Proxy Cache Design: Algorithms, Implementation and Performance

Junho Shim!, Peter Scheuermann', and Radek Vingralek?

! Department of Electrical and Computer Engineering
Northwestern University, Evanston, IL 60208, USA

shimjh, peters@ece.nwu.edu

2 Lucent Technologies, Bell Laboratories
600 Mountain Ave., Murray Hill, NJ 07974, USA
rvingral@research.bell-labs.com

Abstract

Caching at proxy servers is one of the ways to reduce the response time perceived by Web
users. Cache replacement algorithms play a central role in the response time reduction by
selecting a subset of documents for caching so that a given performance metric is maximized.
At the same time, the cache must take extra steps to guarantee some form of consistency of
the cached documents. Cache consistency algorithms enforce appropriate guarantees about the
staleness of the cached documents. We describe a unified cache maintenance algorithm, LNC-R-
W3-U, which integrates both cache replacement and consistency algorithms. The LNC-R-W3-U
algorithm evicts documents from the cache based on the the delay to fetch each document into
the cache. Consequently, the documents which took a long time to fetch are preferentially
kept in the cache. The LNC-R-W3-U algorithm also considers in the eviction consideration
the validation rate of each document as provided by the cache consistency component of LNC-
R-W3-U. Consequently, documents which are infrequently updated, and thus seldom require
validations, are preferentially retained in the cache. We describe the implementation of LNC-
R-W3-U and its integration with the Apache 1.2.6 code base. Finally, we present a trace-driven
experimental study of LNC-R-W3-U performance and its comparison with other previously

published algorithms for cache maintenance.

Keywords: proxy, caching, cache replacement, cache consistency, world wide web.

1 Introduction

The World Wide Web has become one of the predominant services to distribute various kinds
of information. Within less than 7 years of its existence, the Web has grown to compete with
well established information services such as the television and telephone networks. However, the
Web delivers much poorer performance when compared to the traditional services. For example, a

multi-second response time to deliver a 5 KB document is not unusual [22].

Caching is one of the ways to reduce the response time of the Web service [1, 4, 7, 11, 17,
5, 18, 24, 26, 16]. The Web documents are cached either directly by the browser or by a proxy
server which is located “close” to the clients. Cache replacement algorithms, which dynamically
select a suitable subset of documents for caching, play a central role in the design of any caching
component; these algorithms have been extensively studied in the context of operating system vir-
tual memory management and database buffer management [8, 21]. Cache replacement algorithms
usually maximize the cache hit ratio by attempting to cache the data items which are most likely to
be referenced in the future. Since the future data reference pattern is typically difficult to predict, a
common approach is to extrapolate from the past by caching the data items which were referenced

most frequently. This approach is exemplified by, e.g., the LRU cache replacement algorithm.

We argue in this paper, however, that maximizing the cache hit ratio alone does not guarantee
the best client response time in the Web environment. In addition to maximizing the cache hit ratio,
a cache replacement algorithm for Web documents should also minimize the cost of cache misses,
i.e., the delays caused by fetching documents not found in the cache. Clearly, the documents which
took a long time to fetch should be preferentially retained in the cache. For example, consider a
proxy cache at Northwestern University. The cache replacement algorithm at the proxy found two
possible candidates for replacement. Both documents have the same size and the same reference
frequency, but one document originates from the University of Chicago while the other is from Seoul

National University. The cache replacement algorithm should select for replacement the document

from the University of Chicago and retain the document from Seoul National University because

upon a cache miss the former can be fetched much faster than the latter.

However, the response time improvement achieved by caching documents does not come com-
pletely for free. In particular, caches must generate extra requests to maintain their content consis-
tent with the primary copies on servers and/or sacrifice the consistency of the cached documents.
Most proxy cache implementations rely on a consistency algorithm to ensure a suitable form of

consistency for the cached documents.

Cache consistency algorithms for client/server database systems usually enforce strong consis-
tency (i.e. no stale data returned to clients). In the context of WWW, strong consistency can
be either guaranteed by having the proxy cache to poll servers each time a client hits the cache
[18] or by maintaining a state on each server with callbacks for all the proxies caching the server’s
documents. The former approach leads to an overhead which practically eliminates the benefits of
caching, while the latter approach is not supported by any of the currently available Web servers.
Consequently, all caching proxies known to the authors guarantee only some form of weak consis-
tency (i.e. clients may receive stale data) [9, 11, 17]. A typical implementation of weak consistency
assigns to each document (or group of documents) a time-to-live (TTL) interval. Any client request
for a document which has been cached longer than TTL units results in document validation by
sending a HTTP conditional (If-Modified-Since) GET request to the server. The server responds
with the requested document only if it has been updated. A common guideline for setting TTL for
a document is based on the observation that documents which were not updated in the past will

not be updated also in the future [6].

However, the cache consistency algorithms are not typically well integrated with the cache
replacement algorithms. The published work on the topic usually considers the two algorithms as
two separate mechanisms and studies one of the two in isolation [1, 4, 7, 11, 17, 5, 18, 24, 26, 16].

The proxy cache implementations either replace documents in the cache solely based on the value

of TTL [2], thereby eliminating the need for a separate cache replacement algorithm, or apply
the cache consistency algorithm as a filter on the contents of cache before a cache replacement
algorithm is used [15, 25]. Thus, the later approach implies that cache replacement algorithm will
only be applied only if the filtering process did not create enough room in the cache. Clearly, the
performance of the proxy cache can be improved if the cache replacement algorithm can explicitly
use the TTL estimates to select documents for eviction from its cache. For example, if the cache
contains two documents of approximately the same size which are loaded from the same server and
referenced by clients with the same rate, then the cache replacement algorithm should select for
eviction the more frequently updated document (i.e. the one with a smaller TTL) because more
references can be satisfied directly from the cache without validation and thereby provide a better

response time to clients.

In this paper we describe the design and implementation of a new, unified cache replacement
algorithm LNC-R-W3-U (Least Normalized Cost Replacement for the Web with Updates) which
incorporates cache replacement and consistency components. We show that the LNC-R-W3-U
algorithm approximates in a constrained model the optimal cache replacement algorithm, which
is NP-hard. The LNC-R-W3-U algorithm is a greedy, cost-based algorithm. The cost function
explicitly considers the delay to fetch each document into the cache and the cost of validation of
each document as determined by its TTL. Our algorithm estimates the time-to-live intervals for
cached documents using a sample of K most recent Last-Modified timestamps. A similar mechanism
is also used for estimation of reference rate of each document. It has been shown that such estimates
improve cache performance in presence of transient data access [21, 24, 23]. We are in the process
of integrating the LNC-R-W3-U library with the Apache 1.2.6 code base [2]. We describe some
of the implementation issues we have encountered. Finally, using trace-driven experiments, we
compare the performance of the LNC-R-W3-U algorithm against similar algorithms published in
the literature. We also use the experiments to provide guidelines for setting various fine-tuning

parameters of the LNC-R-W3-U algorithm.

The remainder of this paper is structured as follows: In Section 2 we review the existing
approaches to proxy cache design. In Section 3 we describe the new algorithm, LNC-R-W3-U.
Section 4 contains implementation considerations of LNC-R-W3-U. In Section 5 we experimentally
evaluate the performance of LNC-R-W3-U. Finally, Section 6 concludes the paper and describes

the directions of future work.

2 Current State of Art

2.1 Practice

We surveyed implementations of three publicly available proxy caches: Apache 1.2.6 [2], Squid

1.1.21 [25] and Jigsaw 2.0 [15].

The Apache proxy cache uses a TTL-based consistency algorithm. The TTL is set using the
Expires header as Expires - now. If the Expires header is absent in the response, then the
TTL is set using the Last-Modified header as fudge_factor * (now - Last-Modified), where
fudge_factor is a system defined parameter. If a cached document with an expired TTL is
referenced, a conditional GET request is sent to the server specified in the document’s URL to
validate the document. There is no separate cache replacement algorithm in Apache, because the

documents are replaced directly based on their values of TTL.

The Squid cache consistency algorithm is also TTL-based and similar to that of Apache. How-
ever, whenever the number of documents in the cache exceeds a certain threshold, Squid employs a
separate cache replacement algorithm to reclaim free cache space. The cache replacement algorithm
works in two passes: The first pass evicts obvious victims from the cache, i.e. the documents with

expired TTLs. The second pass is a standard LRU replacement.

The Jigsaw cache consistency algorithm is also TTL-based. If a cached document has an Expires

header, the TTL is set in the same way as in Apache. If, however, the header is absent, then the

TTL is set to a default value of 24 hours. Jigsaw also uses standard LRU replacement to free cache

space.

As with all systems implementations, the real devil is in the details. The real complexity of
proxy cache implementation stems from handling of many special cases and guaranteeing caching
behavior as specified by the HT'TP 1.1 protocol. In this section we concentrated only on the major
algorithmic steps necessary for the comparison with other published work. An interested reader

should refer to the publicly available source code [2, 25, 15].

2.2 Theory

Cache replacement algorithms have been extensively studied in the context of operating system
virtual memory management and database buffer pool management. Several cache replacement
algorithms tailored to the proxy cache environment have been published [1, 4, 5, 26], including our

own work [24].

The algorithms in [1] exploit the preference of Web clients for accessing small documents [10,
14, 20] and give preference to maintaining small documents in the cache. One of the algorithms,
LRU-MIN;, is used as a yardstick for performance comparison with LNC-R-W3-U in Section 5. The
importance of explicitly considering the delay to fetch documents in cache replacement has been first
observed in [4]. The cache replacement algorithm in [4] is cost-based. However, the choice of the cost
function is not justified and uses unspecified weights. Two very similar cost-based algorithms for
delay sensitive cache replacement have been independently published in [24, 26]. The LNC-R-W3-U
cache replacement algorithm is directly based on our earlier published algorithm LNC-R-W3 [24].
In this paper we justify the choice of the cost function in the LNC-R-W3-U algorithm by showing
that it approximates the optimal NP-hard algorithm, which maximizes the fraction of network
delays saved by satisfying requests from the cache. The HYB algorithm in [26] uses an almost

identical cost function to the one employed in LNC-R-W3, but makes use of different mechanisms

for estimating the parameters of the cost function. An efficient implementation of an algorithm
that considers cost and size of documents, called GreedyDual-Size, appeared in [5]. The authors
also show that the algorithm is k-competitive, i.e. the cost achieved by the online algorithm is at
most k the cost of the optimal NP-hard off-line algorithm, where & is the ratio of the cache size to
the size of the smallest document. However, both [26, 5], require either modifications to the HTTP
protocol or to the servers themselves. In contrast, our LNC-R-W3-U cache replacement algorithm

can be applied off-shelf to any cache proxy.

Cache consistency algorithms have been extensively studied in the context of distributed file
systems and client/server database systems. Most of the algorithms guarantee strong consistency
and require servers to maintain a state about the data cached by clients (callbacks). “Polling-every-
time” approach [18] is another example of a strong consistency method. The Alex FTP cache is an
exception in that it provides only weak consistency to the clients [6]. Its validation mechanism serves
as a basis for consistency algorithms found in most proxy cache implementations [9, 11, 17, 18, 2, 15,
25] and also the LNC-R-W3-U cache consistency algorithm. In [11] a number of cache consistency
algorithms used by a majority of proxy caches are reviewed and a number of improvements to
either their implementation or to the HT'TP protocol are suggested. An experimental comparison
of callback-based and TTL-based cache consistency algorithms is carried out in [11]. However,
the evidence seems to be inconclusive. The authors of [11] conclude that if weak consistency is
acceptable and network bandwidth is scarce, the TTL-based algorithms are more attractive; on the
other hand, in [18] it is argued that both callback-based and TTL-based consistency algorithms
have practically the same network overhead. However, since all caching proxies are currently using
some version of weak consistency it is clear that this remains the preferred strategy to incorporate

into an integrated cache replacement algorithm.

3 Algorithms

3.1 Optimal Cache Replacement

Although it has been frequently pointed out that cache replacement algorithms for proxy servers
should somehow reflect document sizes and the delays to fetch documents into the cache [1, 4, 5,
24, 26], it is not a priori clear how to combine these metrics into a single cost function. In this
section we provide a justification of the cost function used in LNC-R-W3-U by showing that it
approximates the behavior of an optimal, off-line algorithm in a constrained model which assumes

no external cache fragmentation.

For the purpose of the analysis, we assume that the references to documents in the cache are
statistically independent and described by reference rates r;, where r; is a mean reference rate to
document ¢. The delay to fetch document 4 into the cache is given by d; and the size of document 1
is given by s;. We assume that the cache employs a TTL-based cache consistency algorithm. The
mean validation rate of document 4 is given by u; and the delay to perform a validation check (i.e.

the delay to send a conditional GET) is given by ¢;.

A typical goal of a cache replacement algorithm is to minimize response time. Therefore, it
should retain in cache documents which account for a large fraction of the communication delays.
In other words, the cache replacement algorithm should aim to optimize the following expression

maz Yy (ri - di —u; - ¢;) (1)
el
subject to a constraint

Y si<S (2)

el

where I describes the set of documents selected for caching and §' is the total cache size.

In general, the goal of satisfying (1) is different from the goal of maximizing hit ratio (i.e.

the fraction of requests satisfied from the cache), a typical objective of most cache replacement

algorithms designed for database buffer or file system management. We define a similar metric
called delay savings ratio (DSR) which is a fraction of communication delays saved by satisfying

the requests from cache. The delay savings ratio is defined as

>oi(di - hi —ci - v;)
szzfz

where h; is the number of references to document 7 which were satisfied from the cache, f; is the

DSR = (3)

total number of references to document i and v; is the number of validations performed on document

1.

The problem defined by (1) and (2) is equivalent to the knapsack problem, which is NP-hard
[13]. Consequently, there is no known efficient algorithm for solving the problem. However, if we
assume that sizes of cached documents are relatively small when compared with the total cache size
S, and thus it is always possible to utilize almost the entire cache space, then the solution space

can be restricted to sets of documents I satisfying:

Zsi =5 (4)

el
and we will show that the optimal solution can be found by a simple greedy off-line algorithm.
The optimal algorithm, Optim, assigns to each document a cost function called profit defined
as

Ti-di—ui-ci

(5)

profit; =
S;

In order to determine (I*), the best set of documents to cache, the Optim algorithm sorts all
documents based on their profit and selects for caching the most profitable documents until the
entire cache space is exhausted. We assume that the cache fragmentation is minimal, so (4) holds at
that time. We show that I'*, the set of documents to cache found by Optim, satisfies the objective

function defined in (1).

Theorem 1 Among all sets of documents satisfying (4), the Optim algorithm finds the one which

satisfies (1).

Proof: Given in the Appendix. O

3.2 LNC-R-W3-U Algorithm

The LNC-R-W3-U cache replacement algorithm is a cost-based greedy algorithm. The algorithm
selects for replacement documents with least cost until a sufficient space has been freed. The cost
function is directly based on profit notion defined in (5). Consequently, in a steady state the on-line
algorithm should approximate the off-line algorithm Optim described in the previous section. We
describe below the procedures for estimating the key parameters used in the evaluation of the profit
function. The LNC-R-W3-U cache consistency algorithm is a TTL-based algorithm. If a document
with an expired TTL is referenced and found in the cache, its content is validated by sending a
conditional GET to the server owning the document. The procedure used to estimate the TTL

values for each document is also described below.

In order to evaluate the profit of document i, the cache replacement algorithm must determine

estimates of the following parameters:

e 1, - mean reference rate to document 4

e d; - mean delay to fetch document 7 into the cache

e 1u; - mean validation rate for document 4

e ¢; - mean validation delay for document ¢

e 3; - size of document ¢

The estimation of document size s; is straightforward. The mean delays to fetch and validate a

document, d; and ¢;, are estimated by using two sliding windows of the last K corresponding delays

10

measured in the past. K is one of the fine-tuning “knobs” of LNC-R-W3-U. We discuss its selection

in Section 5.

The mean reference rate to document iz, r;, can be estimated in two ways. First, it can be
estimated from a sliding window of last K reference times. However, unlike the estimates of fetch
and validation delays, the reference rate must be “aged” in the absence of references to a document.

Therefore, the mean reference rate is estimated as:

(6)

where t is the current time and ¢x is the time of the oldest reference in the sliding window.
Consequently, the estimate decreases even when the document is not referenced. The mean reference
rate can be also estimated using the time of last reference (i.e. setting K = 1) as in the LRU cache
replacement algorithm. However, it has been pointed out in [21] that LRU performs inadequately in
presence of bursty workloads or workloads consisting of multiple classes with different characteristics
- a workload likely to appear on the Web. In Section 5 we experimentally evaluate the benefits of

setting K > 1.

Whenever fewer than K reference times are available for document 4, the mean reference rate
r; 1s estimated using the maximal number of available samples. However, such an estimate is
statistically less reliable and thus the documents having fewer reference samples are more likely
to be selected for replacement by LNC-R-W3-U. In particular, the LNC-R-W3-U algorithm first
considers for replacement all documents having just one reference sample in increasing profit order,
then all documents with two reference samples in increasing profit order, etc. until sufficient cache

space has been freed (see Figure 1).

Another way to estimate the mean reference rate r; is based on the document’s size s;. Several
studies of Web reference patterns show that Web clients exhibit a strong preference for accessing
small documents [10, 14, 20]. Consequently, knowing the document’s size gives us some information

about how frequently it will be referenced. In particular, it was shown in [10] that given a document

11

of size s;, the estimate of its mean reference rate can be expressed with a high confidence as

r; =

& e
—
-

b = 1.66 and c is a constant (not given in [10]).

To increase the precision of reference rate estimate, we combine the two estimates into a single

metric defined as

=——— (8)

(t—tx) - s

Since our trace exhibited different characteristics from those reported in [10], we experimentally

determine the best setting of parameter b in Section 5.

In absence of the Expires headers in the response to a request for document 7, the mean val-
idation rate wu; is calculated from a sliding window of last K distinct Last-Modified timestamps
as

K

i = 9
Y g)

where t, is the time when the latest version of document ¢ was received by the proxy cache and tux
is the Kth most recent distinct Last-Modified timestamp of document 4 (i.e. the oldest available
distinct Last-Modified). We assume that the update rates of documents are stable. Therefore, it

should suffice to validate each document with the same rate as it was updated in the past.

If, on the other hand, the Expires header is provided, LNC-R-W3-U uses the server provided
information to determine validation rate, rather than trying to estimate it from the past modi-
fication timestamps. The validation rate is calculated in a manner similar to (9), but using the
Expires timestamps instead of Last-Modified timestamps whenever possible. The most recent Ex-

pires timestamp substitutes ¢, in (9), the Kth most recent Expires timestamp substitutes tuy in

(9).
The LNC-R-W3-U consistency algorithm sets TTL for a newly received document 4 as either
1
TTL; = — (10)

12

if the Expires timestamp is not available, or
TTL; = Expires — t, (11)
otherwise.

Whenever a referenced document ¢ has been cached longer than TT'L; units, the consistency
algorithm validates the document by sending a conditional GET to the server specified in the
document’s URL. Whenever a new version of document ¢ is received, LNC-R-W3-U updates the
sliding windows containing the last K distinct Last-Modified timestamps and the last K validation
delays and recalculates ¢;, u; and TTL;. The LNC-R-W3-U cache consistency algorithm is similar
to the TTL-based algorithms used in other proxy caches, however its TTL estimates are more
accurate than those based only on the most recent Last-Updated timestamp. The effects of such an
estimate on the fraction of stale documents in the cache is studied in Section 5. The pseudo-code

of LNC-R-W3-U is shown in Figure 1.

4 Implementation

We have integrated the LNC-R-W3-U cache management library with the Apache 1.2.6 code. We
describe some of the time and space considerations that we have incorporated into our implemen-

tation.

4.1 Time Efficiency

The applicability of the LNC-R-W3-U algorithm depends to a large extent on the time efficiency of
the cache replacement procedure. In general, cost based algorithms must keep the metadata related
to the cached documents sorted on the cost. In our implementation the metadata records contain
for each cached document the following information: size, profit, URL of document, four sliding

windows (to be explained in more detail in the next subsection) and local file name. Consequently,

13

t : time when document i is requested
avail : available free space in cache

case
document i is in cache: // cache consistency check
t, : time when a new version of document ¢ was cached
TTL; : time-to-live of document 4
it (TTL; <t—tr) { /] TTL; expires
HTTP Conditional GET request to the server
update ¢; : mean validation delay to perform Conditional GET(document i)
update u; : mean validation rate of document i
update r; : mean reference rate of document ¢
}
else { // TTL; not expires
update r;

document ¢ is not in cache: // cache replacement
HTTP GET request to the server
s; : size of document i, d; : mean delay to fetch document i into cache
u; : mean validation rate of document %

if (document i has Expires timestamp)
TTL; = Expires - t,
else
TTL; = ui
if (avail > s;) { // enough space
cache document ¢ and update r;
}
else { // replacement required
forj=1to K
D; = list of documents with exactly j reference samples in
increasing profit (defined in (5)) order
D = list of documents arranged in order D1 < Dy < ... < Dg
C = minimal prefix of D such that }~, s, > s;
evict C out of cache and cache document ¢ and update r;

Figure 1: Pseudo-code of LNC-R-W3-U algorithm

14

a naive implementation of the algorithm would have O(n -log n) time complexity, with n being the
number of cached documents, as opposed to e.g. LRU with only O(1) time complexity. Obviously,
the metadata does not have to be completely sorted because the cache replacement algorithm
needs to find only the document with the least profit. Consequently, by organizing the metadata
as a heap, we can reduce the time complexity down to O(log n) for each application of the cache
replacement!. However, for large cache this may still be an excessive overhead when compared to

the LRU replacement.

However, we found that each time Apache invokes the replacement algorithm, it sorts all meta-
data based on the time when the documents expire (as given by their TTLs). We assume that such
an implementation was selected due to the concurrency problems as Apache proxy spawns multiple
processes. To avoid concurrency conflicts on the document metadata, each Apache process writes
all metadata to disk after every replacement and the metadata is read and sorted again before every
replacement invocation. Therefore, to incorporate the LNC-R-W3-U cache replacement in Apache,
we only had to change the criteria which is used for sorting the metadata to the profit metric. We
did not measure any observable increase in the sort time for cache sizes containing between 10,000
and 200,000 documents. Consequently, adding the LNC-R-W3-U to Apache does not slow down

the Apache proxy.

Our next question was whether a heap-based cache organization would improve the performance
and whether the improvement is significant when compared with the average cache access time:
(hit_ratex* hit_time+ (1 — hit_rate) * miss_time). We conducted an experiment with cache sizes 100
MB and 1GB and average file sizes 5 KB and 10 KB which are typical settings reported elsewhere
[10, 12, 19]. In each experiment we measured the time to sort the entire metadata using gqsort (),
the time to build a heap on the metadata and the time to rebuild the heap after the document with

minimal profit is removed. First, we found that the cost of sorting the metadata is indeed significant

!The heap can be reorganized in O(log n) steps since at most a constant number of documents with minimal

profit need to removed at each invocation

15

because it is comparable to the average time of a single cache access. Second, we found that, on
average, it is approximately 6 times faster to build the heap than sort the entire cache. In our
implementation the heap is built only once upon the startup of the proxy when the cache becomes
full the first time. Subsequently, the heap needs to be only rebuilt after a removal of the document
with minimal profit. The rebuild can be achieved in the order of 10° times faster than the sort!
Consequently, the heap-based implementation indeed significantly improves cache performance. To
resolve the aforementioned concurrency problems, we implemented the heap structure in a shared

memory and protected it with latches. The experimental results can be found in Figure 2.

1.0E+07
2886000 1323000

10E+06 4 - - - - - - - -« - - - o . _419999 _ _

219999
1.0E+05 + -

Oquick sorting
W heap building
Oheap replacement

1.0E+04 + -
1.0E+03 1 -

1.0E+02 { -

1.0E+01 | - | 72

CPU time (micro secs, log scale)

1.0E+00 T T T
100M, 5K 100M, 10K 1G, 5K 1G, 10K

cache size, avg.document size (bytes)

Figure 2: The performance of gsort () and heap-based cache replacement

It may appear that the heap structure should be built from scratch each time the cache replace-
ment is invoked because the profit function depends on the current time. In particular, the mean
reference rate estimate from (8) includes the value of current time to age documents which are
not referenced. However, in our implementation, we update the reference rate of a document only
if the document is accessed. In addition, we periodically use an “aging daemon” which generates
dummy references to all documents to age their reference rate estimates. Dummy references are
discarded once a “real” reference to the document is received. This implies that all these actions,
i.e., a document access or an aging daemon, require only reorganizations operations on the heap

which are cheaper than entire rebuilding operations.

16

4.2 Space Efficiency

The space efficiency of the LNC-R-W3-U algorithm is also an important issue because it needs to
maintain substantial bookkeeping with each document in order to evaluate its profit. In particular,
the LNC-R-W3-U algorithm needs to keep with every document four sliding windows: one with the
last K reference times, one with the last K distinct Last-Modified times, one with the last K delays
to fetch a document and one with the last K delays to perform a validation check for the document.
Storage of timestamps with a precision of seconds requires 4 bytes in most UNIX implementations.
Consequently, the number of bytes necessary for the bookkeeping of a single document is 16 - K.
For the optimal value of K determined in Section 5, K = 3, the resulting overhead is 48 bytes per

document.

Although 48 bytes overhead is relatively small compared to the average document size of 2.6 KB
found in our trace and identical to the average URL string size which must also be cached with every
document, it is possible to use standard compression techniques to the sliding window representation
in order to reduce their space overhead by almost a factor of four. Since most documents do not
require more then 256 seconds to fetch or validate, it is possible to use a single byte to store the
document fetch and validate delays. The reference time and validation time sliding windows must
keep the full timestamp in order to be able to take a difference with an absolute time in (8) and
(9). However, it is possible to keep the full timestamp only for the oldest sample in each window
and encode the remaining K — 1 samples as differences with the respect to the oldest timestamp.
Therefore, we can reduce the sliding window overhead down to 2- (4+ (K —1))+2-K =4- K +6.
For K = 3 we can reduce the overhead to 18 bytes per document. We are currently in the process of
implementing the compression techniques described above and evaluating its impact on the cache

performance.

17

4.3 Metadata Garbage Collection

A straightforward implementation of the LNC-R-W3-U algorithm may, however, lead to starvation
of documents having fewer than K reference samples. Since the reference rate estimates based on
fewer than K samples are less reliable, the LNC-R-W3-U cache replacement algorithm preferentially
evicts documents with fewer references. However, if the reference samples are discarded when the
corresponding document is evicted from the cache, then they must be collected again from scratch
the next time the document is cached. However, since the document is again likely to be selected
for replacement, it may be impossible to collect the necessary K samples to cache it permanently,
irrespective of its reference rate. To prevent the starvation, LNC-R-W3-U retains all metadata,
associated with a document (including all sliding windows) even after the document has been

evicted from the cache.

The metadata is garbage collected using the following rule:

The metadata associated with an evicted document is garbage collected from the cache

whenever the profit calculated using the metadata is smaller than the least profit among

all cached documents.

Clearly, retaining metadata related to documents with profits smaller than the least profit among all
cached documents does not lead to any performance improvement because such documents would

immediately become candidates for replacement, should they be cached.

18

5 Experimental Evaluation

5.1 Experimental Setup

5.1.1 Trace Characteristics

We evaluated the performance of LNC-R-W3-U on a client trace collected at Northwestern Univer-
sity. The trace represents a seven day snapshot (November 96) of requests generated by clients on
approximately 60 PC’s in a public lab at Northwestern University. The trace contains about 20K
requests. Browser cache hits and non-cacheable requests (e.g. URL’s containing “bin” or “cgi-bin”)
were filtered out from the trace. The browsers were temporarily adjusted so that all requests were
re-directed to a proxy cache where for each referenced URL, we recorded the time when the request
for the document arrives at the proxy, the time when the response to the request is received, the
time when proxy issued conditional GET for the document, the time when response for the con-
ditional GET was received, the size of the document and the values of Expires and Last-Modified

headers in the received response (if available).

To gain more insight into the nature of the client requests’ characteristics, we captured some of

the statistical properties of our traces. We concentrated on four aspects:

the dependence of reference rate on document size

the correlation between the delay to fetch a document to cache and the size of the document

the fraction of requests received with Expires and Last-Modified headers

the fraction of updated documents

Previously published trace analyses [10, 14, 20] show that small files are much more frequently
referenced than large files. Our traces exhibit the same characteristic as Figure 3a indicates. For

example, 25% of all client requests are for documents smaller than 1KB.

19

As discussed in Section 3, other researchers have observed a hyperbolic dependence between
document size and reference rate. In order to determine the skew of the hyperbola given by
parameter b in equation (7) we found the least-squares fit for a hyperbola on the trace data, which
determines the best value of b as 1.30. The comparison between the best-fit line and the real trace

data is shown in Figure 3b.

40

20

o

accumulative % of number of references

100 1000 10000 100000
document size

a. Request size distribution(log scale)
é 0004 * x>32<
3 XX
0] x ‘%xx «
T R
s 100—§ :
[
Qo
S
>
c 10—:
x

© 1000 10000
document size (in 128 byte bins)

b. Least squares fit(log scale)

Figure 3: Trace characteristics

The correlation between the document size and the delay to fetch the document is defined as:

20

B Cov(s,d)
Cor(s,d) = VVar(s) - Var(d) (12)

where Cov(s,d) is the covariance between size and delay, Var(s) is the variance of size and
Var(d) is the variance of delay. Cor(s,d) shows whether the delay to fetch a document to cache
varies across documents of similar size. Cor(s,d) = 1 indicates that delay is linearly dependent on
size. Consequently, there is no need for delay-sensitive caching as delay can be always determined
from size. On the other hand, Cor(s,d) = 0 indicates that there is no relationship between size
and delay and thus delay-sensitive caching is necessary. If most of the clients access primarily
local documents, we expect Cor(s,d) to be close to 1. On the other hand, if the clients access a
significant fraction of remote documents, we expect Cor(s,d) to be close to 0. We measured the
value Cor(s,d) on our trace as 0.2145, which is relatively low. Therefore, delay-sensitive caching

is indeed important.

We found that approximately 89% of documents in the trace contain Last-Modified timestamp,
approximately 7% of documents contain Expires timestamp and 90% of documents contain either

Last-Modified or Expires timestamp.

We regard a document as updated if its Last-Modified timestamp changed at least once within
the 7 day period studied in our trace. If a document was updated within the 7 day period, but was
not subsequently referenced, we have no means of ascertaining that the update occurred and thus
such updates are not captured in our trace. We found that approximately 6% of all documents

were updated and less than 2% out of these changed every day. (Figure 4).

Our results confirm the generally held belief that WWW is read-mostly environment and they
are in accord with the analysis of server-based traces reporting daily update rates in the range
0.5% - 2% [3, 17]. Tt is possible that a larger fraction of documents is updated if one considers also
dynamic CGI documents. However, since dynamic documents are not cacheable, such updates are

irrelevant for the results presented here.

21

documents with Last-Modified 89%

documents with Expires ™%

documents with Last-Modified or Expires | 90%

updated documents 6%

Figure 4: Update Trace Characteristics

5.1.2 Performance Metrics and Yardsticks

The delay saving ratio (DSR) defined in Section 3 is the primary cache performance metric in all
experiments. We also use hit ratio (HR) as a secondary performance metric. The hit ratio is defined

as a fraction of requests which were satisfied from cache.

We use staleness ratio (SR) as the primary cache consistency metric. The staleness ratio is
defined as a fraction of cache hits which return stale documents. We say that a document returned
by the cache to client is stale if the trace record corresponding to the request has a later Last-

Modified timestamp than the time when the document was brought to the cache.

We compared the performance of LNC-R-W3-U against plain LRU, LRU-MIN [1], and LNC-
R-W3 [24]. LNC-R-W3 corresponds to our algorithm without the cache consistency component.
Both LRU and LRU-MIN use a simple T'TL-based cache consistency algorithm which sets TTL to
either Expires - now if the Expires header is available or now - Last-Modified otherwise. These

algorithms correspond to the algorithms implemented in most proxy caches.

Similarly to LNC-R-W3-U, LRU-MIN also exploits the preference of Web clients for accessing
small documents. However, unlike LNC-R-W3-U, LRU-MIN does not consider the delays to fetch
documents to the cache and estimates reference rate to each document using only the time of last
reference. Whenever LRU-MIN needs to free space for a new document % of size s;, it first attempts

to select for replacement any document larger than s; (the documents are searched in the LRU

22

order). If no document has been found, LRU-MIN considers the lists of documents larger than

si/2, si/4, etc., in LRU order until enough space has been freed.

5.2 Experimental results

5.2.1 Infinite cache

We ran experiments with unlimited cache size in order to study the potential of caching on the
workloads in our trace. As the results in Figure 5 show, our trace exhibits reference locality (given
by hit ratios) similar to other previously published results [1, 14, 12]. The results in Figure 5 also
reveal that local documents exhibit a higher degree of reference locality than remote documents,
because the delay-saving ratios are lower than the corresponding hit ratios. Again, this is consistent

with similar findings in [10].

DSR HR | cache size

0.427 | 0.464 18MB

Figure 5: Performance with infinite cache

5.2.2 Fine-tuning LNC-R-W3-U

A common problem with many algorithms (including many commercial systems) is the existence of
“magic” fine-tuning knobs. When set properly, the algorithms perform better than simpler alter-
natives with fewer or no knobs, but poor setting may lead to a disastrous performance. Typically,
the user is granted the “privilege” to determine the optimal setting of such parameters given the
characteristics of his/her environment. Ideally, such parameters should be completely eliminated

from system design by allowing the systems to self-tune the parameters.
The LNC-R-W3-U algorithm has two such parameters: the size of sliding window K and the

23

skew of the dependence between reference rate and document size b. Although our implementa-
tion of LNC-R-W3-U is not self-tuning, we at least provide criteria for the users to set the two

parameters.

Selection of K

Increasing the value of K improves the reliability of reference rate estimates. Clearly, the
burstier the workload the larger value of K should be selected. On the other hand, large values of
K result in higher spatial overhead to store the reference samples. The transition from K =1 to
K = 2 is particularly sharp, since LNC-R-W3-U with K = 1 does not need to retain any reference
samples after eviction of corresponding documents. Thus we expect the best performance for small
values of K, larger than 1. The results (Figure 6) confirm our expectations. With cache size 2%
of the total size of all documents, setting K=3 leads to best performance as shown in Figure 6a.
The improvement of delay saving ratio relative to K=1 is 4.1%. Figure 6b confirms that also for
other cache sizes the best performance is achieved with small values of K (marked by white bar).

Therefore, we conjecture that K should be set to 2 or 3 to obtain the best performance.

Selection of b

As explained in Section 3, parameter b determines the skew of dependence of reference rate on
document size. The higher the value of b, the stronger the preference of clients to access small
documents. In Section 5.1.1 we determined b = 1.30 as the best fit for the data in our trace.
However, since we found the best fit of Section 5.1.1 relatively noisy, we validated the prediction
also experimentally. Figure 7a confirms the prediction for cache size 2% of the total size of all
documents. White bars in Figure 7b show the optimal values of parameter b for other cache sizes.
In most cases the measured optimal values are close to the predicted optimum b = 1.30. Because
other Web client traces exhibit similar skew of dependence of reference rate on document size [10],

we conjecture that for best performance on most web workloads b should be set between 1 and 2.

24

0.36 +
0.355 +
0.35 +
@
» 0.345 +
a)
0.34 +

0.335

0.33

b. K on all cache sizes

Figure 6: Impact of K on DSR

5.2.3 Cache Performance Comparison

We compared the performance of LNC-R-W3-U with LRU, LRU-MIN and LNC-R-W3. For both
LNC-R-W3-U and LNC-R-W3 we used the optimal setting of b =1.3 and K=3. As Figure 8
indicates, LNC-R-W3-U provides consistently better performance than LRU and LRU-MIN for all
cache sizes. And its performance is very close to that of LNC-R-W3 which does not make any effort

to enforce consistency.

In terms of delay-savings ratio, LNC-R-W3-U gives on average 38.3% improvement over LRU

and 9.8% improvement over LRU-MIN. The maximal improvement over LRU and LRU-MIN is

25

0.375 +
037 +
0.365 -+
0.36 +

@ 0355
8 o031
0.345 1
034+
0.335 -+

0.33

cache size(%)

b. b on different cache size

Figure 7: ITmpact of b settings on DSR

67.8% and 17.4% for cache size 2.0% and 1.0% respectively. On average, the delay-savings ratio of
LNC-R-W3-U is only 1.0% below the DSR of LNC-R-W3. In the worst case, DSR of LNC-R-W3-U
is 2.5% below the DSR of LNC-R-W3 for cache size 10.0%. The delay-savings ratio comparison

can be found in Figure 8a.

Although LNC-R-W3-U is not designed to maximize the cache hit ratio, it still provides an
improvement over LRU and LRU-MIN as shown in Figure 8b. In particular, the average improve-
ment is 43.4% over LRU and 4.5% over LRU-MIN. The hit ratio of LNC-R-W3-U provides even
closer to the hit ratio of LNC-R-W3; on average 0.4% and no more than 0.6% below the hit ratio

of LNC-R-W3.

26

0.45

0.4 |
0.35 +]
03 | = BOLNC-R-W3-U
5 0% | BURUMN
o 02+)
0.15 + OLRU
0.1 +
0.05 +
0 m - L1}
0.2 0.5 1 2 5 10
cache size (%)
a. Delay-Savings Ratio
] OLNC-R-W3-U
BELNC-R-W3
OLRU-MIN
OLRU

0.2 0.5 1 2 5 10
cache size (%)

b. Hit Ratio

Figure 8: Performance comparison

In addition to improving performance of the cache, the LNC-R-W3-U algorithm also signifi-
cantly improves its consistency. On average, LNC-R-W3-U achieves a staleness ratio which is by
factor of 3.2 better than the SR of LNC-R-W3, in the worst case it improves SR of LNC-R-W3 by
factor of 1.9 when cache size is 0.5%. LNC-R-W3-U also improves the stale ratios of both LRU and
LRU-MIN. On average, LNC-R-W3-U achieves a staleness ratio which is 47.8% better than the SR
of LRU and 54% better than the SR of LRU-MIN. In the worst case, it improves SR of LRU by

10.2% when cache size is 0.5% and improves SR of LRU-MIN by 8% when cache size is 2.0%. The

27

staleness ratio comparison of all four algorithms can be found in Figure 9.

0.035
0.03 |
0.025 + ELNC-R-W3-U
L 002 ELNC-R-W3
B o015 | OLRU-MIN
OLRU

0.2 0.5 1 2 5 10

cache size (%)

Figure 9: Staleness Ratio

6 Conclusion

We have described the design and implementation of a new unified procedure for cache maintenance,
LNC-R-W3-U, which incorporates components for cache replacement and consistency maintenance

for Web proxies. We see three main contributions of our work:

e We demonstrated that it is indeed important to consider the communication delays in cache
replacement. We show that the LNC-R-W3-U algorithm improves the performance (delay
saving ratio) on average by 38.3% when compared to LRU and 9.8% when compared to

LRU-MIN.

e We showed the importance of considering cache replacement and consistency algorithms which
cooperate. The integrated solution improves cache staleness on average by 47.8% when com-

pared to LRU and 54% when compared to LRU-MIN.

e We demonstrated that cost-based cache replacement algorithms can be implemented in an

industrial-strength cache proxy with no slowdown.

28

In addition, we justify the choice of our cost function theoretically and, in contrast to other

algorithms, we introduce only two fine-tuning knobs for which we provide default setting criteria.

In the near future we plan to finalize testing and full integration of LNC-R-W3-U library with
the Apache 1.2.6 code base and make the source code available to the public. Our procedure can
be easily integrated any commercial cache proxy since it does not require any extensions to the

HTML protocol or to any changes to the servers.

Our experiments have indicated that the hit ratio cannot be improved over 47% even with an
infinite cache, an observation which is consistent with that of other researchers in this field. On
alternative way to increase the hit ratio is by using replicated servers [22]. Replicated servers are
more complex to manage and they do require changes to the HTML or the server code; on the other
hand they also bring additional advantages for reliability purposes. We are currently studying the

various tradeoffs involved between proxy caches and replicated servers.

References

[1] M. Abrams, C. Standridge, G. Abdulla, S. Williams, E. Fox, “Caching proxies: Limitations

and potentials”, Proc. 4th International World Wide Web Conference, 1995.

[2] Apache 1.2.6 HTTP server documentation, available at http://www.apache.org/, 1998.

[3] A. Bestavros, “Speculative Data Dissemination and Service”, Proc. 12th International Con-

ference on Data Engineering, 1996.

[4] J. Bolot and P. Hoschka, “Performance Engineering of the World Wide Web: Application to

Dimensioning and Cache Design”, Proc. 5th International World Wide Web Conference, 1996.

[5] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms”, Proc. USENIX Sym-

posium on Internet Technologies and Systems, 1997.

29

[6]

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. Cate, “Alex- a global file system”, Proc. 1992 USENIX File System Workshop, 1992.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, K. Worrell, “A hierarchical In-
ternet object cache”, Proc. USENIX 1996 Annual Technical Conference, also available at

http://excalibur.usc.edu/cache-html/cache.html.

E. Coffman and P. Denning, Operating Systems Theory, Prentice-Hall, 1973.

A. Cormack, “Web Caching”, available at

http://www.nisc.ac.uk/education/jisc/acn/caching.html, 1996.

C. Cunha, A. Bestavros, M. Crovella, “Characteristics of WWW Client-based Traces”, Tech-

nical Report TR-95-010, Boston University, Apr. 1995.

A. Dingle and T. Partl, “Web Cache Coherence”, Proc. 5th International World Wide Web

Conference, 1996.

B. Duska, D. Marwood, M. Feeley, “The Measured Access Characteristics of World-Wide-Web

Client Proxy Caches”, Proc. USENIX Symposium on Internet Technologies and Systems, 1997.

M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, 1979.

S. Glassman, “A caching relay for the World Wide Web”, Computer Networks and ISDN

system, Vol 27, 1994.

Jigsaw 2.0 HTTP server documentation, available at http://www.w3c.org/Jigsaw/, 1998.

B. Krishnamurthy and C. Wills, “Piggyback Server Invalidation for Proxy Cache Coherency”,

Proc. the Tth International World Wide Web Conference, 1998.

J. Gwertzman and M. Seltzer, “World-Wide Cache Consistency”, Proc. USENIX 1996 Annual

Technical Conference, 1996.

30

[18] C. Liu and P. Cao, “Maintaining Strong Cache Consistency in the World-Wide Web”, Proc.
17th International Conference on Distributed Computing Systems, 1997.

[19] S. Manley and M. Seltzer, “Web Facts and Fantasy”, Proc. USENIX Symposium on Internet
Technologies and Systems, 1997.

[20] Daniel O’Callaghan, “A Central Caching Proxy Server for WWW users at the University of
Melbourne”, available at http://www.its.unimelb.edu.au:801/papers/AW12-02/.

[21] E. O’Neil, P. O’Neil, G. Weikum, “The LRU-K page replacement algorithm for database disk
buffering”, Proc. ACM SIGMOD International Conference on Management of Data, 1993.

[22] M. Sayal, Y. Breitbart, P. Scheuermann, R. Vingralek, “Selection Algorithms for Replicated
Web Servers”, Proc. Workshop on Internet Server Performance, 1998.

[23] P. Scheuermann, J. Shim, R. Vingralek, “WATCHMAN: A Data Warehouse Intelligent Cache
Manager”, Proc. 22nd International Conference on Very Large DataBases, 1996.

[24] P. Scheuermann, J. Shim, R. Vingralek, “A Case for Delay-Conscious Caching of Web Docu-
ments”, Proc. 6th International World Wide Web Conference, 1997.

[25] Squid 1.1.21 Internet Object Cache Documentation, available at
http://squid.nlanr.net/Squid/, 1998.

[26] R. Wooster and M. Abrams, “Proxy Caching That Estimates Page Load Delays”, Proc. 6th
International World Wide Web Conference, 1997.

Appendix

We provide a proof of theorem 1 from Section 3.

Theorem 2 Among all sets of documents satisfying (4), the Optim algorithm finds the one which

satisfies (1).

31

Proof: Let I # I* be an arbitrary subset of documents satisfying (4). We will show that } ;. r; -
di —uj-c; <Y e« i di —u; - ¢;. Since Optim selects retrieved sets with maximal profit, it follows

that

Z’f'i'di—’u,i'ci<Z’f'i'di—’u,i'ci (13)

el

We can assume that I* N T = (). If not, then the intersecting elements can be eliminated from both

sets while preserving (13). We define

Tmin * Gmin — Umin * Cmin . T di —u; ¢
= mingepr——— (14)
Smin Si
Tmaz * Gmaz — Umaz * Cmaz ri - di —u; ¢
= mazije————— (15)
Smaz Si

Since I* contains retrieved set references with maximal % and I* N I = (), it must be true
3

that Tmin @min =Umin Cmin > Tmaz "dmazr —Umaz Cmaz Consequently
il .)

Smin Smazx

Z riod; — - c; > Tmin * @min — Umin * Cmin S > Tmaz * Smaz — Ymaz * Cmaz S > Zri‘di—uz"Ci
il Smin Smax el

(16)
Therefore, we have shown that the document set I* selected by Optim indeed satisfies (1). O

32

