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Abstract— In models of social learning where rational agents
observe other agents’ actions, information cascades are said to
occur when agents ignore their private information and blindly
follow the actions of other. It is well known that in some cases,
incorrect cascades happen with positive probability leading to a
loss in social welfare. Having agents provide reviews in addition
to their actions provides one possible way to avoid such “bad
cascades.” In this paper, we study one such model where agents
sequentially decide whether or not to purchase a good, whose
true value is either “good” or “bad.” If they purchase, agents
also leave a review, which is imperfect. We study the impact
of such reviews on the asymptotic properties of cascades. For
a good underlying state, we propose an algorithm that utilizes
number theory principles and Markov chain analysis to solve
for the probability of a wrong cascade. We discover that the
probability of a wrong cascade is a non-monotonic function of
the review strength. On the other hand, for a bad underlying
state, the agents always eventually reach a correct cascade; we
use a martingale analysis to bound the time until this happens.

I. INTRODUCTION

Online platforms provide an easy way for people to
attempt to learn from others before making a new decision.
Such “social learning” has long been studied by economists
as a game among Bayesian agents. In the simplest setting,
these agents sequentially make a binary decision based
on their own beliefs, which depend on their own private
information as well as observations of the decisions of
previous agents. A key result, first shown in [2] and [3], is
that such models exhibit information cascades. This refers
to a case where some agents ignore their private information
and follow the previous agents’ actions. Moreover, for the
models in [2] and [3], once a cascade starts, all subsequent
agents also cascade, leading to herding. Though individually
optimal, this may result in the agents making a choice that
is not socially optimal, i.e., a “wrong cascade.”

A wrong cascade occurs because agents observe the ac-
tions of other agents before the other agents receive their
pay-offs, and so these actions reflect the agents’ estimates
of the true pay-off and not the true pay-off itself. Indeed,
if agents instead were able to see the true pay-off obtained
by others, then as shown in [9] there would never be an
incorrect cascade in which agents buy a bad product. The use
of reviews in online recommendation systems can be viewed
as an attempt to provide this information. However, due for
example to user errors or product variability, such reviews
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may be an imperfect representation of this information
(instead of the true pay-off as in [9]).

The goal of this paper is to study social learning in
the presence of such imperfect reviews. More precisely, we
consider a variation of the models in [2], [3], where agents
have the option to either buy or not buy a given item, whose
true value is one of two binary states (“good” or “bad”). In
addition to the actions of the previous agents, agents also see
a history of reviews before making decisions. However, these
reviews do not reveal the true state of the good due to two
effects: first, as we have already mentioned, these reviews can
be imperfect, and second, agents can only leave a review if
they buy the good and so no additional information is given
for agents that choose not to buy.1

Adding reviews changes the information structure in [2],
[3]. A number of other variations of this information structure
have been considered, e.g., changing the signal structure to
allow for bounded signals of different qualities ([15]), or
allowing signals that are arbitrarily strong ([6]). Another
variation is by changing the underlying network structure:
in [8], the agents randomly sample the past observations;
and in [11], each agent only observes a fixed number of
his predecessors. Yet another strand of related work is the
literature on “word-of-mouth” learning (e.g. [4], [5], [7]) in
which agents can communicate information about the payoff
of past actions. However, these models consider different
settings (e.g. naive rule-of-thumb decisions) whereas our
paper assumes that fully-rational agents can observe all past
actions and reviews. Furthermore, this class of problems is
also closely related to work on sequential hypothesis testing
among distributed agents (e.g. [10], [11]), though in such
cases the agents decision rules may be jointly designed.

In prior work ([12], [13]), we considered another variation
on the information structure, where agents observed noisy
observations of the actions of others. This led to the fol-
lowing counter-intuitive result: the probability of incorrect
herding is non-monotonic in the noise level, i.e., in some
cases, more noise is beneficial. In this paper, agents perfectly
observe the actions of previous agents and the only noise is
in the reviews. Additionally, since only agents who buy the
good can submit reviews, this leads to an asymmetry in the
model that was not present in [12], [13].

We presented an initial analysis of this model in [14].
There it was shown that the asymmetry in reviewing leads
to an asymmetry in the resulting users’ behaviors depending

1For example, many online platforms such as Amazon.com indicate
verified purchase reviews; in our model only such reviews are considered.



on the underlying state of the product being either “good” or
“bad.” Here, we present a refined analysis of these two cases.
Conditioned on the product being good, we study the proba-
bility of an incorrect cascade. We give an algorithm based on
number theoretic arguments that enables characterizing this
probability for a much larger set of parameter settings than in
[14]. Using this, we represent the wrong cascade probability
as a function of the review strength and show that this is a
highly non-monotonic and discontinuous function, so that in
some cases increasing the review strength leads to a higher
probability of a wrong cascade.2 Conditioned on the state
being bad, as a wrong cascade never occurs, we instead
focus on the expected time until a correct cascade occurs.
Using martingale techniques, we give bounds on this time.
We compare these bounds with simulations, and also provide
an algorithm to improve the lower bound numerically.

We organize this paper as follows. In Section II we specify
our model. The main results are presented in Sections III and
IV for the cases where the value of product is “good” and
“bad,” respectively. We conclude in Section V. The technical
details can be found in the archived version [16].

II. MODEL

We consider a model similar to [14] in which there is a
countable population of agents, indexed n = 1, 2, . . . with
the index reflecting the time and the order in which agents
act (given exogenously). There is a new product (item) with
a true value (V ) that can be either good (G) or bad (B);
for simplicity, both possibilities are assumed to be equally
likely and the value is the same for all agents. Each agent
n has a one-time action choice, An, of saying either “Yes”
(Y ) or “No” (N ) to this item. If an agent chooses N , his
payoff is 0. On the other hand, if he chooses Y , he faces a
cost of C = 1/2 and two possibilities depending on the true
value of the item: his gain is 0 if V = B, and his gain is
1 if V = G. Assume each agent n has prior knowledge
about V via a private signal Sn ∈ {1 (high), 0 (low)}.
Each agent n who chooses An = Y submits a review
Rn ∈ {G (Good), B (Bad)} representing his experience with
the item after purchasing. On the other hand, if choosing
An = N , agent n does not submit a review.

We consider a homogeneous population where, condi-
tioned on V , the private signals and reviews are independent
across all agents. Furthermore, assume the probability that a
private signal (resp. a review) aligns with V is p ∈ (0.5, 1)
(resp. δ ∈ [0.5, 1]), i.e., the distributions of the signals and
reviews are given as:

P[Sn = 1|V = B] = P[Sn = 0|V = G] = 1− p,
P[Sn = 1|V = G] = P[Sn = 0|V = B] = p, and if An = Y,

P[Rn = G|V = G] = P[Rn = B|V = B] = δ,

P[Rn = G|V = B] = P[Rn = B|V = G] = 1− δ.

Since p ∈ (0.5, 1), the private signals are informative,
but not revealing; we call p the signal quality. On the other

2This is similar in spirit to the result in [12], [13], though here the “noise”
is in the reviews instead of the observations of the other agents actions.

hand, δ denotes the review’s strength. The review and the
private signal are assumed to be conditionally independent
given V .3 Let Rn = Rn when An = Y and Rn =∗

when An = N . The history after agent n decides is
written as Hn = {A1,R1, . . . , An,Rn}; we assume that
Hn is public information to subsequent agents. The agents
are Bayes-rational whose decisions are based on their own
private signals and public information. Each agent n updates
his posterior belief about the true value V using his pri-
vate signal Sn, the actions A1, . . . , An−1, and the reviews
R1, . . . ,Rn−14; agents then select the action that maximizes
their expected pay-off.

A. Public likelihood ratio as a Markov process

Let q = 1 − p. Agents’ decisions are based on Bayes
updates of the posterior probability of V = B versus
V = G given the observed history Hn. However, due to
the independence of signals from the public history, agent
n + 1 can instead compare the public likelihood ratio, `n,
and his private belief, βn+1, of V = B versus V = G. Since
V being B or G is equally likely, `0 = 1 and we can rewrite
`n in its alternate form:

`n =
P[Hn|V = B]

P[Hn|V = G]
, and βn+1 =

P[Sn+1|V = B]

P[Sn+1|V = G]
. (1)

The higher `n is, the more likely that V = B. Moreover,
since Hn is public information, `n can be updated as:
If agent n follows his own signal, then

`n =


(p/q)`n−1, if An = N,

(q/p)[(1− δ)/δ]`n−1, if An = Y,Rn = G,

(q/p)[δ/(1− δ)]`n−1, if An = Y,Rn = B.

(2)

Otherwise, if agent n cascades, then

`n =


`n−1, if An = N,

[(1− δ)/δ]`n−1, if An = Y,Rn = G,

[δ/(1− δ)]`n−1, if An = Y,Rn = B.

(3)

Moreover, as shown in Lemma 1, given `n one can
determine if an agent cascades or not. Thus, {`n} is a Markov
process. Moreover, this is also true if in addition we condition
on each value of V 5. On the other hand, βn+1 = q/p (resp.
p/q) if Sn+1 = 1 (resp. Sn+1 = 0).

B. Agents’ decision rule and cascades’ condition

By (3), any cascading action provides no information
about V ; thus let an be an integer random variables denoting
the difference in the number of non-cascading Y actions and
N actions. In addition, let rn be another integer random
variable denoting the number of good reviews minus the
number of bad reviews in the history.

3The motivation being, while signal quality reflects a product’s marketing
efficiency, the review strength is a consequence of product reliability, e.g.,
due to manufacturing.

4For simplicity, we assume indifferent agents follow their own signals.
5This is an extension of results from [6].



Lemma 1. Define x = logδ/(1−δ)(p/q) ∈ (0,∞) for δ ∈
(0.5, 1). Then:

1) `n = (q/p)
hn , where the exponent hn = an + 1

xrn;
2) Conditioned on V , (an, rn) and hn are 2-D and 1-D

Markov chains, respectively, for n ≥ 0; and
2) Agent n + 1 cascades Y if hn > 1, cascades N if

hn < −1, and follows his private signal if hn ∈ [−1, 1] .

Proof. 1) By (2) and (3), `n = (q/p)
an ((1− δ)/δ)rn , thus

hn can be written in terms of an and rn as above.
2) This is a direct consequence of the fact that {`n} is

a Markov process and that, from the first property, there
is a 1-1 correspondence between `n and hn. Further, since
an and rn are integer-valued it follows that hn only takes
on a countable number of values. Without reviews a similar
Markov chain was used in [12].

3) Since agent n + 1 makes his decision by comparing
`nβn+1 to 1, agent n+ 1 cascades Y if `n < q/p, cascades
N if `n > p/q, and follows his signal if `n ∈ [q/p, p/q]. By
1), this is translated to the given condition on hn.

Note that x is an indicator of how strong the reviews
are with respect to the signals. That is, the lower x is,
the stronger the reviews are relative to the signals. For a
generic x, the dynamics of the process {`n} can be studied
by investigating the 2-D Markov chain (an, rn). However,
for special values of x, this can be simplified. We will study
two such scenarios in Section III.

C. Asymmetry by different types of cascade and item quality
This model exhibits asymmetric behaviors with respect

both to the types of cascades (Y and N ), and to the true
value V of the item. The main reason for this is the arrival
of new information (reviews) depends on the action chosen
by each agent. We first highlight a key difference between
Y and N cascades in the following two properties.

Property 1. Once a Y cascade starts, there is a positive
probability that it ends (unless the review are perfect).

If agent n faces hn−1 > 1, he chooses An = Y regardless
of his signal, and thus initiates a Y cascade. Such a cascade
can end if subsequent agents submit a sufficient number of
bad reviews, e.g., if Rn = B, then hn = hn−1 − 1

x could
be below 1, which induces agent n + 1 to use his signal.
Furthermore, if x is sufficiently small then agent n’s bad
review can make hn < −1, so that agent n + 1 starts a N
cascade. The dynamics of a Y cascade, once it gets started,
are determined solely by the reviews process (and it does not
depend on the signals). Regardless of the time a Y cascade
was initiated, it can be broken by a sufficiently long sequence
of bad reviews. Thus, the history process {Hn} could include
sample paths where Y cascades start and stop multiple times.

On the other hand, once hn < −1, an N cascade starts, it
lasts forever. This is because agents who choose N do not
generate reviews; thus, the likelihood ratio stays constant as
soon as any agent cascades to N . Subsequent agents are left
in the same state as the one who initiated the cascade, and
so make the same action choice. We summarize this in the
following property:

Property 2. Once an N cascade happens, it lasts forever.

Next we give two properties that show the differences
between a good and a bad product.

Property 3. For V = G, a wrong cascade happens with
positive probability.

This is a result of the existence of absorbing states
for a wrong cascade. For example, if the first two agents
have low signals, they both choose N and no review is
collected. Therefore, all subsequent agents are drawn into an
N cascade, which is irreversible. This possibility cannot be
avoided by adjusting the reviews strength, δ, even to perfect
quality. In case the reviews are perfect, we still need a non-
cascading agent who has an H signal for his review to be
submitted.

Though a wrong cascade is possible, for V = G, it is
more likely that there will be an abundance of information,
since each agent that chooses Y also creates a new review.
When V = G, since reviews are independent of the signals,
as more agents choose Y , more information accrues with the
underlying Markov process having a drift towards the correct
direction, but there is no absorbing state on that side since
hn is unbounded above. On the contrary, multiple absorbing
states for wrong cascades might exist. For V = G, the
quantity of interest is, therefore, the probability of wrong
(N ) cascade, which is a function of both p and δ. We will
discuss this scenario in Section III.

On the other hand, when V = B, this model exhibits
a different set of behaviors. As more agents purchase the
item, more and more reviews are collected. Since reviews are
informative, subsequent agents can track the difference in the
number of reviews to learn the true value of V , eventually.
In other words, in addition to there exist trapping states only
for the correct cascade, the drift also leans toward this side.
We summarize this result below.

Property 4. For V = B and δ > 0.5, a wrong cascade can
never happen.6

Thus, for V = B, a correct cascade happens with proba-
bility 1. In this scenario, we are interested in the distribution
of the time (i.e. the number of agents) until a correct cascade
happens. This will be studied in section IV.

III. PROBABILITY OF WRONG CASCADE FOR V = G

In the previous section, we discussed that wrong (N )
cascades could happen if the product is good. In this section,
we determine the probability of this happening. For a fixed p,
as x varies, the conditions on an and rn when cascades hap-
pen also change. As a result, the underlying Markov chains
have different structures (both in terms of the state-spaces
and the transition probabilities). Despite the complexity of
these dynamics for a generic x, interesting and non-intuitive
insights can be drawn by looking at special values of x. In
one example, for any rational x, many states of (an, rn) can

6Note if δ = 0.5, then reviews are useless, in which case wrong cascades
can occur as in [2].



be mapped to one single state of (hn); thus, it is sufficient to
study the reduced 1-D Markov chain (hn). This is generally
not possible for any real value of x since there would be a
1-1 mapping between the states in (an, rn) and (hn), which
prevents the simplification of the state space. However, in
another example when x is real and x < 1/3, the state space
of (an, rn) can also be simplified to obtain analytical results.
Summarizing, we next consider two scenarios that facilitate
simplification of the underlying state space of (an, rn):

1) x is a rational number in (0,∞); and
2) x is any real number in (0, 1/3].

A. x = i/j for positive integers i, j and gcd(i, j) = 1

From the discussions at the beginning of this section, it
is sufficient in this case to consider the 1-D Markov chain
(hn). Let Ps be the asymptotic probability of wrong cascade
starting from the state h0 = s. We want to find P0. Given
i, consider the finite set A

4
= {−1,− i−1i , . . . ,

i−1
i , 1}. It is

obvious that A is the set of all possible values that hn =
an + j

i rn can take in [−1, 1]. Depending on the value of x,
the following Lemma 2 further reduces the set of accessible
states for hn ∈ [−1, 1] to different subsets of A .

Lemma 2. Assume x = i/j is rational, where i, j are
positive integers with gcd(i, j) = 1:

1) If x ≤ 1/3 or if x ∈ {1/2, 1}, hn ∈ {−1, 0, 1},
2) If 1/3 < x < 1/2, let z = j mod i and k = bi/zc Then

hn ∈ {−1, 0, 1,− zi ,−
2z
i , . . . ,−

kz
i ,

i−z
i ,

i−2z
i , . . . , i−kzi },

3) If x > 1/2, hn takes all the values in A .

Proof Idea. The proof uses number theoretic arguments to
find the accessible states in A (see details in [16]).

As a consequence of Lemma 2, we can numerically solve
for P0. The idea is based on Markov chain analysis where
one can write down a system of of linear equations (LEs)
with the set of variables being Phn for all accessible states
hn. Since there is no absorbing state for a Y cascade, hn is
not upper-bounded and the accessible state space is infinite.
However, once hn > 1 the state transitions dynamics are
simplified to a birth-death process; thus any variable Phn
where hn > 1 can be expressed in terms of the corresponding
variables where hn ∈ A . Therefore, the number of equations
is finite (at most 2i+ 1). We give an algorithm in Algorithm
1 to construct this system of equations and solve for P0.
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Figure 1: Wrong cascade probability versus δ for V = G.

Algorithm 1 Wrong cascade probability, P0, at rational x

Input: V = 1, p, x = i/j, gcd(i, j) = 1
Output: LEs and solution P0

δ ← 1/
(
1 + (q/p)1/x

)
, q ← 1− p, α← (1− δ)/δ

Initialize A ← {−1,−(i− 1)/i, . . . , (i− 1)/i, 1}
A ⊇ A ′ ← accessible states in [−1, 1] (Lemma 2).
for hn = s ∈ A ′ do

sL ← s− 1, sHB ← s+ 1− j/i, sHG ← s+ 1 + j/i
c1 ← min number of steps from sHG to s1 ∈ A ′.
if sHB > 1 then

c2 ← min number of steps from sHB to s2 ∈ A ′

Eqs ← Ps = qPsL + pδαc1Ps1 + p(1− δ)αc2Ps2
Add equation Eqs to the system of LEs

Solve for P0 and return.

Note that the probability of wrong cascade is not mono-
tonic in the review strength δ. As δ varies in [0.5, 1], there
are points of discontinuities resulting from the changes in the
state space and the transition probabilities of the underlying
Markov chains. Note that the mean number of agents needed
until an N cascade occurs approaches infinity as δ → 0.5. In
this regime, the time required to get an accurate simulation
also blows up and so simulation results are not shown.

As a consequence of Lemma 2, for certain values of x
the state space is simplified enough and we can obtain the
closed-form expressions for the wrong cascade probability.
In particular, Proposition 1 in [14] showed that for x = 1 and
x = 1/2, P0 = (q/p)2. Moreover, when there are no reviews,
a result from [2] gives P0 = (q/p)2/

[
(q/p)2 + 1

]
< (q/p)2.

Thus, having reviews with strength equal or double the signal
quality strictly increases the probability of wrong cascades.
For the case in Fig. 1, P0 = 0.155 with no reviews, and so
it can be seen that for any 1/2 < x < 1, reviews increase
the probability of wrong cascades.

B. x is any real value in (0, 1/3).
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Figure 2: States transitions for V = G, and x < 1/3.

In this section, we present the second scenario when the
state space (an, rn) can also be simplified. In particular, we
look at the cases when reviews are more than three times
stronger than the private signals. For any real value of x in
this region, the underlying 2-D Markov chains are shown in
Fig. 2, where the first and second coordinates denote rn and
an, respectively. By Proposition 2 in [14], we can obtain:

P0 = [1− p(2δ − 2pδ + 2p− p/δ)] / [1− 2pq(1− δ)] (4)



which is decreasing in δ. This is illustrated in Fig. 3 for
x = 1/5, and 1/10. For all values of x in this figure, the
probability of wrong cascade decreases in the signal quality
p. Moreover, except for reviews with perfect accuracy, there
is a threshold p∗(x) below which P0 is lower than when
having no reviews.
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Figure 3: Wrong cascade probability for V = G.

The above conclusions can be explained by the disconti-
nuity of the slopes for different curves in the above figure
as p → 0.5. With perfect reviews, the slope as p → 0.5
is −1. With no reviews, the corresponding slope is −2.
However, as long as the platform generates reviews with
strength δ bounded away from 0.5, the probabilities of wrong
cascade follow the set of dashed curves shown, with slopes
bounded away from −2. In particular, these slopes can be
studied using (4) by setting p = 0.5 + ε and x = Cε where
ε → 0, C > 0. When C is fixed, δ is bounded away from
0.5; this yields a slope of −∞ as ε → 0. When C → ∞
and x < 1/3, δ → 0.5; and the slopes vary in (−∞,−8).
Finally, if C → 0, δ → 1; the slopes approach −1, which is
exactly the slope of the perfect reviews scenario.

IV. TIME UNTIL CORRECT CASCADE FOR V = B

In Section II, we argued that for a bad product, only a
correct (N ) cascade can happen, so that it lasts forever once
it occurs. In this section, we examine both upper and lower
bounds on the expected time until correct cascades. In the
following let n ≥ 0. Conditioned on V ∈ {G,B}, let

{
FV
n

}
be the sequence of σ-algebras generated by {Hn}. Similar
to [6] and [8] where reviews do not exist, in our model the
Markov process {`n} also exhibits the martingale property.
In Section IV of [14] we showed that {1/`n} (resp. {`n}) is
a martingale process conditioned on V = B (resp. V = G)
adapted to the filtration

{
FB
n

}
(resp.

{
FG
n

}
). Moreover,

let X and Y be two random variables representing the
increments ∆hn = hn+1−hn for hn in [−1, 1] and hn > 1,
respectively. Let f1(λ) and f2(λ) be their corresponding
moment generating functions (MGFs), where λ is a real
variable. Let ρ = max(f1(λ), f2(λ)) and define the random
process {Mn} =

{
eλhn

ρn

}
. Using techniques from [1], in

[14] we showed that {Mn} is a super-martingale adapted to{
FB
n

}
. Let τ = min{n ≥ 0 : hn < −1} be the stopping

time when an N cascade happens. Now we use these results
to bound the expected time until correct cascade, E[τ ].

A. Upper bound on E[τ ]

Proposition 1. E[τ ] ≤ eλ/(1 − ρ), where 0 < ρ < 1, λ ∈
(0, ln(p/(1− p)).

Proof. From Proposition 3 in [14], the tail distribution is
upper-bounded by: P[τ > n] ≤ eλρn. For feasibility, we
require 0 < ρ < 1, thus λ ∈ (0, ln(p/(1− p)). Now, since τ
is a positive integer random variable, we can write:

⇒ E[τ ] =
∑∞

n=0
P[τ > n] ≤ eλ/(1− ρ).

The above bound is a function of the dummy variable λ,
and the two MGFs f1, f2. Our objective is to find λ and ρ
that minimizes this bound. We solve this numerically and
compare the minimum bound with the mean time obtained
by Monte-Carlo simulations for different values of p and δ.

B. Lower bound on E[τ ]

Let ρ̃ = 1/max(f1(λ), f2(λ)) for regions where 0 < ρ̃ <
1, i.e. λ ∈ (ln(p/(1 − p)),∞). The following Proposition
provides a lower bound on E[τ ].

Proposition 2. E[τ ] ≥ e−λρ̃[1 − A]/[M1(1 − ρ̃)], where
0 < ρ̃ < 1, λ ∈ (ln(p/(−p)),∞),

A = ρ̃4 + (ρ̃− ρ̃4)P1 + (ρ̃2 − ρ̃4)P2 + (ρ̃3 − ρ̃4)P3, and

Pn = P[τ = n|h1] for n = 1, 2, 3.

Proof Idea. The proof uses the super-martingale property of
{Mn} and total probability theorem using the three possible
values of h1. Conditioned on each h1, we calculate the
probabilities of τ taking the first three values n = 1, 2, 3.
We then use these probabilities to provide a lower bound on
E[τ ]. See our archived version in [16] for details.

Note that the above lower bound is then numerically
maximized over λ ∈ (ln(p/(1 − p),∞). Moreover, due
to computational constraints, the bound in Proposition 2
is obtained using the closed-form expressions of Pn for
n = 1, 2, 3. Next, we present an algorithm that improves
this lower bound by numerically calculating Pn for higher
values of n.

Algorithm 2 Finding P[τ = n|h1]

Input: V = 0, p, δ, n
Output: Pn = P[τ = n|h1]

idea: Build a breadth-first tree conditioned on h1,
tree.add(root), qualified = empty list of qualified nodes
while tree.notempty() do

Pick the first node j at lowest level i by BFS
Check for early elimination, e.g. hj > 1 + (n− i)/x
if i < n (not a leaf) then check for hj ≥ −1

if True then tree.add(j’s children)
update condition on node j’s children

else(leaf) check for hj < −1
if True then qualified.add(j)

tree.remove(j)
Update Pn using the qualified list of leaves, return Pn



C. Numerical and Simulation results

In Fig. 4 below, we use Algorithm 2 to show how the
lower bound can be improved as n is increased. Conditioned
on each h1, computational constraints limit us to using at
most n = 17, which generates approximately 105 possible
realizations of the history that would lead to an N cascade.
The algorithm offers greater improvement for lower values
of δ. The non-monotonicities and discontinuities of the lower
bound are a consequence of the same behaviors of each Pn.
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Figure 4: Bounds of log(E[τ ]) versus simulation.

Fig. 4 also shows the numerical bounds as compared with
simulations on log-scale. Simulation results showed that E[τ ]
is decreasing as δ increases. As δ → 1, the lower bound
offers a better approximation to simulations; both converge
to the same value of 1 + p. On the other hand as δ → 0.5,
both the upper bound and the result from simulations blow
up, while the lower bound does not have this behavior.

In fact, we can verify that as δ → 0.5, we have E[τ ]→∞.
For any δ ∈ [0.5, 1], there is a positive probability of the
underlying Markov chain hitting a state in the region where
hn > 1. In this region, the process becomes a simple birth-
death process with transition probabilities δ, 1− δ to the left
and right, respectively. By relabeling the states, assume that
we start at a state i > 0 in this birth-death process where 0
is an absorbing state on the left and there is no absorbing
state on the right. Let τi = min{n > 0 : hn = 0|h0 = i}
be the stopping time when the absorbing state is 0. For this
birth-death process, the recurrence equation is written as:
(1 − δ)E[τi+1] − E[τi] + δE[τi−1] = −1. This generates a

general solution of the form E[τi] = A
(

δ
1−δ

)i
+B+ i

2δ−1 ,
where A,B are real constants. Using the boundary condition
E[τ0] = 0, we have A = −B. Moreover, since E[τi] > 0,
we require A ≥ 0. Now assume that δ = 0.5 + ε where we
let ε → 0. As a result, 2δ − 1 = 2ε → 0 and E[τi] → ∞.
But since E[τi] gives a lower bound on the original E[τ ], we
also have E[τ ]→∞ as δ → 0.5.

V. CONCLUSIONS AND FUTURE WORK

This paper studied a Bayesian learning model with in-
formation cascades. We assumed that subsequent agents
can observe perfectly the previous actions and, in addition,
feedback in the form of imperfect reviews depending on the
actions. We showed that the probabilities that agents cascade

toward the wrong actions are not monotonic in the review
strength. In particular, imperfect reviews could increase the
probability that agents misinterpret the true value of a good
product. In practice, in online platforms like Yelp, Amazon,
etc. customers reviews have a wide range of variability in
strengths. Even though this scenario was not considered in
this paper and our previous work, our results indirectly imply
that a platform planner should opt to display only the reviews
of high strengths while eschewing those with low strengths.
In fact, this strategy is already adopted by those platforms,
e.g. Amazon with verified purchase reviews, or Yelp with
filtered reviews. Moreover, our results suggest that no matter
how strong the reviews are, agents might not perform better
if their prior knowledge is poor in quality. This implies that
a platform planner should consider spending their budget on
improving the product’s marketing efficiency.

In the future work, we plan to study the possibility of hav-
ing reviews with strengths non-homogeneously distributed
across the population. In addition, we would like to study the
probability of wrong cascades for more generic relationships
between the signals quality and the reviews strength. Other
possible directions include considering having reviews when
both type of actions are taken, letting agents have the option
to leave the reviews, and assuming that not all agents would
exercise this option.
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