
Proxy Cache Design� Algorithms� Implementation and Performance

Junho Shim�� Peter Scheuermann�� and Radek Vingralek�

� Department of Electrical and Computer Engineering

Northwestern University� Evanston� IL ������ USA

shimjh� peters�ece�nwu�edu

� Lucent Technologies� Bell Laboratories

��� Mountain Ave�� Murray Hill� NJ ��	�
� USA

rvingral�research�bell�labs�com

Abstract

Caching at proxy servers is one of the ways to reduce the response time perceived by Web

users� Cache replacement algorithms play a central role in the response time reduction by

selecting a subset of documents for caching so that a given performance metric is maximized�

At the same time� the cache must take extra steps to guarantee some form of consistency of

the cached documents� Cache consistency algorithms enforce appropriate guarantees about the

staleness of the cached documents� We describe a uni�ed cache maintenance algorithm� LNC�R�

W��U� which integrates both cache replacement and consistency algorithms� The LNC�R�W��U

algorithm evicts documents from the cache based on the the delay to fetch each document into

the cache� Consequently� the documents which took a long time to fetch are preferentially

kept in the cache� The LNC�R�W��U algorithm also considers in the eviction consideration

the validation rate of each document as provided by the cache consistency component of LNC�

R�W��U� Consequently� documents which are infrequently updated� and thus seldom require

validations� are preferentially retained in the cache� We describe the implementation of LNC�

R�W��U and its integration with the Apache ����	 code base� Finally� we present a trace�driven

experimental study of LNC�R�W��U performance and its comparison with other previously

published algorithms for cache maintenance�

Keywords� proxy� caching� cache replacement� cache consistency� world wide web�

�

� Introduction

The World Wide Web has become one of the predominant services to distribute various kinds

of information� Within less than � years of its existence� the Web has grown to compete with

well established information services such as the television and telephone networks� However� the

Web delivers much poorer performance when compared to the traditional services� For example� a

multi
second response time to deliver a � KB document is not unusual �����

Caching is one of the ways to reduce the response time of the Web service ���
� �� ��� ���

�� ��� �
� ��� ���� The Web documents are cached either directly by the browser or by a proxy

server which is located �close� to the clients� Cache replacement algorithms� which dynamically

select a suitable subset of documents for caching� play a central role in the design of any caching

component� these algorithms have been extensively studied in the context of operating system vir

tual memory management and database bu�er management ��� ���� Cache replacement algorithms

usually maximize the cache hit ratio by attempting to cache the data items which are most likely to

be referenced in the future� Since the future data reference pattern is typically di�cult to predict� a

common approach is to extrapolate from the past by caching the data items which were referenced

most frequently� This approach is exempli�ed by� e�g�� the LRU cache replacement algorithm�

We argue in this paper� however� that maximizing the cache hit ratio alone does not guarantee

the best client response time in the Web environment� In addition to maximizing the cache hit ratio�

a cache replacement algorithm for Web documents should also minimize the cost of cache misses�

i�e�� the delays caused by fetching documents not found in the cache� Clearly� the documents which

took a long time to fetch should be preferentially retained in the cache� For example� consider a

proxy cache at Northwestern University� The cache replacement algorithm at the proxy found two

possible candidates for replacement� Both documents have the same size and the same reference

frequency� but one document originates from the University of Chicago while the other is from Seoul

National University� The cache replacement algorithm should select for replacement the document

�

from the University of Chicago and retain the document from Seoul National University because

upon a cache miss the former can be fetched much faster than the latter�

However� the response time improvement achieved by caching documents does not come com

pletely for free� In particular� caches must generate extra requests to maintain their content consis

tent with the primary copies on servers and�or sacri�ce the consistency of the cached documents�

Most proxy cache implementations rely on a consistency algorithm to ensure a suitable form of

consistency for the cached documents�

Cache consistency algorithms for client�server database systems usually enforce strong consis

tency �i�e� no stale data returned to clients�� In the context of WWW� strong consistency can

be either guaranteed by having the proxy cache to poll servers each time a client hits the cache

���� or by maintaining a state on each server with callbacks for all the proxies caching the server�s

documents� The former approach leads to an overhead which practically eliminates the bene�ts of

caching� while the latter approach is not supported by any of the currently available Web servers�

Consequently� all caching proxies known to the authors guarantee only some form of weak consis

tency �i�e� clients may receive stale data� �	� ��� ���� A typical implementation of weak consistency

assigns to each document �or group of documents� a time
to
live �TTL� interval� Any client request

for a document which has been cached longer than TTL units results in document validation by

sending a HTTP conditional �If
Modi�ed
Since� GET request to the server� The server responds

with the requested document only if it has been updated� A common guideline for setting TTL for

a document is based on the observation that documents which were not updated in the past will

not be updated also in the future ����

However� the cache consistency algorithms are not typically well integrated with the cache

replacement algorithms� The published work on the topic usually considers the two algorithms as

two separate mechanisms and studies one of the two in isolation ���
� �� ��� ��� �� ��� �
� ��� ����

The proxy cache implementations either replace documents in the cache solely based on the value

�

of TTL ���� thereby eliminating the need for a separate cache replacement algorithm� or apply

the cache consistency algorithm as a �lter on the contents of cache before a cache replacement

algorithm is used ���� ���� Thus� the later approach implies that cache replacement algorithm will

only be applied only if the �ltering process did not create enough room in the cache� Clearly� the

performance of the proxy cache can be improved if the cache replacement algorithm can explicitly

use the TTL estimates to select documents for eviction from its cache� For example� if the cache

contains two documents of approximately the same size which are loaded from the same server and

referenced by clients with the same rate� then the cache replacement algorithm should select for

eviction the more frequently updated document �i�e� the one with a smaller TTL� because more

references can be satis�ed directly from the cache without validation and thereby provide a better

response time to clients�

In this paper we describe the design and implementation of a new� uni�ed cache replacement

algorithm LNC
R
W�
U �Least Normalized Cost Replacement for the Web with Updates� which

incorporates cache replacement and consistency components� We show that the LNC
R
W�
U

algorithm approximates in a constrained model the optimal cache replacement algorithm� which

is NP
hard� The LNC
R
W�
U algorithm is a greedy� cost
based algorithm� The cost function

explicitly considers the delay to fetch each document into the cache and the cost of validation of

each document as determined by its TTL� Our algorithm estimates the time
to
live intervals for

cached documents using a sample ofK most recent Last
Modi�ed timestamps� A similar mechanism

is also used for estimation of reference rate of each document� It has been shown that such estimates

improve cache performance in presence of transient data access ���� �
� ���� We are in the process

of integrating the LNC
R
W�
U library with the Apache ����� code base ���� We describe some

of the implementation issues we have encountered� Finally� using trace
driven experiments� we

compare the performance of the LNC
R
W�
U algorithm against similar algorithms published in

the literature� We also use the experiments to provide guidelines for setting various �ne
tuning

parameters of the LNC
R
W�
U algorithm�

The remainder of this paper is structured as follows� In Section � we review the existing

approaches to proxy cache design� In Section � we describe the new algorithm� LNC
R
W�
U�

Section
 contains implementation considerations of LNC
R
W�
U� In Section � we experimentally

evaluate the performance of LNC
R
W�
U� Finally� Section � concludes the paper and describes

the directions of future work�

� Current State of Art

��� Practice

We surveyed implementations of three publicly available proxy caches� Apache ����� ���� Squid

������ ���� and Jigsaw ��� �����

The Apache proxy cache uses a TTL
based consistency algorithm� The TTL is set using the

Expires header as Expires � now� If the Expires header is absent in the response� then the

TTL is set using the Last
Modi�ed header as fudge factor � �now � Last�Modified�� where

fudge factor is a system de�ned parameter� If a cached document with an expired TTL is

referenced� a conditional GET request is sent to the server speci�ed in the document�s URL to

validate the document� There is no separate cache replacement algorithm in Apache� because the

documents are replaced directly based on their values of TTL�

The Squid cache consistency algorithm is also TTL
based and similar to that of Apache� How

ever� whenever the number of documents in the cache exceeds a certain threshold� Squid employs a

separate cache replacement algorithm to reclaim free cache space� The cache replacement algorithm

works in two passes� The �rst pass evicts obvious victims from the cache� i�e� the documents with

expired TTLs� The second pass is a standard LRU replacement�

The Jigsaw cache consistency algorithm is also TTL
based� If a cached document has an Expires

header� the TTL is set in the same way as in Apache� If� however� the header is absent� then the

�

TTL is set to a default value of �
 hours� Jigsaw also uses standard LRU replacement to free cache

space�

As with all systems implementations� the real devil is in the details� The real complexity of

proxy cache implementation stems from handling of many special cases and guaranteeing caching

behavior as speci�ed by the HTTP ��� protocol� In this section we concentrated only on the major

algorithmic steps necessary for the comparison with other published work� An interested reader

should refer to the publicly available source code ��� ��� ����

��� Theory

Cache replacement algorithms have been extensively studied in the context of operating system

virtual memory management and database bu�er pool management� Several cache replacement

algorithms tailored to the proxy cache environment have been published ���
� �� ���� including our

own work ��
��

The algorithms in ��� exploit the preference of Web clients for accessing small documents ����

�
� ��� and give preference to maintaining small documents in the cache� One of the algorithms�

LRU
MIN� is used as a yardstick for performance comparison with LNC
R
W�
U in Section �� The

importance of explicitly considering the delay to fetch documents in cache replacement has been �rst

observed in �
�� The cache replacement algorithm in �
� is cost
based� However� the choice of the cost

function is not justi�ed and uses unspeci�ed weights� Two very similar cost
based algorithms for

delay sensitive cache replacement have been independently published in ��
� ���� The LNC
R
W�
U

cache replacement algorithm is directly based on our earlier published algorithm LNC
R
W� ��
��

In this paper we justify the choice of the cost function in the LNC
R
W�
U algorithm by showing

that it approximates the optimal NP
hard algorithm� which maximizes the fraction of network

delays saved by satisfying requests from the cache� The HYB algorithm in ���� uses an almost

identical cost function to the one employed in LNC
R
W�� but makes use of di�erent mechanisms

�

for estimating the parameters of the cost function� An e�cient implementation of an algorithm

that considers cost and size of documents� called GreedyDual
Size� appeared in ���� The authors

also show that the algorithm is k
competitive� i�e� the cost achieved by the online algorithm is at

most k the cost of the optimal NP
hard o�
line algorithm� where k is the ratio of the cache size to

the size of the smallest document� However� both ���� ��� require either modi�cations to the HTTP

protocol or to the servers themselves� In contrast� our LNC
R
W�
U cache replacement algorithm

can be applied o�
shelf to any cache proxy�

Cache consistency algorithms have been extensively studied in the context of distributed �le

systems and client�server database systems� Most of the algorithms guarantee strong consistency

and require servers to maintain a state about the data cached by clients �callbacks�� �Polling
every

time� approach ���� is another example of a strong consistency method� The Alex FTP cache is an

exception in that it provides only weak consistency to the clients ���� Its validation mechanism serves

as a basis for consistency algorithms found in most proxy cache implementations �	� ��� ��� ��� �� ���

��� and also the LNC
R
W�
U cache consistency algorithm� In ���� a number of cache consistency

algorithms used by a majority of proxy caches are reviewed and a number of improvements to

either their implementation or to the HTTP protocol are suggested� An experimental comparison

of callback
based and TTL
based cache consistency algorithms is carried out in ����� However�

the evidence seems to be inconclusive� The authors of ���� conclude that if weak consistency is

acceptable and network bandwidth is scarce� the TTL
based algorithms are more attractive� on the

other hand� in ���� it is argued that both callback
based and TTL
based consistency algorithms

have practically the same network overhead� However� since all caching proxies are currently using

some version of weak consistency it is clear that this remains the preferred strategy to incorporate

into an integrated cache replacement algorithm�

�

� Algorithms

��� Optimal Cache Replacement

Although it has been frequently pointed out that cache replacement algorithms for proxy servers

should somehow re�ect document sizes and the delays to fetch documents into the cache ���
� ��

�
� ���� it is not a priori clear how to combine these metrics into a single cost function� In this

section we provide a justi�cation of the cost function used in LNC
R
W�
U by showing that it

approximates the behavior of an optimal� o�
line algorithm in a constrained model which assumes

no external cache fragmentation�

For the purpose of the analysis� we assume that the references to documents in the cache are

statistically independent and described by reference rates ri� where ri is a mean reference rate to

document i� The delay to fetch document i into the cache is given by di and the size of document i

is given by si� We assume that the cache employs a TTL
based cache consistency algorithm� The

mean validation rate of document i is given by ui and the delay to perform a validation check �i�e�

the delay to send a conditional GET� is given by ci�

A typical goal of a cache replacement algorithm is to minimize response time� Therefore� it

should retain in cache documents which account for a large fraction of the communication delays�

In other words� the cache replacement algorithm should aim to optimize the following expression

max
X

i�I

�ri � di � ui � ci� ���

subject to a constraint

X

i�I

si � S ���

where I describes the set of documents selected for caching and S is the total cache size�

In general� the goal of satisfying ��� is di�erent from the goal of maximizing hit ratio �i�e�

the fraction of requests satis�ed from the cache�� a typical objective of most cache replacement

�

algorithms designed for database bu�er or �le system management� We de�ne a similar metric

called delay savings ratio �DSR� which is a fraction of communication delays saved by satisfying

the requests from cache� The delay savings ratio is de�ned as

DSR �

P
i�di � hi � ci � vi�P

i di � fi
���

where hi is the number of references to document i which were satis�ed from the cache� fi is the

total number of references to document i and vi is the number of validations performed on document

i�

The problem de�ned by ��� and ��� is equivalent to the knapsack problem� which is NP
hard

����� Consequently� there is no known e�cient algorithm for solving the problem� However� if we

assume that sizes of cached documents are relatively small when compared with the total cache size

S� and thus it is always possible to utilize almost the entire cache space� then the solution space

can be restricted to sets of documents I satisfying�

X

i�I

si � S �
�

and we will show that the optimal solution can be found by a simple greedy o�
line algorithm�

The optimal algorithm� Optim� assigns to each document a cost function called pro�t de�ned

as

profiti �
ri � di � ui � ci

si
���

In order to determine �I��� the best set of documents to cache� the Optim algorithm sorts all

documents based on their pro�t and selects for caching the most pro�table documents until the

entire cache space is exhausted� We assume that the cache fragmentation is minimal� so �
� holds at

that time� We show that I�� the set of documents to cache found by Optim� satis�es the objective

function de�ned in ����

Theorem � Among all sets of documents satisfying ���� the Optim algorithm �nds the one which

satis�es ����

	

Proof� Given in the Appendix� �

��� LNC�R�W��U Algorithm

The LNC
R
W�
U cache replacement algorithm is a cost
based greedy algorithm� The algorithm

selects for replacement documents with least cost until a su�cient space has been freed� The cost

function is directly based on pro�t notion de�ned in ���� Consequently� in a steady state the on
line

algorithm should approximate the o�
line algorithm Optim described in the previous section� We

describe below the procedures for estimating the key parameters used in the evaluation of the pro�t

function� The LNC
R
W�
U cache consistency algorithm is a TTL
based algorithm� If a document

with an expired TTL is referenced and found in the cache� its content is validated by sending a

conditional GET to the server owning the document� The procedure used to estimate the TTL

values for each document is also described below�

In order to evaluate the pro�t of document i� the cache replacement algorithm must determine

estimates of the following parameters�

� ri
 mean reference rate to document i

� di
 mean delay to fetch document i into the cache

� ui
 mean validation rate for document i

� ci
 mean validation delay for document i

� si
 size of document i

The estimation of document size si is straightforward� The mean delays to fetch and validate a

document� di and ci� are estimated by using two sliding windows of the last K corresponding delays

��

measured in the past� K is one of the �ne
tuning �knobs� of LNC
R
W�
U� We discuss its selection

in Section ��

The mean reference rate to document i� ri� can be estimated in two ways� First� it can be

estimated from a sliding window of last K reference times� However� unlike the estimates of fetch

and validation delays� the reference rate must be �aged� in the absence of references to a document�

Therefore� the mean reference rate is estimated as�

ri �
K

t� tK
���

where t is the current time and tK is the time of the oldest reference in the sliding window�

Consequently� the estimate decreases even when the document is not referenced� The mean reference

rate can be also estimated using the time of last reference �i�e� setting K � �� as in the LRU cache

replacement algorithm� However� it has been pointed out in ���� that LRU performs inadequately in

presence of bursty workloads or workloads consisting of multiple classes with di�erent characteristics

 a workload likely to appear on the Web� In Section � we experimentally evaluate the bene�ts of

setting K � ��

Whenever fewer than K reference times are available for document i� the mean reference rate

ri is estimated using the maximal number of available samples� However� such an estimate is

statistically less reliable and thus the documents having fewer reference samples are more likely

to be selected for replacement by LNC
R
W�
U� In particular� the LNC
R
W�
U algorithm �rst

considers for replacement all documents having just one reference sample in increasing pro�t order�

then all documents with two reference samples in increasing pro�t order� etc� until su�cient cache

space has been freed �see Figure ���

Another way to estimate the mean reference rate ri is based on the document�s size si� Several

studies of Web reference patterns show that Web clients exhibit a strong preference for accessing

small documents ���� �
� ���� Consequently� knowing the document�s size gives us some information

about how frequently it will be referenced� In particular� it was shown in ���� that given a document

��

of size si� the estimate of its mean reference rate can be expressed with a high con�dence as

ri �
c

sb
i

���

b � ���� and c is a constant �not given in ������

To increase the precision of reference rate estimate� we combine the two estimates into a single

metric de�ned as

ri �
K

�t� tK� � sbi
���

Since our trace exhibited di�erent characteristics from those reported in ����� we experimentally

determine the best setting of parameter b in Section ��

In absence of the Expires headers in the response to a request for document i� the mean val

idation rate ui is calculated from a sliding window of last K distinct Last
Modi�ed timestamps

as

ui �
K

tr � tuK
�	�

where tr is the time when the latest version of document i was received by the proxy cache and tuK

is the Kth most recent distinct Last
Modi�ed timestamp of document i �i�e� the oldest available

distinct Last
Modi�ed�� We assume that the update rates of documents are stable� Therefore� it

should su�ce to validate each document with the same rate as it was updated in the past�

If� on the other hand� the Expires header is provided� LNC
R
W�
U uses the server provided

information to determine validation rate� rather than trying to estimate it from the past modi

�cation timestamps� The validation rate is calculated in a manner similar to �	�� but using the

Expires timestamps instead of Last
Modi�ed timestamps whenever possible� The most recent Ex

pires timestamp substitutes tr in �	�� the Kth most recent Expires timestamp substitutes tuK in

�	��

The LNC
R
W�
U consistency algorithm sets TTL for a newly received document i as either

TTLi �
�

ui
����

��

if the Expires timestamp is not available� or

TTLi � Expires� tr ����

otherwise�

Whenever a referenced document i has been cached longer than TTLi units� the consistency

algorithm validates the document by sending a conditional GET to the server speci�ed in the

document�s URL� Whenever a new version of document i is received� LNC
R
W�
U updates the

sliding windows containing the last K distinct Last
Modi�ed timestamps and the last K validation

delays and recalculates ci� ui and TTLi� The LNC
R
W�
U cache consistency algorithm is similar

to the TTL
based algorithms used in other proxy caches� however its TTL estimates are more

accurate than those based only on the most recent Last
Updated timestamp� The e�ects of such an

estimate on the fraction of stale documents in the cache is studied in Section �� The pseudo
code

of LNC
R
W�
U is shown in Figure ��

� Implementation

We have integrated the LNC
R
W�
U cache management library with the Apache ����� code� We

describe some of the time and space considerations that we have incorporated into our implemen

tation�

	�� Time E
ciency

The applicability of the LNC
R
W�
U algorithm depends to a large extent on the time e�ciency of

the cache replacement procedure� In general� cost based algorithms must keep the metadata related

to the cached documents sorted on the cost� In our implementation the metadata records contain

for each cached document the following information� size� pro�t� URL of document� four sliding

windows �to be explained in more detail in the next subsection� and local �le name� Consequently�

��

t
 time when document i is requested

avail
 available free space in cache

case

document i is in cache� �� cache consistency check

tr
 time when a new version of document i was cached

TTLi
 time�to�live of document i

if � TTLi � t� tr � f

 TTLi expires

HTTP Conditional GET request to the server

update ci
 mean validation delay to perform Conditional GET�document i�

update ui
 mean validation rate of document i

update ri
 mean reference rate of document i

g

else f

 TTLi not expires

update ri
g

document i is not in cache� �� cache replacement

HTTP GET request to the server

si
 size of document i� di
 mean delay to fetch document i into cache

ui
 mean validation rate of document i

if � document i has Expires timestamp�

TTLi � Expires � tr
else

TTLi �
�

ui

if �avail � si� f

 enough space

cache document i and update ri
g

else f

 replacement required

for j � � to K

Dj � list of documents with exactly j reference samples in

increasing pro�t �de�ned in ���� order

D � list of documents arranged in order D� � D� � � � � � DK

C � minimal pre�x of D such that
P

l sl � si

evict C out of cache and cache document i and update ri
g

Figure �� Pseudo
code of LNC
R
W�
U algorithm

�

a naive implementation of the algorithm would have O�n � log n� time complexity� with n being the

number of cached documents� as opposed to e�g� LRU with only O��� time complexity� Obviously�

the metadata does not have to be completely sorted because the cache replacement algorithm

needs to �nd only the document with the least pro�t� Consequently� by organizing the metadata

as a heap� we can reduce the time complexity down to O�log n� for each application of the cache

replacement�� However� for large cache this may still be an excessive overhead when compared to

the LRU replacement�

However� we found that each time Apache invokes the replacement algorithm� it sorts all meta

data based on the time when the documents expire �as given by their TTLs�� We assume that such

an implementation was selected due to the concurrency problems as Apache proxy spawns multiple

processes� To avoid concurrency con�icts on the document metadata� each Apache process writes

all metadata to disk after every replacement and the metadata is read and sorted again before every

replacement invocation� Therefore� to incorporate the LNC
R
W�
U cache replacement in Apache�

we only had to change the criteria which is used for sorting the metadata to the pro�t metric� We

did not measure any observable increase in the sort time for cache sizes containing between ������

and ������� documents� Consequently� adding the LNC
R
W�
U to Apache does not slow down

the Apache proxy�

Our next question was whether a heap
based cache organization would improve the performance

and whether the improvement is signi�cant when compared with the average cache access time�

�hit rate�hit time����hit rate��miss time�� We conducted an experiment with cache sizes ���

MB and �GB and average �le sizes � KB and �� KB which are typical settings reported elsewhere

���� ��� �	�� In each experiment we measured the time to sort the entire metadata using qsort���

the time to build a heap on the metadata and the time to rebuild the heap after the document with

minimal pro�t is removed� First� we found that the cost of sorting the metadata is indeed signi�cant

�The heap can be reorganized in O�log n� steps since at most a constant number of documents with minimal

pro�t need to removed at each invocation

��

because it is comparable to the average time of a single cache access� Second� we found that� on

average� it is approximately � times faster to build the heap than sort the entire cache� In our

implementation the heap is built only once upon the startup of the proxy when the cache becomes

full the �rst time� Subsequently� the heap needs to be only rebuilt after a removal of the document

with minimal pro�t� The rebuild can be achieved in the order of ��� times faster than the sort�

Consequently� the heap
based implementation indeed signi�cantly improves cache performance� To

resolve the aforementioned concurrency problems� we implemented the heap structure in a shared

memory and protected it with latches� The experimental results can be found in Figure ��

104000

1323000

228000

2886000

39999
19999

219999
419999

7.29.3

2.42.9

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

100M, 5K 100M, 10K 1G, 5K 1G, 10K

cache size, avg. document size (bytes)

C
P

U
 t

im
e

(m
ic

ro
 s

ec
s,

 lo
g

 s
ca

le
)

quick sorting

heap building

heap replacement

Figure �� The performance of qsort�� and heap
based cache replacement

It may appear that the heap structure should be built from scratch each time the cache replace

ment is invoked because the pro�t function depends on the current time� In particular� the mean

reference rate estimate from ��� includes the value of current time to age documents which are

not referenced� However� in our implementation� we update the reference rate of a document only

if the document is accessed� In addition� we periodically use an �aging daemon� which generates

dummy references to all documents to age their reference rate estimates� Dummy references are

discarded once a �real� reference to the document is received� This implies that all these actions�

i�e�� a document access or an aging daemon� require only reorganizations operations on the heap

which are cheaper than entire rebuilding operations�

��

	�� Space E
ciency

The space e�ciency of the LNC
R
W�
U algorithm is also an important issue because it needs to

maintain substantial bookkeeping with each document in order to evaluate its pro�t� In particular�

the LNC
R
W�
U algorithm needs to keep with every document four sliding windows� one with the

last K reference times� one with the last K distinct Last
Modi�ed times� one with the last K delays

to fetch a document and one with the last K delays to perform a validation check for the document�

Storage of timestamps with a precision of seconds requires
 bytes in most UNIX implementations�

Consequently� the number of bytes necessary for the bookkeeping of a single document is �� �K�

For the optimal value of K determined in Section �� K � �� the resulting overhead is
� bytes per

document�

Although
� bytes overhead is relatively small compared to the average document size of ��� KB

found in our trace and identical to the average URL string size which must also be cached with every

document� it is possible to use standard compression techniques to the sliding window representation

in order to reduce their space overhead by almost a factor of four� Since most documents do not

require more then ��� seconds to fetch or validate� it is possible to use a single byte to store the

document fetch and validate delays� The reference time and validation time sliding windows must

keep the full timestamp in order to be able to take a di�erence with an absolute time in ��� and

�	�� However� it is possible to keep the full timestamp only for the oldest sample in each window

and encode the remaining K � � samples as di�erences with the respect to the oldest timestamp�

Therefore� we can reduce the sliding window overhead down to � � �
� �K � ��� � � �K �
 �K ���

For K � � we can reduce the overhead to �� bytes per document� We are currently in the process of

implementing the compression techniques described above and evaluating its impact on the cache

performance�

��

	�� Metadata Garbage Collection

A straightforward implementation of the LNC
R
W�
U algorithm may� however� lead to starvation

of documents having fewer than K reference samples� Since the reference rate estimates based on

fewer thanK samples are less reliable� the LNC
R
W�
U cache replacement algorithm preferentially

evicts documents with fewer references� However� if the reference samples are discarded when the

corresponding document is evicted from the cache� then they must be collected again from scratch

the next time the document is cached� However� since the document is again likely to be selected

for replacement� it may be impossible to collect the necessary K samples to cache it permanently�

irrespective of its reference rate� To prevent the starvation� LNC
R
W�
U retains all metadata

associated with a document �including all sliding windows� even after the document has been

evicted from the cache�

The metadata is garbage collected using the following rule�

The metadata associated with an evicted document is garbage collected from the cache

whenever the pro�t calculated using the metadata is smaller than the least pro�t among

all cached documents�

Clearly� retaining metadata related to documents with pro�ts smaller than the least pro�t among all

cached documents does not lead to any performance improvement because such documents would

immediately become candidates for replacement� should they be cached�

��

� Experimental Evaluation

��� Experimental Setup

����� Trace Characteristics

We evaluated the performance of LNC
R
W�
U on a client trace collected at Northwestern Univer

sity� The trace represents a seven day snapshot �November 	�� of requests generated by clients on

approximately �� PC�s in a public lab at Northwestern University� The trace contains about ��K

requests� Browser cache hits and non
cacheable requests �e�g� URL�s containing �bin� or �cgi
bin��

were �ltered out from the trace� The browsers were temporarily adjusted so that all requests were

re
directed to a proxy cache where for each referenced URL� we recorded the time when the request

for the document arrives at the proxy� the time when the response to the request is received� the

time when proxy issued conditional GET for the document� the time when response for the con

ditional GET was received� the size of the document and the values of Expires and Last
Modi�ed

headers in the received response �if available��

To gain more insight into the nature of the client requests� characteristics� we captured some of

the statistical properties of our traces� We concentrated on four aspects�

� the dependence of reference rate on document size

� the correlation between the delay to fetch a document to cache and the size of the document

� the fraction of requests received with Expires and Last
Modi�ed headers

� the fraction of updated documents

Previously published trace analyses ���� �
� ��� show that small �les are much more frequently

referenced than large �les� Our traces exhibit the same characteristic as Figure �a indicates� For

example� �� of all client requests are for documents smaller than �KB�

�	

As discussed in Section �� other researchers have observed a hyperbolic dependence between

document size and reference rate� In order to determine the skew of the hyperbola given by

parameter b in equation ��� we found the least
squares �t for a hyperbola on the trace data� which

determines the best value of b as ����� The comparison between the best
�t line and the real trace

data is shown in Figure �b�

100 1000 10000 100000

document size

0

20

40

60

80

100
ac

cu
m

ul
at

iv
e

%
 o

f
nu

m
be

r
of

 r
ef

er
en

ce
s

a� Request size distribution�log scale�

1000 10000

document size (in 128 byte bins)

10

100

1000

nu
m

be
r

of
 r

ef
er

en
ce

s

b� Least squares �t�log scale�

Figure �� Trace characteristics

The correlation between the document size and the delay to fetch the document is de�ned as�

��

Cor�s� d� �
Cov�s� d�p

V ar�s� � V ar�d�
����

where Cov�s� d� is the covariance between size and delay� V ar�s� is the variance of size and

V ar�d� is the variance of delay� Cor�s� d� shows whether the delay to fetch a document to cache

varies across documents of similar size� Cor�s� d� � � indicates that delay is linearly dependent on

size� Consequently� there is no need for delay
sensitive caching as delay can be always determined

from size� On the other hand� Cor�s� d� � � indicates that there is no relationship between size

and delay and thus delay
sensitive caching is necessary� If most of the clients access primarily

local documents� we expect Cor�s� d� to be close to �� On the other hand� if the clients access a

signi�cant fraction of remote documents� we expect Cor�s� d� to be close to �� We measured the

value Cor�s� d� on our trace as ����
�� which is relatively low� Therefore� delay
sensitive caching

is indeed important�

We found that approximately �	 of documents in the trace contain Last
Modi�ed timestamp�

approximately � of documents contain Expires timestamp and 	� of documents contain either

Last
Modi�ed or Expires timestamp�

We regard a document as updated if its Last
Modi�ed timestamp changed at least once within

the � day period studied in our trace� If a document was updated within the � day period� but was

not subsequently referenced� we have no means of ascertaining that the update occurred and thus

such updates are not captured in our trace� We found that approximately � of all documents

were updated and less than � out of these changed every day� �Figure
��

Our results con�rm the generally held belief that WWW is read
mostly environment and they

are in accord with the analysis of server
based traces reporting daily update rates in the range

���
 � ��� ���� It is possible that a larger fraction of documents is updated if one considers also

dynamic CGI documents� However� since dynamic documents are not cacheable� such updates are

irrelevant for the results presented here�

��

documents with Last
Modi�ed �	

documents with Expires �

documents with Last
Modi�ed or Expires 	�

updated documents �

Figure
� Update Trace Characteristics

����	 Performance Metrics and Yardsticks

The delay saving ratio �DSR� de�ned in Section � is the primary cache performance metric in all

experiments� We also use hit ratio �HR� as a secondary performance metric� The hit ratio is de�ned

as a fraction of requests which were satis�ed from cache�

We use staleness ratio �SR� as the primary cache consistency metric� The staleness ratio is

de�ned as a fraction of cache hits which return stale documents� We say that a document returned

by the cache to client is stale if the trace record corresponding to the request has a later Last

Modi�ed timestamp than the time when the document was brought to the cache�

We compared the performance of LNC
R
W�
U against plain LRU� LRU
MIN ���� and LNC

R
W� ��
�� LNC
R
W� corresponds to our algorithm without the cache consistency component�

Both LRU and LRU
MIN use a simple TTL
based cache consistency algorithm which sets TTL to

either Expires � now if the Expires header is available or now � Last�Modified otherwise� These

algorithms correspond to the algorithms implemented in most proxy caches�

Similarly to LNC
R
W�
U� LRU
MIN also exploits the preference of Web clients for accessing

small documents� However� unlike LNC
R
W�
U� LRU
MIN does not consider the delays to fetch

documents to the cache and estimates reference rate to each document using only the time of last

reference� Whenever LRU
MIN needs to free space for a new document i of size si� it �rst attempts

to select for replacement any document larger than si �the documents are searched in the LRU

��

order�� If no document has been found� LRU
MIN considers the lists of documents larger than

si��� si�
� etc�� in LRU order until enough space has been freed�

��� Experimental results

��	�� In
nite cache

We ran experiments with unlimited cache size in order to study the potential of caching on the

workloads in our trace� As the results in Figure � show� our trace exhibits reference locality �given

by hit ratios� similar to other previously published results ��� �
� ���� The results in Figure � also

reveal that local documents exhibit a higher degree of reference locality than remote documents�

because the delay
saving ratios are lower than the corresponding hit ratios� Again� this is consistent

with similar �ndings in �����

DSR HR cache size

��
�� ��
�
 ��MB

Figure �� Performance with in�nite cache

��	�	 Fine�tuning LNC�R�W��U

A common problem with many algorithms �including many commercial systems� is the existence of

�magic� �ne
tuning knobs� When set properly� the algorithms perform better than simpler alter

natives with fewer or no knobs� but poor setting may lead to a disastrous performance� Typically�

the user is granted the �privilege� to determine the optimal setting of such parameters given the

characteristics of his�her environment� Ideally� such parameters should be completely eliminated

from system design by allowing the systems to self
tune the parameters�

The LNC
R
W�
U algorithm has two such parameters� the size of sliding window K and the

��

skew of the dependence between reference rate and document size b� Although our implementa

tion of LNC
R
W�
U is not self
tuning� we at least provide criteria for the users to set the two

parameters�

Selection of K

Increasing the value of K improves the reliability of reference rate estimates� Clearly� the

burstier the workload the larger value of K should be selected� On the other hand� large values of

K result in higher spatial overhead to store the reference samples� The transition from K � � to

K � � is particularly sharp� since LNC
R
W�
U with K � � does not need to retain any reference

samples after eviction of corresponding documents� Thus we expect the best performance for small

values of K� larger than �� The results �Figure �� con�rm our expectations� With cache size �

of the total size of all documents� setting K�� leads to best performance as shown in Figure �a�

The improvement of delay saving ratio relative to K�� is
�� � Figure �b con�rms that also for

other cache sizes the best performance is achieved with small values of K �marked by white bar��

Therefore� we conjecture that K should be set to � or � to obtain the best performance�

Selection of b

As explained in Section �� parameter b determines the skew of dependence of reference rate on

document size� The higher the value of b� the stronger the preference of clients to access small

documents� In Section ����� we determined b � ���� as the best �t for the data in our trace�

However� since we found the best �t of Section ����� relatively noisy� we validated the prediction

also experimentally� Figure �a con�rms the prediction for cache size � of the total size of all

documents� White bars in Figure �b show the optimal values of parameter b for other cache sizes�

In most cases the measured optimal values are close to the predicted optimum b � ����� Because

other Web client traces exhibit similar skew of dependence of reference rate on document size �����

we conjecture that for best performance on most web workloads b should be set between � and ��

�

0.33

0.335

0.34

0.345

0.35

0.355

0.36

1 2 3 4 5

K
D

S
R

a� K settings on ��� cache size

1 2 3 4 5

0.2

0.5

1

2
5

10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
S

R

K

cache size(%)

b� K on all cache sizes

Figure �� Impact of K on DSR

��	�� Cache Performance Comparison

We compared the performance of LNC
R
W�
U with LRU� LRU
MIN and LNC
R
W�� For both

LNC
R
W�
U and LNC
R
W� we used the optimal setting of b ���� and K��� As Figure �

indicates� LNC
R
W�
U provides consistently better performance than LRU and LRU
MIN for all

cache sizes� And its performance is very close to that of LNC
R
W� which does not make any e�ort

to enforce consistency�

In terms of delay
savings ratio� LNC
R
W�
U gives on average ���� improvement over LRU

and 	�� improvement over LRU
MIN� The maximal improvement over LRU and LRU
MIN is

��

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0 0.5 1 1.3 1.5 2 3 4

b

D
S

R

a� b settings on � cache size

0 0.5 1 1.3 1.5 2 3 4

0.2
0.5

1
2

5
10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

D
S

R

b

cache size(%)

b� b on di�erent cache size

Figure �� Impact of b settings on DSR

���� and ���
 for cache size ��� and ��� respectively� On average� the delay
savings ratio of

LNC
R
W�
U is only ��� below the DSR of LNC
R
W�� In the worst case� DSR of LNC
R
W�
U

is ��� below the DSR of LNC
R
W� for cache size ���� � The delay
savings ratio comparison

can be found in Figure �a�

Although LNC
R
W�
U is not designed to maximize the cache hit ratio� it still provides an

improvement over LRU and LRU
MIN as shown in Figure �b� In particular� the average improve

ment is
��
 over LRU and
�� over LRU
MIN� The hit ratio of LNC
R
W�
U provides even

closer to the hit ratio of LNC
R
W�� on average ��
 and no more than ��� below the hit ratio

of LNC
R
W��

��

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

0.2 0.5 1 2 5 10

cache size (%)

D
S

R

LNC-R-W3-U

LNC-R-W3

LRU-MIN

LRU

a� Delay
Savings Ratio

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.2 0.5 1 2 5 10

cache size (%)

H
R

LNC-R-W3-U

LNC-R-W3

LRU-MIN

LRU

b� Hit Ratio

Figure �� Performance comparison

In addition to improving performance of the cache� the LNC
R
W�
U algorithm also signi�

cantly improves its consistency� On average� LNC
R
W�
U achieves a staleness ratio which is by

factor of ��� better than the SR of LNC
R
W�� in the worst case it improves SR of LNC
R
W� by

factor of ��	 when cache size is ��� � LNC
R
W�
U also improves the stale ratios of both LRU and

LRU
MIN� On average� LNC
R
W�
U achieves a staleness ratio which is
��� better than the SR

of LRU and �
 better than the SR of LRU
MIN� In the worst case� it improves SR of LRU by

���� when cache size is ��� and improves SR of LRU
MIN by � when cache size is ��� � The

��

staleness ratio comparison of all four algorithms can be found in Figure 	�

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.2 0.5 1 2 5 10

cache size (%)

S
R

LNC-R-W3-U

LNC-R-W3

LRU-MIN

LRU

Figure 	� Staleness Ratio

� Conclusion

We have described the design and implementation of a new uni�ed procedure for cache maintenance�

LNC
R
W�
U� which incorporates components for cache replacement and consistency maintenance

for Web proxies� We see three main contributions of our work�

� We demonstrated that it is indeed important to consider the communication delays in cache

replacement� We show that the LNC
R
W�
U algorithm improves the performance �delay

saving ratio� on average by ���� when compared to LRU and 	�� when compared to

LRU
MIN�

� We showed the importance of considering cache replacement and consistency algorithms which

cooperate� The integrated solution improves cache staleness on average by
��� when com

pared to LRU and �
 when compared to LRU
MIN�

� We demonstrated that cost
based cache replacement algorithms can be implemented in an

industrial
strength cache proxy with no slowdown�

��

In addition� we justify the choice of our cost function theoretically and� in contrast to other

algorithms� we introduce only two �ne
tuning knobs for which we provide default setting criteria�

In the near future we plan to �nalize testing and full integration of LNC
R
W�
U library with

the Apache ����� code base and make the source code available to the public� Our procedure can

be easily integrated any commercial cache proxy since it does not require any extensions to the

HTML protocol or to any changes to the servers�

Our experiments have indicated that the hit ratio cannot be improved over
� even with an

in�nite cache� an observation which is consistent with that of other researchers in this �eld� On

alternative way to increase the hit ratio is by using replicated servers ����� Replicated servers are

more complex to manage and they do require changes to the HTML or the server code� on the other

hand they also bring additional advantages for reliability purposes� We are currently studying the

various tradeo�s involved between proxy caches and replicated servers�

References

��� M� Abrams� C� Standridge� G� Abdulla� S� Williams� E� Fox� �Caching proxies� Limitations

and potentials�� Proc� �th International World Wide Web Conference� �		��

��� Apache ����� HTTP server documentation� available at http���www�apache�org�� �		��

��� A� Bestavros� �Speculative Data Dissemination and Service�� Proc� �	th International Con

ference on Data Engineering� �		��

�
� J� Bolot and P� Hoschka� �Performance Engineering of the World Wide Web� Application to

Dimensioning and Cache Design�� Proc� �th International World Wide Web Conference� �		��

��� P� Cao and S� Irani� �Cost
Aware WWW Proxy Caching Algorithms�� Proc� USENIX Sym

posium on Internet Technologies and Systems� �		��

�	

��� V� Cate� �Alex
 a global �le system�� Proc� ���	 USENIX File System Workshop� �		��

��� A� Chankhunthod� P� Danzig� C� Neerdaels� M� Schwartz� K� Worrell� �A hierarchical In

ternet object cache�� Proc� USENIX ���
 Annual Technical Conference� also available at

http���excalibur�usc�edu�cache�html�cache�html�

��� E� Co�man and P� Denning� Operating Systems Theory� Prentice
Hall� �	���

�	� A� Cormack� �Web Caching�� available at

http���www�nisc�ac�uk�education�jisc�acn�caching�html� �		��

���� C� Cunha� A� Bestavros� M� Crovella� �Characteristics of WWW Client
based Traces�� Tech

nical Report TR
��
���� Boston University� Apr� �		��

���� A� Dingle and T� Partl� �Web Cache Coherence�� Proc� �th International World Wide Web

Conference� �		��

���� B� Duska� D� Marwood� M� Feeley� �The Measured Access Characteristics of World
Wide
Web

Client Proxy Caches�� Proc� USENIX Symposium on Internet Technologies and Systems� �		��

���� M� Garey and D� Johnson� Computers and Intractability� A Guide to the Theory of NP

Completeness� W� H� Freeman� �	�	�

��
� S� Glassman� �A caching relay for the World Wide Web�� Computer Networks and ISDN

system� Vol ��� �		
�

���� Jigsaw ��� HTTP server documentation� available at http���www�w	c�org�Jigsaw�� �		��

���� B� Krishnamurthy and C� Wills� �Piggyback Server Invalidation for Proxy Cache Coherency��

Proc� the �th International World Wide Web Conference� �		��

���� J� Gwertzman and M� Seltzer� �World
Wide Cache Consistency�� Proc� USENIX ���
 Annual

Technical Conference� �		��

��

���� C� Liu and P� Cao� �Maintaining Strong Cache Consistency in the World
Wide Web�� Proc�

��th International Conference on Distributed Computing Systems� �		��

��	� S� Manley and M� Seltzer� �Web Facts and Fantasy�� Proc� USENIX Symposium on Internet

Technologies and Systems� �		��

���� Daniel O�Callaghan� �A Central Caching Proxy Server for WWW users at the University of

Melbourne�� available at http���www�its�unimelb�edu�au�
���papers�AW�
��
��

���� E� O�Neil� P� O�Neil� G� Weikum� �The LRU
K page replacement algorithm for database disk

bu�ering�� Proc� ACM SIGMOD International Conference on Management of Data� �		��

���� M� Sayal� Y� Breitbart� P� Scheuermann� R� Vingralek� �Selection Algorithms for Replicated

Web Servers�� Proc� Workshop on Internet Server Performance� �		��

���� P� Scheuermann� J� Shim� R� Vingralek� �WATCHMAN� A Data Warehouse Intelligent Cache

Manager�� Proc� 		nd International Conference on Very Large DataBases� �		��

��
� P� Scheuermann� J� Shim� R� Vingralek� �A Case for Delay
Conscious Caching of Web Docu

ments�� Proc�
th International World Wide Web Conference� �		��

���� Squid ������ Internet Object Cache Documentation� available at

http���squid�nlanr�net�Squid�� �		��

���� R� Wooster and M� Abrams� �Proxy Caching That Estimates Page Load Delays�� Proc�
th

International World Wide Web Conference� �		��

Appendix

We provide a proof of theorem � from Section ��

Theorem 	 Among all sets of documents satisfying ���� the Optim algorithm �nds the one which

satis�es ����

��

Proof� Let I �� I� be an arbitrary subset of documents satisfying �
�� We will show that
P

i�I ri �

di� ui � ci �
P

i�I� ri � di� ui � ci� Since Optim selects retrieved sets with maximal pro�t� it follows

that

X

i�I

ri � di � ui � ci
si

�
X

i�I�

ri � di � ui � ci
si

����

We can assume that I� � I � �� If not� then the intersecting elements can be eliminated from both

sets while preserving ����� We de�ne

rmin � dmin � umin � cmin

smin

� mini�I�
ri � di � ui � ci

si
��
�

rmax � dmax � umax � cmax

smax

� maxi�I
ri � di � ui � ci

si
����

Since I� contains retrieved set references with maximal ri�di�ui�ci

si
and I� � I � �� it must be true

that rmin�dmin�umin�cmin

smin
	 rmax�dmax�umax�cmax

smax
� Consequently�

X

i�I�

ri � di�ui � ci 	
rmin � dmin � umin � cmin

smin

�S 	
rmax � dmax � umax � cmax

smax

�S 	
X

i�I

ri � di� ui � ci

����

Therefore� we have shown that the document set I� selected by Optim indeed satis�es ���� �

��

