

 1

ECE 333: Introduction to Communication Networks

Fall 2001

Lecture 22: Routing and Addressing I

�� Introduction to Routing/Addressing

 2

Lectures 19-21 described the main components of point-to-point networks,
i.e. multiplexed transmission lines and switches or routers. These networks
usually have a mesh topology with multiple paths between any two hosts. A
routing algorithm determines the specific route that traffic takes through a
network. For example, in datagram networks, the routing algorithm
determines what information is the routing table at each node in the
network. In the next few lectures, we will study problem of routing in more
detail. Our focus will mainly be on packet switched data networks.

Routing is one of the main functions of the network layer. Network layer
protocols, such as routing, involve every node in the subnet. Protocols at
lower layers are generally point-to-point, and protocols at higher layers, e.g.
the transport layer, are end-to-end. The basic service the network layer
provides the transport layer is the delivery of packets from the source to
destination. As with the data link layer, the network layer can offer different
variation of this service - for example it may be connection-oriented (as in
virtual circuit networks) or connectionless. The network layer could try to
ensure some level of reliability or guarantee some level of quality. For
example, a circuit switched network provides user end-to-end delivery of data
at a fixed rate and with known delay.

 3

The network layer in ATM networks (see Lecture 21) is called the ATM layer.
The ATM layer provides a choice of several different services such as a
constant rate, connection-oriented, low delay service and a variable-rate
unreliable service. Different services are designed to be suitable for different
applications, such as voice, data, etc.

In TCP/IP, the IP layer serves as the network layer. It provides a
connectionless, unreliable service to the transport layer. In other words,
packets are delivered from source to destination but they may not arrive, or
if they arrive, they are not guaranteed to be in order. In TCP/IP networks,
any additional reliability needed by an application is addressed at the
transport layer.

A key trade-off between these two approaches is how much intelligence is put
in the subnet and how much is put in the hosts. In TCP/IP the decision was
to put as much burden on the host as possible; with ATM more burden is
placed on the subnet. In either case, routing is addressed at the network
layer.

 4

Routing

We looked at routing when considering bridges and extended LANs in
Lecture 19. For transparent bridges, routing was done by forming a spanning
tree and sending all packets along this tree. In this case, the routing
algorithm is the protocol the bridges use to exchange messages and find a
spanning tree. A similar approach can be used in a WAN, but this is
generally not a good idea. One reason is that with a spanning tree some links
will be unused, while other links will be heavily loaded. In a large network, it
is desirable to spread out the load among multiple links to reduce congestion
and more efficiently use the network.

The main characteristics desired from a routing algorithm include:

�� Correctness - deliver packets to their correct destinations.
�� Robustness - when nodes and/or links fail, the routing algorithm

should be able to recover from this.
�� Simplicity - the algorithm should be able to be implemented by many

switches in a large network, and not require a large amount of
overhead.

Given the above characteristics, it would also be desirable to have an
algorithm that finds the "best" paths between a source and destination and is
"fair" to different sessions. However, concepts like "best" and "fair" can be
interpreted in several different ways.

 5

Routing Characteristics

A variety of different routing algorithms have been proposed and used in
networks. These algorithms can be classified in several ways. A routing
algorithm is static if it uses predetermined routes that do not change over
time. A dynamic routing algorithm bases the route assignment on the
current network load, in this case route assignments may change with each
session or with each packet. Routing algorithms may be centralized, where
routes are calculated at one place and disseminated to all nodes, or
distributed, in which case all routers exchange information and calculate
routes locally. For example, the spanning tree algorithm used by
transparent bridges is a dynamic, distributed algorithm. Most of the
algorithms we will consider in the following are also of this type.

 6

Flooding

A simple approach to routing is flooding. With flooding, upon receiving a
packet each node forwards it over all links except the one from which it is
received. Thus, every node on the network will eventually receive the packet
(including the desired destination). One problem with flooding is how to
make sure that packets do not circulate forever. This can be accomplished by
several methods including:

1. Put a sequence number on each packet, and have each switch make sure
it does not forward a packet more than once.

2. Put an age field in the packet header that is decreased every time a
packet is forwarded, don’t forward any packets once this field reaches
zero.

3. Put an identifier for the links a packet has traversed in the packet
header, don’t forward a packet over a link more than once.

An advantage of flooding is that no routing tables or topological knowledge
needed at any switch, and little processing is required at each node. The
disadvantage is that much unneeded traffic is generated - every packet will
be sent over every link. Two places where flooding is used are (1) in some ad
hoc wireless networks, where nodes are moving around to quickly for any
other techniques to work, and (2) for forwarding control or topological
information (e.g. in link state routing discussed later).

 7

Shortest path routing

Many routing algorithms are variants of shortest path algorithms. In
such algorithms, each link is assigned a cost – this could represent some
quantity of interest such as distance or delay for that link. A shortest path
algorithm then attempts to find the route between any pair of nodes that
minimizes the sum of the link costs. To visualize such algorithms, consider a
graph corresponding to the subnet as shown below. In this graph, the nodes
represent routers and the arcs represent links. The number by each link is
the cost of the link. In this figure, the shortest path between nodes 1 and 5 is
through node 4 and has a total cost of 1+1 = 2.

1

1

4

2

2

5

3
3

5

5

6

2

3

1

1

2

 8

To build routing tables we would like to find the shortest path from each
node to all other nodes. Also, for dynamic routing, link costs will change
with time and so may the shortest paths. A method is needed to efficiently
calculate shortest paths. Two of the main approaches for calculating shortest
paths are:

1. Distant vector routing - uses distributed Bellman-Ford algorithm.

2. Link state Routing – uses Dijkstra’s algorithm.

Both of these can be implemented as distributed, dynamic routing
algorithms.

 9

Distance Vector Routing

In distance vector routing, each router must maintain a table (vector) of its
best-known distance (cost) to each destination as well as which link to use to
get there.

Each router is assumed to know the cost of the links that connect it directly
to each of its neighbors1.

Routers then exchange their distance vectors locally, i.e. with their
neighbors.

They update their distance vectors based on these exchanges.

The Bellman-Ford algorithm is used for this updating.

1 In a graph two nodes are called neighbors if there is a link that directly connects them.

 10

"Optimality principal"

The basic idea behind the Bellman-Ford algorithm is the so-called
"optimality principal". This states that if node A is on a shortest path from
node I to J, then the segment of the path from A to J is also a shortest path
from A to J.

In the figure below, assume that the shortest path from I to J is through
node A and then node X. Suppose that the optimality principal was not true
and that the path A -Y- J is a shorter path from A to J than A -X- J. Then by
taking the path from I to A followed by the path A-Y-J, must result in a
shorter path from I to J than the path through X. This contradicts the
assumption that the original path was the shortest.

I

J

A

 X

Y

 11

Bellman-Ford

Next we describe the Bellman-Ford algorithm. We describe the algorithm in
the context of calculating the shortest path from all nodes in a network to a
given destination node. A version of the algorithm would be implemented for
each destination.
For the given destination, let Dn(j) be the estimated distance from node j to
the destination at time n .
Let di,j be the distance from node i to j.

Basic idea:

Each neighbor j of node i sends Dn(i) to node i, then node i updates its
estimate according to:

))((min)(,1 jDdiD nji
N(i) j

n ��
�

�

The quantities on the right-hand side of this expression are the distances to
each neighbor, j plus the minimum distance from j to the destination. The
port towards the neighbor j that attains the minimum is chosen as the port
towards the destination. (Ties can be broken using any rule.)

 12

The algorithm is initialized in the following manner:
 Set D0(i) = � for all nodes i, except the destination, d.

 Set D0(d) =0.

From this initialization, it can be shown that above algorithm will terminate
(no more changes will occur) in at most N steps where N is the number of
nodes. (Provided there are no link failures, see count-to-infinity problem
below) At termination each node knows the shortest path to the destination.

The Bellman Ford algorithm can be shown to work asynchronously, where
each node sends out its distance vector at arbitrary times.

 13

Bellman - Ford Example

6

5

3

4

1 2

2

1

12

2

1

3

5

3

5

An example of the Bellman-Ford algorithm for the above network is given.
Assume the destination, d = 6, so D0(6)=0 and D0(i)= � , for all i � 6.

We consider a synchronous version of the algorithm, where all nodes send
out there updates to all their neighbors at the same time.

 14

After the first cycle of updates, all nodes receive costs D0(i) from their
neighbors. The only ones that are going to have non-infinite cost are the
nodes 1 link away from d=6. These are nodes 3 and 5, they will receive D0(6)
=0. Thus at node 5 we have:

 2)1,1,02min()5(1 �������D

and the next node on the shortest path for node 5 becomes 6.

Similarly, D1(3) will be updated to 5.

After the second cycle of updates, node 3 will receive non-infinite costs from
nodes 5 and 6.

Thus we will have:

3)3,3,12,05min()3(2 ��������D

The next node on its shortest path will be 5.

 15

Bellman-Ford example

The complete progress of the algorithm is shown in the table below. The
notation used here is

(next node on shortest path, distance to destination)

Cycle 1 2 3 4 5
Initial (-,�) (-,�) (-,�) (-,�) (-,�)

1 (-,�) (-,�) (6,5) (-,�) (6,2)
2 (3,10) (3,8) (5,3) (5,3) (6,2)
3 (4,4) (4,5) (5,3) (5,3) (6,2)
4 (4,4) (4,5) (5,3) (5,3) (6,2)

Thus the shortest path to node 6 from node 1 is through node 4 and has
distance 4.

Note when the costs don't change after a cycle of the algorithm, the algorithm
has terminated and found the shortest paths.

 16

Comments on Distance Vector routing:

Distant vector routing was original routing protocol for ARPANET. It is the
basis for the RIP (Routing Information Protocol) routing protocol used in the
Internet. Variations of distance vector routing are used in some Appletalk
and Cisco routers as well as in Novell’s IPX, and DECnet.

Two shortcomings of distance vector routing are:

�� The convergence rate decreases as the size of network grows.
�� The “Count-to-infinity” problem described next.

 17

“Count-to-infinity” problem

The Bellman-Ford algorithm can react very slowly to bad news such as a link
failure. For example consider the network shown below, where each link has
a cost of 1. Consider the shortest paths from each node to node 4 after
running the Bellman-Ford Algorithm. These are listed below the nodes in the
figure, using the same notation as above.

1 2 3 4

1 1 1

(2,3) (3,2) (4,1)

Now suppose that the link between nodes 3 and 4 fails, in this case the
distance between 3 and 4 becomes � . The progress of the algorithm after this
failure is shown on the next page. The algorithm may take many iterations
before it realizes the link has failed, this is called the count-to-infinity
problem.

 18

1 2 3 4

1 1 �

(2,3) (3,2) (4,1) Before Failure

After Failure (2,3) (3,2) (2,3)

(2,3) (3,4) (2,3)

(2,5) (3,4) (2,5)

(2,5) (3,6) (2,5)

Several heuristic approaches have been proposed to help with this problem,
one is called split horizon. With this variation, nodes do not forward their
distance vector to the next node along their shortest path. For the above

 19

example this speeds up the convergence, but other examples can be found
where slow convergence is still an issue.

