O(M).

We simulate each of these algorithms for a single cell system with K=40 users and with parameters

chosen to match a HSDPA system. In particular we Set= 15, N; = 5, P = 11.9W, s; = 0 and

s; = 1.59. We assign each user a utility with the form given in (2); for a given simulation all the users have
identical QoS weightsc() and fairness parameters)( We simulate the combined scheduling and resource
allocation for a single cell model that includes both large-scale and small scale fading. In particular, to
model location-based attenuation and shadowing, each user receives and average SINR according to
distribution that is based upon measurements seen in more complex and realistic simulators. This is then
modulated with a Rayleigh variable with the Clarke spectrum to yield a time-varying SINR representative
of the variations mobiles encounter in real systems. Since we are assuming that one slot duration is long
enough for information-theoretic analysis, we do not model transmission errors and retransmissions.

In Table 1, we give several performance metrics for each algorithm and for different choices of the

fairness parameter. Shown are:

. Utility: We calculate the time average utility given by ZfZKH U(W,).

. Log Utility: We calculate the time average log utility given by~ ZtT:KH In(W,). We use this
metric to compare the long-term throughputs achieved for different utility functions.

« Number Scheduled (\/): The average number of users scheduled per time-slot.

. Total Codes (V,): The average total number of codes used by all users in the se¥tor={

Zfil T > Tit)-

« Sum Power (P): The average sum power over all users in the sector
(Ps = Zf; % Zthl pz‘,t)-

« Sector Throughput: We calculate the sum throughput over all users in the sector givép@fil 1 S T

Each quantity is averaged over 20 Monte Carlo drops. Also, in Figure 8, we show the empirical CDF of
the user throughput for each algorithm in the= 0 case.
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TABLE |
SIMULATION RESULTS

«a Algorithm Utility Log Utility | M N P Sector

Throughput

(Mbps)
0.0 Optimal 231.944 231.944 3.35461 15 11.8997 8.8145
0.0 Truncated optimal229.282 229.282 3 15 11.2689 7.87875
0.0 Greedy baseline | 222.222 222.222 3 15 10.9659 6.36075
0.25 | Optimal 173.646 231.669 3.33331 |15 11.8998 |9.28545
0.25 | Truncated optimal170.275 228.886 3 15 10.7793 8.54505
0.25 | Greedy baseline | 163.798 222.663 3 15 10.6948 |7.2903
0.5 Optimal 806.085 228.404 3.36408 |15 11.899 11.1392
0.5 Truncated optimal749.531 224.379 3 15 9.83421 9.127
0.5 Greedy baseline | 725.4 220.801 3 15 9.72985 |8.6008
0.75 | Optimal 4129.16 213.411 3.36341 15 11.8903 12.6934
0.75 | Truncated optimal3579.71 207.866 3 15 7.82554 10.1799
0.75 | Greedy baseline | 3538.96 201.87 3 15 7.79743 10.2524

User throughput CDF
a=0.0

—_— opt .
— — trunc_opt
- baseline —

0.8

0.6 —

04—

0.2—

\ \ \
% 200 400 600 800

Throughput in Kbps

Fig. 8. Empirical CDF of users throughputs far= 0.

In these results, the optimal algorithm gives a higher utility as well as a higher sector throughput
compared to the other algorithms. For the= 0 case (proportional fair) we get a 34% improvement
over the greedy baseline algorithm. The truncated optimal algorithm is close to optimal and usually
also gives a higher sector throughput than the greedy baseline algorithm. Fdi, we get a 23.87%
improvement over the greedy baseline algorithm. Furthermore, not only is sector throughput higher for
the optimal algorithm, but in fact, from Fig. 8 we see that all user throughputs are larger (in a stochastic
ordering sense). In Figures 9, 10 and 11 we plot the user throughput distributions for other utility functions
parameterized by = 0.25, 0.5, and0.75. In general, the optimal is better than truncated optimal which,
in turn, is better than the greedy baseline when we compare user throughputs. In Figure 12 concentrating
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Fig. 9. Empirical CDF of users throughputs far= 0.25.
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Fig. 10. Empirical CDF of users throughputs fer= 0.5.

1200

1500

on the optimal algorithm we compare the effect of different values.@ince am closer tol emphasizes

total system bit rate more than fairness amongst users, we find that the distributions get more spread out
as we increase.. We also observe that the optimal algorithm schedules 3 or 4 users whereas the other

algorithms only schedule 3 users. From Table 1, we see that the optimal algorithm does a better job of

filling the power budget and that all algorithms used up all the codes.

VII. CONCLUSIONS

In this paper we studied optimally allocating codes and power for the downlink of a CDMA system,
taking into account both system-wide and individual user constraints. The objective was to maximize the
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Fig. 11. Empirical CDF of users throughputs fer= 0.75.
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Fig. 12. Empirical CDF of users throughputs for the optimal algorithm with diffecésit

weighted sum throughput, where the weights were determined by a gradient-based scheduling algorithm.
By formulating this as a convex optimization problem, we were able use a dual approach to characterize
the optimal solution. This provides a tight upper-bound on system performance that can be used as a
benchmark for designing other low-complexity sub-optimal algorithms. We were also able to characterize
several key structural properties of the optimal solution. In particular, a greedy code assignment was
shown to be optimal based on a simple ordering of the users; the optimal power assignment was shown
to be a modified water-filling allocation. Additionally, we showed that at mdét,,;,| + 1 users need

to be scheduled in any time-slot and all but two will have their full code allocation. Furthermore, for a
fixed code assignment, we gave a finite-time algorithm to determine the optimal power allocation and
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we characterized several properties of the dual functions arising in our analysis. Based on the results,
we presented several variations of an optimal algorithm with geometric convergence. We also proposed
severallower complexity heuristics. In numerical results, we observed that these algorithms yield better
performance than a greedy baseline approach which splits the scheduling and resource allocation into twc
steps.

Here, we focused on the downlink in a CDMA-based systems. Related problems also arise for the
uplink and for other multiplexing techniques such as OFDM [25], [36]. Also, we assumed perfect channel
guality feedback and did not address retransmissions. In particular, approaches based on hybrid ARQ are
part of most high-speed wireless data standards. One heuristic approach for dealing with this is to “bump
up” e; for packets that that are retransmitted, since they should require a lower SINR to be decoded
successfully.
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