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� Aloha throughput analysis 
 

� Slotted Aloha 
 

� Stability 
 
 
 
 
 
 
 
 
 

Last lecture we began discussing multiple access protocols for allocating a 
shared broadcast channel. We classified these protocols as either static or 
dynamic, and further classified dynamic protocols as contention-based or 
perfectly scheduled. We then began discussing a basic contention-based 
approach, the pure Aloha protocol. Recall, under the Aloha protocol user 
transmit, when a frame arrives. If a collision occurs they wait a random 
amount of time and then retransmit. Because of this such protocols are also 
called random access protocols. 
 
In this lecture, we will look at a simplified analysis that predicts the 
maximum throughput of the Aloha protocol. We then look at an improvement 
to the basic Aloha protocol and discuss the issue of stability for this type of 
protocol. 
 
 
 
 
 
 
 
 
 



Aloha Throughput 
 

To analyze the throughput of Aloha, we consider a model with an infinite 
number of users that generate fixed length frames. We assume that each 
new frame belongs to a new user, and that the overall arrival of frames is a 
Poisson process with rate 

�� ��
 frames/sec. Let T indicate the time to transmit 

one frame. It will be convenient to normalize time by T. Let S be arrival rate 
of frames in "frame times" of T seconds, i.e. 
 

TS ��  
 

A transmission will be attempted at any time if either a new frame arrives or 
a frame is retransmitted. Assume that the start of transmissions at any time 
is also modeled as a Poisson process with rate G attempts per frame time. 
(This assumption can be shown to be a reasonable approximation for some 
common retransmission strategies.) 
 

Thus the number of transmission attempts in a frame time will be a Poisson 
random variable, with mean G (attempts/frame time).  Note that  GS � , with 
equality only if there are no collisions. Assuming the system is stable then 
the average rate of successful transmission must equal the average arrival 
rate. Thus, denoting the probability of a successful transmission by P0 , we 
have 

0GPS � . 

Probability of Success 
 

If a transmission starts at some time t, there is an interval of time around t 
during which if another transmission starts, it will result in a collision. The 
length of this contention interval is twice the frame time, as shown below. 
 

 

t t + T 

t - T 

   

Thus the probability a frame is successfully transmitted, P0, is the 
probability no other frames begin transmission during the contention 
window. This is the probability of 0 arrivals from a Poisson process with rate 
S, during 2 frame times. From the properties of the Poisson process (cf. Lec. 
12), the number of arrivals in 2 frame times is a Poisson random variable 
with mean 2S. Thus  
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Aloha Throughput 
 
From the above we have 

G2
0 GeGPS ���  

 

This is plotted as a function of G below.  
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The maximum of this curve represents the maximum throughput for a stable 
system. To find the maximum we set the derivative of S(G) equal to zero as 
follows:   

0Ge2eGe
dG

d

dG

dS G2G2G2 ���� ���  

Solving we find that 5.0* �G , and thus the maximum throughput is 
.18.0)2/(1max

�� eS  
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To summarize, we have considered a simplified analysis of a pure Aloha, and 
found that the maximum throughput is limited to be at most 1/(2e).  
 

Note have not taken into account how the offered load changes with time, or 
specified the details of how the retransmission time is adjusted.  
 

Despite these shortcomings, this analysis does correctly predict the 
maximum throughput of a pure Aloha system. 
 

We will next look at an improvement on this system, and then return to 
address some of the above issues. 
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Slotted Aloha (Roberts '72) 
 

Slotted Aloha, as the name implies, changes the protocol from continuous 
time to slotted time. Specifically, we view the time axis a sequence of slots of 
length T, where one frame can be sent in each slot. The transmitters are 
assumed to all be synchronized so that all transmissions start at the 
beginning of a slot.  When a frame arrives be transmitted during a slot, it is 
queued until the beginning of the next slot. Thus a frame only contends with 
frames generated during the same slot; this reduces the contention period 
from 2 frame times to 1 frame time. Repeating the above argument we now 
find 0

GP e
�

� , and GS Ge
�

� .  In this case, the maximum throughput is 1/e 
(0.36) and occurs at G  = 1. This is twice the maximum throughput of pure 
Aloha. 
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Stability of Slotted Aloha 
 

As with the pure Aloha system, we have still not taken into account the 
dynamics of the system. That is how G changes with time. Notice as the 
number of backlogged packets increases, G will increase, which will generate 
further changes in the number of backlogged packets. 
 
Now we look closer at this for a slotted Aloha system. In the following we still 
assume a model with an infinite number of nodes as above and that the 
average arrival rate per slot is denoted by S. We also make the following 
additional assumptions: 
 

� Assume that when a packet arrives, it is transmitted in the next slot. 
 

� If a transmission has a collision, the node becomes backlogged. 
 

� Backlogged nodes transmit in each slot with probability q until 
successful. 
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Let n denote the number of backlogged packets. 
 

Let G(n) = the average transmission attempt rate given that there are n 
backlogged packets. This is the average number of new arrivals plus the 
average number of retransmission attempts, i.e., 
 

G(n) = S + nq 
 

As we assumed above, the number of attempted transmissions per slot when 
n packets are backlogged can be shown to be approximately a Poisson 
random variable of mean G(n). 
 

The probability of a successful transmission in a slot with n packets 
backlogged the probability one transmission occurs. Using the Poisson 
assumption, this is given by: 

)()()( nG
suc enGnP

�� . 
 

In a slot, either 1 packets departs the system with probability Psuc(n), or 0 
packets depart with probability 1- Psuc(n). Thus the average number of 
departures per slot (i.e. the departure rate) is equal to Psuc(n). 
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In the figure below, the average arrival rate and the average departure rate 
as a function of n is plotted. (Regardless of the backlog, we are assuming that 
the average arrival rate of new packets is S.)   
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When the departure rate is less than the arrival rate, the number of 
backlogged packets will tend to increase. When the departure rate is more 
than the arrival rate, the number of backlogged packets will tend to decrease. 

As shown in the figure, for a given arrival rate, two equilibrium points can be 
identified. When the backlog increases beyond unstable equilibrium point, 
then it tends to increase without limit and the departure rate drops to 0. 
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While the above analysis assumed an infinite number of nodes, a similar 
type of analysis can be done for a finite number of nodes.  In this case the 
same type of behavior can be shown.  
 

Choosing q small increases the backlog at which instability occurs (since G(n) 
= 

�
 + nq), but also increases delay (since the mean time between 

transmission attempts is 1/q).  
 

To improve the performance and balance between these considerations, one 
can attempt to estimate the backlog from the feedback and use this to adjust 
the retransmission probability. (Decreasing q as n is estimated to increase) 
 

One way of doing this is called the (binary) exponential back-off 
technique.  
 

With this technique, each time a node attempts a transmission and a 
collision occurs, the node divides the transmission probability, q, by 2. 
 

(This technique is still unstable for the infinite node model, but works 
reasonably well for a finite number of nodes. There are elaborate techniques 
that produce stable algorithms even in the infinite node case.) 
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The figure below compares the average queueing delay for a stabilized Aloha system 
and the average delay for TDM systems with m=8 and m=16 nodes. In all cases the 
total arrival rate is the same and arrivals are assumed to be Poisson. At low arrival 
rates Aloha has much lower average delay than TDMA, but as the arrival rate 
approaches 1/e, the delay blows up. TDMA can achieve throughputs up to 1 
packet/slot, but the delay increases linearly with number of slots. The delay for 
stabilized Aloha depends on the overall arrival rate and is essentially independent of 
the number of nodes. 
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