
Improved Single-Round Protocols for
Remote File Synchronization

Utku Irmak Svilen Mihaylov Torsten Suel

CIS Department
Polytechnic University
Brooklyn, NY 11201

uirmak@cis.poly.edu, smihay01@utopia.poly.edu, suel@poly.edu

Abstract— Given two versions of a file, a current version
located on one machine and an outdated version known only to
another machine, the remote file synchronization problem is how
to update the outdated version over a network with a minimal
amount of communication. In particular, when the versions are
very similar, the total data transmitted should be significantly
smaller than the file size. File synchronization problems arise
in many application scenarios such as web site mirroring, file
system backup and replication, and web access over slow links.
An open source tool for this problem, called rsync and included in
many Linux distributions, is widely used in such scenarios. rsync
uses a single round of messages between the two machines. While
recent research has shown that significant additional savings in
bandwidth consumption are possible through the use of optimized
multi-round protocols, there are many scenarios where multiple
rounds are undesirable.

In this paper, we study single-round protocols for file syn-
chronization that offer significant improvements over rsync. Our
main contribution is a new approach to file synchronization based
on the use of erasure codes. Using this approach, we design
a single-round protocol that is provably efficient with respect
to common measures of file distance, and another optimized
practical protocol that shows promising improvements over rsync
on our data sets. In addition, we show how to obtain moderate
improvements by engineering the rsync approach.

I. INTRODUCTION

Consider the problem of maintaining replicated collections
of files, such as user files, web pages, or documents, over
a slow network. In particular, assume that we have two
machines, A and B, that each hold a copy of the files, and
that files may have been updated at one of the machines. Pe-
riodically, a machine may initiate a synchronization operation
that updates all its replicas to the latest version. This operation
involves identifying all files that have changed, deciding which
version of the file is the latest one (if files can be changed at
either location), and finally updating any outdated files. Or
alternatively, when a particular file is accessed, a machine
may have to update its local version of the file. If the file
or file collection is large or the network fairly slow, then it
is desirable to perform this synchronization with a minimum
amount of communication over the network.

The above scenario arises in a number of applications, such
as synchronization of user files between different machines,
distributed file systems, remote backups, mirroring of large
web and ftp sites, content distribution networks, or web access,

to name just a few. In many cases, updated files differ only
slightly from their previous version; for example, updated web
pages usually change only in a few places. In this case, instead
of sending the entire updated version over the network, it
would be desirable to perform the update by sending only an
amount of data proportional to the degree of change between
the two versions.

In this paper, we focus on this problem of updating files in a
bandwidth efficient manner; we refer to this as the remote file
synchronization problem. We note that there is a very widely
used open source software tool called rsync, included in many
Linux distributions, that addresses this problem and that is
based on the rsync algorithm and protocol described in [39],
[41]. Another popular tool called unison [28] also uses the
same basic algorithm. Our goal is to derive new algorithms
that achieve significant savings over the rsync algorithm in the
case of slow networks. We focus on approaches that exchange
only a single round of messages between the machines holding
the outdated and current version of a file; such approaches are
preferable in a number of scenarios as discussed later.

Before continuing, we point out a few assumptions. We
assume that collections consist of unstructured files that may
be modified in arbitrary ways, including insertion and deletion
operations that change line and page alignments between
different versions. Thus, approaches that identify changed disk
pages or bit positions or that assume fixed record boundaries
do not work – though some of them are potentially useful
for identifying those files that have been changed and need
to be synchronized. We note that the problem would also
be easier if all update operations to the files are saved in
an update log that can be transmitted to the other machine,
or if the machine holding the current version has a copy of
the outdated version. However, in many scenarios this is not
the case. We are not concerned with issues of consistency in
between synchronization steps, and with the question of how
to resolve conflicts if changes are simultaneously performed at
several locations (see [3], [29] for a discussion). We assume a
simple two-party scenario where it is known which files need
to be updated and which is the current version of a file.



A. Applications

We now discuss the most common application scenarios for
file synchronization techniques.

• Synchronization of user files: Both the rsync and uni-
son tools are widely used to synchronize personal files
between different machines, say between a machine at
home and one at work, that may only be connected over
a slow network such as a modem.

• Web and ftp site mirroring: rsync is widely used to
mirror busy web and ftp sites, including sites distributing
new versions of software. In this case, there may be
significant similarities between successive versions of a
software package that allow a mirror to efficiently update
to the newest release.

• Content distribution networks: Several companies in
the CDN space have studied and deployed file syn-
chronization techniques similar to rsync. We are not
aware of any published work in this direction, but file
synchronization techniques are a natural approach for
updating content replicated at the network edge or at
several location of a company intranet.

• Web access over slow links: A user revisiting a web
page may already have a previous version of the page
in the browser cache, and it would be desirable to avoid
transmission of the entire updated version. This idea is,
e.g., implemented in the rproxy system [40], which uses
the rsync algorithm to efficiently update pages that are
being revisited.

In addition, there are several other scenarios where the tech-
niques could be employed, such as replication of content in a
P2P or grid environment, sharing of large web page archives
for mining and web search, distributed backup, or wide-area
distributed file systems.

B. Problem Formalization

The setup for the file synchronization problem is as follows.
We have two files (strings) fnew, fold ∈ Σ∗ over some
alphabet Σ (most methods are character/byte oriented), and
two machines C (the client) and S (the server) connected by
a communication link. We also refer to fold as the outdated
file and to fnew as the current file. We assume that C only
has a copy of fold and S only has a copy of fnew. Our goal is
to design a protocol between the two parties that results in C
holding a copy of fnew, while minimizing the communication
cost. We limit ourselves to a single round of messages between
client and server, and measure communication cost in terms
of the total number of bits exchanged between the two parties.

For a file f , we use f [i] to denote the ith symbol of f ,
0 ≤ i < |f |, and f [i, j] to denote the block of symbols from i
up to (and including) j. We assume that each symbol consists
of a constant number of bits. All logarithms are with base 2,
and we use �p�2 and �p�2 to denote the next larger and next
smaller power of 2 of a number p.

The communication cost incurred by the protocol should
depend on the degree of similarity between the two files.

Similarity is usually defined in terms of one of a number of
edit distance measures that have been proposed. Some of the
most common ones are:

• The Hamming distance between two files f, f ′ of equal
length is defined as the number of positions i with
f [i] �= f ′[i]. Hamming distance is not a good model for
unstructured files (as opposed to record-based data) since
inserting a symbol at the beginning and deleting one at the
end would result in a very large distance due to alignment
issues.

• The edit distance (also called Levenshtein distance) is
the smallest number of insertions, deletions, and changes
of single symbols needed to transform one file into the
other.

• The edit distance with block moves is the smallest number
of insertions, deletions, and changes of single symbols or
moves of blocks of symbols needed to transform one file
into the other. For technical reasons, we assume that each
block move operation adds 3 to the distance, while other
operations add 1.

There are a number of other distance measures that have been
proposed; see [8], [7], [10] for example. We focus mainly on
the edit distance with block moves, which seems powerful
enough to be used as a reasonable model of file similarity,
but still simple enough to work with. We note that even more
powerful models, such as models allowing block copies and
deletions of blocks, are much harder to analyze and known
upper bounds for these cases are often significantly worse [8],
[7], [10].

We call a file synchronization protocol feasible if it can
be implemented with a polynomial amount of computation
(including the cost of decoding the current file at the receiver).
A protocol is communication-efficient if it communicates at
most O(k lgc(n)) bits, for some constant c, where k is the
distance between the two files according to some distance
measure and n is the length of the current file. (An upper
bound for k may or may not be known at the start of the
protocol.) We note that a lower bound of Ω(k lg n)) bits holds
for all of the above distance measures. We assume that both
machines have access to a random hash function, and we
are interested in protocols that succeed with some fairly high
probability p.

C. State of the Art

We now briefly summarize the current state of the art in
file synchronization techniques; some additional discussion of
related work is provided in Section IV.

There are several very strong theoretical results on the
communication complexity of the file synchronization problem
(sometimes also called the document exchange or correlated
files problem), which establish the existence of asymptotically
optimal protocols consisting of one or two rounds [24], [25],
[8], [7]. Some of the results model file similarity using a
very general framework based on bipartite graphs [24], while
others assume various edit distance measures. However, the



proposed algorithms are not implementable in practice, as they
assume that the receiver can invert a hash function over a large
domain in order to decode the current version of the file;
this assumption appears to be fundamental to the approach.
Within this framework, Orlitsky and Viswanathan [26] also
showed a relationship between Error Correcting Codes for
noisy channels and file synchronization that may be on some
level related to our erasure-based approach.

The already mentioned rsync algorithm uses a single round
of communication, consisting of a request by the machine
holding the outdated copy, and the encoded reply from the
machine holding the current copy. A more detailed description
is given in Section II. As rsync is widely used, it clearly pro-
vides a useful improvement over the alternative of transmitting
the entire file. However, rsync does not guarantee any strong
performance bounds with respect to common file distance
measures.

A number of authors have proposed multi-round algo-
rithms for file synchronization based on divide-and-conquer
approaches. The earliest such result in [33] in fact predates
rsync, and subsequently a number of such algorithms have
been proposed and analyzed [8], [7], [10], [25], [15], [37],
[22]. The algorithms can be efficiently implemented (i.e.,
do not require inverting a hash function), and most can be
shown to be communication-efficient with respect to one of
the common file distance measures. A simple example of
such an algorithm and its analysis is given in Section III.
A recent study of an optimized implementation of multi-
round synchronization in [37] shows that such approaches can
achieve significant improvements in bandwidth use over rsync,
often by a factor of 2 to 3. However, none of these algorithms
appear to be currently implemented in any widely used tools.

Very recent and independent work by Chauhan and Tracht-
enberg [6] has proposed an approach for file synchronization
based on a reduction to the set reconciliation problem. The
algorithm works in two rounds and achieves provable bounds
with respect to certain graph-based measures, but it is not
communication-efficient according to the above definition in
the worst case.

Thus, the rsync algorithm appears to be the best single-
round algorithm currently known, but there is significant room
for improvements in its bandwidth use. Multi-round protocols
are suitable when dealing with large files, or with large
collections of files since the multiple communication rounds
are not incurred on a per-file basis but can be overlapped for
different files. However, single-round protocols are preferable
in many scenarios involving small files or large latencies, for
example the web access application where a single HTML
page is retrieved over a high-latency modem connection. In
addition, single-round protocols can be more easily integrated
into existing tools currently relying on rsync, and multi-round
protocols can introduce other complications due to state that
may have to be kept at the server for best performance [22].
Finally, multi-round protocols tend to have higher overhead at
the endpoints as they may take multiple passes over the input.

D. Contributions of this Paper

In this paper, we study single-round protocols for file syn-
chronization. Our goal is to achieve significant improvements
in practice over rsync, which is currently still the best single-
round protocol. Our contributions are:

(1) We explore several techniques for optimizing and tuning
the rsync approach, in particular use of delta com-
pression, tuning of the hash value bit strength, use
of content-dependent block boundaries, and multiple
alignments of block boundaries. Our study shows that
some gains over the current rsync implementation are
possible.

(2) We describe a new approach to single-round file syn-
chronization based on the use of erasure codes. Using
this approach, we derive a protocol that communicates at
most O(k lg(n) lg(n/k)) bits on files with edit distance
with block moves of at most k. To our knowledge this is
the first single-round protocol that is both feasible and
communication-efficient.

(3) Using the same approach, we derive another algorithm
and an optimized implementation that achieves very
promising improvements over rsync on a range of test
data. The results are still preliminary and we expect
additional improvements in the final version of this
paper.

Throughout this paper, we focus on optimizing bandwidth con-
sumption. Communication latency is not an issue in our case
since all algorithms operate in a single round. However, there
are two other types of overhead that may also be significant in
certain cases: (a) CPU cost due to hash computation and data
structure insertions and lookups, and (b) the cost of scanning
the file system and retrieving files. The latter cost, which can
be very significant when synchronizing large directory trees
with few changes, is the same for all discussed methods. (A
significant reduction in this cost might be possible through
maintenance of check sum hashes for files and directories to
allow efficient identification of updated files, and is outside
the scope of this paper.) The CPU cost is moderate for all
our methods, but a detailed comparison using optimized data
structures and hash computations remains to be done.

In the next section, we describe the rsync algorithm and
evaluate some possible optimizations. Section III proposes and
evaluates our new approach to file synchronization based on
erasure codes. Finally, Section IV discusses related work, and
Section V contains concluding remarks.

II. OPTIMIZING THE rsync APPROACH

In this section, we describe the rsync algorithm and then
discuss and evaluate a few ideas for tuning the performance of
the approach. Our conclusion is that while moderate improve-
ments are possible, more significant ones probably require a
different approach.



A. The rsync Algorithm

The basic approach in rsync, as well as most other file
synchronization algorithms, is to split a file into blocks and
use hash functions to compute hashes or “fingerprints” of the
blocks. These hashes are then sent to the other machine, where
the recipient attempts to find matching blocks in its own file.
One issue is the lack of alignment between matching blocks in
the two files; this is addressed by comparing received hashes
not just with the corresponding block in the other file, but
with all substrings of the same size. For efficiency, hashes
are composed from two different hash functions, a fast but
unreliable one, and a very reliable one that is more expensive
to compute. The steps in rsync are as follows:

Figure II.1. The rsync algorithm on a small example. The client sends a
set of hashes while the server replies with a stream of literals and indices
identifying hashes.

1. At the client:

(a) Partition fold into blocks Bi = fold[ib, (i + 1)b − 1] of
some block size b.

(b) For each block Bi, compute two hashes, ui = hu(Bi)
and ri = hr(Bi), and communicate them to the server.
Here, hu is a heuristic but fast hash function, and hr is
a reliable but expensive hash.

2. At the server:

(a) For each pair of received hashes (ui, ri), insert an entry
(ui, ri, i) into a dictionary, using ui as key.

(b) Perform a pass through fnew, starting at position j = 0,
and involving the following steps:

(i) Compute the unreliable hash hu(fnew[j, j +b−1])
on the block starting at j.

(ii) Check the dictionary for any block with matching
unreliable hash.

(iii) If found, and if the reliable hashes match, transmit
the index i of the matching block in fold to the
client, advance j by b positions, and continue.

(iv) If none found, or if the reliable hash did not match,
transmit symbol fnew[j] to the client, advance j by
one position, and continue.

3. At the client:

(a) Use the incoming stream of symbols and indices of
hashes in fold to reconstruct fnew.

The process is illustrated in Figure II.1. All symbols and
indices sent from server to client in steps (iii) and (iv) are also
compressed using an algorithm similar to gzip. A checksum on
the entire file is used to detect the (fairly unlikely) failure of
both checksums, in which case the algorithm could be repeated
with different hashes, or we simply transfer the entire file in
compressed form. The reliable checksum is implemented using
MD4 (128 bits), but only two bytes of the MD4 hash are
used since this provides sufficient power for most file sizes.
The unreliable checksum is implemented as a 32-bit “rolling
checksum” that allows efficient sliding of the block boundaries
by one character, i.e., the checksum for f [j + 1, j + b] can be
computed in constant time from f [j, j + b− 1]. Thus, 6 bytes
per block are transmitted from client to server.

B. Discussion of rsync Performance

Clearly, the choice of block size is critical to the per-
formance of the algorithm, but the best choice depends on
the degree of similarity between the two files. Moreover, the
location of changes in the file is also important. If a single
character is changed in each block of fold, then no match
will be found by the server and rsync will be completely
ineffective; on the other hand, if all changes are clustered in
a few areas of the file, rsync will do well even with a large
block size. Given these observations, some basic performance
bounds based on block size and number and size of file
modifications can be shown. However, rsync does not have
any good performance bounds with respect to common file
distance measures.

In practice, rsync uses a default block size of 700 bytes
except for very large files where a block size of

√
n is used.

Decreasing the block size to 100 bytes or less is usually not
practical: if one out of three hashes finds a match, this means
that 18 bytes of hashes are transmitted for each discovered
match, while simply applying gzip to the unmatched blocks
might result in a reduction to about 25 bytes on average. We
note that it is not difficult to find settings for the block size
that perform significantly better than the rsync default size on
particular data sets, but this by itself cannot be claimed as an
improvement over rsync unless we get gains over a significant
range.

Another way to improve performance without adding extra
round-trips is to use fewer bits per hash. However, a version of
the birthday paradox provides a limit to this approach: Given
two files of length n, where n/b hash values are compared
to the hashes of all n − b + 1 blocks of size b in the other
file, we need about lg(n) + lg(n/b) bits per hash in order
to have an even chance of not having any false match, while
approximately lg(n) + lg(n/b) + d bits are needed to get a
probability less than 1/2d of having any false match between
the files. (We state approximate bounds here for simplicity.)



C. Some Basic Optimizations and their Performance

We now explore a few possible optimizations of the rsync
approach. We start with two fairly obvious ones: (1) use of a
better compressor for literals, and (2) a better choice of the
number of bits per hash.

In the first optimization, we replace the gzip algorithm
used for the transmission of the unmatched literals and the
match tokens in rsync with an optimized delta compressor.
A delta compressor is a tool that compresses one file called
target file with respect to another, usually similar, file called
reference file. The resulting delta is essentially a description
of the differences between target and reference file, with the
property that the target file can be reconstructed from the delta
and the reference file. In our modification of rsync, the server
creates a reference file from the contents of all matched blocks,
then compresses the current file with respect to this reference
file, and transmits the resulting delta to the client. In addition,
the server sends a (possibly compressed) bit vector telling the
client which of its hash values has found a match, allowing
the client to create the same reference file and then decode
the current file.

Use of a delta compressor has two advantages: First, it
exploits redundancies between unmatched and matched parts
of the current file; we note that the idea of exploiting this
redundancy was already discussed by Tridgell [39]. Second,
an optimized delta compressor may provide a more efficient
way to encode offsets and indices than the tokens in rsync.
(This also simplifies implementation and evaluation of our
various methods by allowing us to sidestep the issue of
how to optimize the representation and compression of these
tokens.) We used the zdelta delta compressor [38], available
at http://cis.poly.edu/zdelta/, which is highly
efficient and achieves particularly good compression for small
to medium size files. For large files beyond a few megabytes,
a compressor such as vcdiff [13], which can capture global
reorderings of substrings, would be preferable.

The second optimization chooses the number of bits in the
hashes as a function of the file size (for the moment, assume
both files are of similar size). In particular, we assume some
upper bound on the probability of a collision, say 1/2d for
some d, and then use lg(n) + lg(n/b) + d bits per hash. Of
those bits, up to 32 are chosen from the weak but fast hash,
and the rest from the slow hash.

We now compare basic rsync with a version using zdelta
and with a version using both zdelta and shorter hash values
for d = 10. For the experiments, we used the gcc and emacs
data sets also used in [11], [37], consisting of versions 2.7.0
and 2.7.1 of gcc and 19.28 and 19.29 of emacs. The newer
versions of gcc and emacs consist of 1002 and 1286 files, and
each collection has a size of around 27 MB. In each case we
measured the cost of updating all files in the older version to
the newer one. Total communication cost is divided into two
parts: the read size is the data sent from client to server (mostly
hashes), while the write size is the data sent from server to
client (mostly the delta).

Figure II.2. Results of the first two optimizations on the gcc collection, for
various block sizes.

Figure II.3. Results of the first two optimizations on the emacs collection,
for various block sizes.

The results are shown in Figures II.2 and II.3. We note
that gcc has a much larger degree of similarity between the
different versions than emacs. As a result, there are fairly
few unmatched literals in gcc even with fairly large block
sizes, and it is not profitable to spend extra bits on sending
hashes for a smaller block size. The best block size for gcc is
close to the default size of 700 bytes in rsync. For emacs, the
best block size is fairly small, between 100 and 200, as this
results in many additional matches that are not caught with
larger block sizes. In general, the results show that there is
no one optimal block size, and that the choice depends on the
data. However, we see consistent improvements due to the two
optimizations. We see improvements of 10% to 15% across the
various block sizes, with improvements due to shorter hashes
more prominent for small block sizes, since in this case the
cost of the hashes is relatively higher.

Next, we look at the actual rate of collisions that we
encounter with the shorter hash values, and their impact on
performance. As in rsync, we assume that a 16-byte hash of the
entire current file is transmitted to the client in order to detect
any corruption due to false matches; in case of corruption
the entire file is retransmitted encoded by gzip. We look at



d % match file coll coll size gzip(coll) total
5 92.15 3.00 3.79 283909 997797
6 92.15 1.40 1.66 126869 846825
7 92.15 0.40 0.17 14845 740626
8 92.15 0.30 0.11 8998 740536
9 92.15 0.10 0.01 1627 738821
10 92.15 0.00 0.00 0 742971
5 92.14 0.20 0.24 19274 734323
6 92.13 0.00 0.00 0 720828
7 92.13 0.00 0.00 0 726476
8 92.13 0.00 0.00 0 732233
9 92.13 0.00 0.00 0 737889
10 92.13 0.00 0.00 0 743666

Table II.1

TOTAL PERCENTAGE OF FILE SIZE COVERED BY MATCHES, PERCENTAGE

OF CORRUPTED FILES DUE TO HASH COLLISIONS, SIZE OF CORRUPTED

FILES AS PERCENTAGE OF COLLECTION, COST OF RETRANSMISSIONS

USING gzip, AND TOTAL COST OF THE ALGORITHM IN BYTES, FOR gcc

WITH VARIOUS CHOICES OF d. THE FIRST 6 ROWS ARE FOR “NO-SKIP”

AND THE OTHERS FOR “SKIP”. THE BLOCK SIZE IS 600 BYTES.

two different implementations of the match discovery process
at the server: “skip” is the implementation currently used in
rsync where after each matched block we move our window
to the end of the block, thus disallowing overlapping matches
in the current file, while “no-skip” also looks for overlapping
matches.

The results are shown in Table II.1. We see that as expected
“skip” has significantly fewer collisions and file corruptions
than “no-skip” and also fewer than predicted by our choice of
k since it does not compare to all blocks in the current file.
Thus, “skip” is the better option also in terms of bandwidth
as it allows use of shorter hashes.

D. Variable-Size Blocks

Our next idea for improving performance is to use variable-
size instead of fixed-size blocks. In particular, we evaluate the
use of Karp-Rabin fingerprints [12] to determine the block
boundaries, inspired by recent work [30], [34], [21], [9] that
uses these techniques in other scenarios. This is done by
moving a small window (e.g., of size 20 bytes) over each
file. For each byte position of the window, we hash the content
using a simple random hash function (not identical to the block
hash). If the hash value is 0 mod b (say, b = 256), then we
introduce a block boundary at the end of the current window.

We use this technique to partition both fold and fnew. The
purpose of the small window is to define block boundaries in
a content-dependent manner. Thus, when a substring in one
file contains a block boundary, then if the same substring
also appears in another file, it will also contain the same
block boundary. The advantage of this technique for file
synchronization is that we do not have to compare each
hash from fold to all alignments in fnew, but only to those
corresponding to blocks in fnew. Thus, the number of bits per
hash can be reduced by lg(b) to a total of 2 lg(n/b) + d for
expected block size b. Since b is typically a few hundred bytes,

hash

block 1 block 3block 2

abacabcadabcbbdadacbacddaccb ...

xxx1562057121245623037214652 ...  

Figure II.4. Use of Karp-Rabin fingerprints to partition a file into blocks.
In this case, a window of size four bytes is moved over the file and at each
position a hash h() of the window is computed. Hash values are in the range
{0, . . . , 7}, and a block ends whenever we have a hash value of 0 mod 8.
Thus, the expected block size is 8 bytes unless there are repetitive patterns
in the file.

this can result in nontrivial reductions in the cost of sending
the hashes.

We experimented with two implementations. In one, we
defined block boundaries as above, by introducing a block
boundary at the end of the current window if the window
hashes to 0 mod b. In the second implementation, we use
overlapping blocks by including both the boundary window to
the right and to the left in each block. We also experimented
with an alternative partitioning rule proposed in [32] that
guarantees a lower variation in block sizes, but this did not
result in any improvements.

E. Matches with Half-Block Alignment

We studied one other optimization that goes a little beyond
the standard rsync framework. The goal is to try to address two
common shortcomings in rsync: (1) Suppose we have hashes
for two consecutive blocks that do not find a match at the
server, but if we had a hash for a block of the same size that
goes from the middle of the first block to the middle of the
second block, it might be possible to find a match. In general,
we would like to be able to find matches of large enough size
that go across the block boundaries, at least for a selected set
of alignments. (2) Having identified a match of one block, we
should be able to efficiently extend such a match, say, into one
half of the neighboring block, even if the whole neighboring
block does not find a match. This is basically the idea behind
the continuation hashes proposed in [37], that far fewer bits
are needed if a hash is only compared to one block position
in the other file, in this case the position adjacent to a known
match.

However, implementing these ideas in a single round is
tricky, and we can not get everything we want. We take the
following approach: We partition the client file into blocks of
fairly small size b′ (say, half the size b that we would usually
select under rsync), but send far fewer bits per hash (only about
half as many). At the server, we look for matches in the other
file, but we only accept matches that are part of a sequence of
at least 2 consecutive matches. The reason is that the number
of hash bits per single block is not large enough to identify



isolated matches with confidence. To get a probability of less
than 1/2d of a false match in the file, we need to satisfy two
conditions on the number of hash bits h per block:

2h ≥ lg(n) + lg(n/b) + d and h ≥ lg(n/b) + d.

The first condition assures that two consecutive block matches
suffice to identify a valid match, while the second condition
assures that we can extend a match by single blocks to the left
and right without too much danger of a false match. We note
that instead of choosing blocks of half the usual size, other
settings are possible to recognize various other alignments not
exploited by rsync, but we did not find significant benefits
in this. The above algorithm, which we refer to as half-block
alignment, is basically a fairly crude way to exploit the fact
that matches in files are clustered and that adjacent blocks in
one file are more likely to match with adjacent blocks in the
other file than with blocks that are far away from each other.
We implemented this method for d = 10 and also checked
that the frequency of false matches is as expected.

F. Performance of the Two Optimizations

In Figure II.5 and II.6, we compare the performance of half-
block alignment and of the approach using variable size blocks
against rsync and the optimized version from the previous
subsection, on a range of block sizes. For the methods with
variable block size, we show the expected block size and
for half-block alignment we show twice the size b′ of the
small blocks in the figure (since the small blocks are half
the “normal” size b to capture half-block alignments).

Figure II.5. Results for basic rsync, the optimized rsync from the previous
subsection, the variable block size approach without and with overlap, and the
half-block alignment protocol on the gcc collection, for various block sizes b.

We observe that the variable block-size methods do very
well for small blocks. The reason is that these methods use
shorter hashes, and thus benefit when the size of the hashes
is significant compared to the total cost. On the other hand,
methods with variable blocks tend to result in more unmatched
literals, mainly due to variations in the block sizes, that
dominate the savings in hash bits for larger block sizes. As
suggested in [21], [30], we enforce certain minimum and
maximum block sizes to deal with regular patterns in the data,

Figure II.6. Results for basic rsync, the optimized rsync from the previous
subsection, the variable block size approach without and with overlap, and
the half-block alignment protocol on the emacs collection, for various block
sizes b.

but even with optimum choice of these parameters the block
sizes are distributed over a certain range, and large blocks
are more likely to not find a match. Moreover, we note that
the savings in bits per hash for variable-size blocks are only
compared to the “no-skip” version of the fixed-size method,
and as seen in Table II.1 we could actually use fewer bits per
hash when using the “skip” method. We observe that there is
at most a very slight benefit in using overlapping instead of
non-overlapping blocks.

The half-block alignment approach outperforms the other
methods on most block sizes, with the notable exception of
gcc for block size 100 where the second condition on the
number of hash bits stated above results in a fairly high cost
for the hashes. Note that this block size is not a good choice
for gcc under any method, and is far away from the default
size of 700 for rsync or any suitable default size. On emacs,
we see an improvement of 5% to 10% over the next best
method, and overall we see an improvement of 15% to 25%
over the basic rsync method across the different blocks sizes,
including the default size. Similar results were also obtained
on several other data sets. Thus, some moderate improvements
are possible through careful tuning of the rsync approach.

III. AN APPROACH BASED ON ERASURE CODES

In this section, we provide the main result of this paper, a
new approach to single-round file synchronization based on
the use of erasure code. Using this approach, we design two
algorithms, one primarily of theoretical interest and another
one that performs well in practice. The basic idea underlying
the new approach is quite simple: essentially, erasure codes are
used to convert certain multi-round protocols into single-round
protocols with similar communication cost.

We start by describing a simple multi-round protocol.
Subsection III-B contains the theoretical result obtained by
converting the multi-round protocol, and Subsection III-C
describes and evaluates the practical protocol.



A. A Simple Multi-Round Protocol

We now describe a simple multi-round protocol for file
synchronization, which we refer to as the basic multi-round
protocol. The protocol is not new and variations of it have
previously appeared in [33], [8], [25], [37]. (The multi-round
protocols in [15], [22] are also similar, but send hashes from
client to server.)

The protocol runs in a number of rounds, starting with a
block size of bmax and then decreasing the block size by
a factor of 2 in each round until reaching a block size of
bmin. In the first round, the server holding the current version
partitions the file into blocks of size bmax, and sends a hash
value for each block to the client. The client attempts to match
the received hashes to all possible alignments in the outdated
file, and then responds with a bit vector containing a “1” for
each hash that found a match, and a “0” for all other hashes.
By doing so, the client notifies the server which of the hashes
were “understood” by the client, and which hashes could not
be decoded by looking for a match in its file.

Next the server partitions each block whose hash did not
find a match into two halves, and sends hashes for these
smaller blocks to the client. The client again replies with a
bit vector, and the server further splits any unmatched blocks.
Once block size bmin is reached, the server simply sends
all unmatched blocks as literals. Figure III.1 illustrates the
protocol on a small example.

cxefghij klmnopxr stuvwxyz 01zz2345

cxefghijklmnopxr stuvwxyz01zz2345

cxefghijklmnopxrstuvwxyz01zz2345

gh kl mn st uv wx yz 23 45ijef op 01cx xr zz

01zz 2345opxrklmnghijcxef stuv wxyz

newThe file  F      at the server

abcdefghijklmnopqrstuvwxyz012345

oldThe file  F     at the client

Figure III.1. The basic multi-round protocol on a small example file pair.
Shown in bold outlines are blocks in the server file that find a match at the
client, while blocks that have a matched ancestors are shaded. Hashes for
the latter blocks are not communicated in the basic multi-round protocol, but
would be communicated in the complete multi-round protocol.

Suppose we choose bmax = �n/k�2, bmin = lg(n), and
use hashes of size, say, 4 lg n bits. Then it can be shown that
given two files with edit distance with block moves of k,
the algorithm transmits at most O(k lg(n) lg(n/k)) bits and
correctly updates the file with probability at least 1 − 1

n . In
particular, on the first level we have at most 2k blocks for
which hashes are sent. There are at most lg(n/k) levels. On
each level at most k of the hashes that are sent do not find
a match at the client, and thus again at most 2k hash values

are sent at the next level, as implied by the following simple
lemma.

Lemma 3.1: Let fnew and fold be two files with edit dis-
tance with block moves at most k, where each move operation
is counted as a distance of 3. If we partition fnew into some
number m of disjoint blocks s0 to sm−1, then at most k of
these blocks do not occur in fold.

We only sketch the proof of the lemma, which is not really
new. Consider a sequence of k edit operations that transforms
fold into fnew. Imagine that fold is printed on a long piece of
paper, and that each edit operation may require us to cut the
piece of paper in order to insert, delete, or change a character
at a particular position, or to move a block from one position to
another. Each single-character operation increases the number
of pieces of the old file by at most one, while each move
operation may require up to three cuts and thus increases the
number of pieces by at most three. Any substring si that is
completely within one of the at most k pieces clearly also
occurs in fold, giving the result.

There are several possible practical optimizations to this
algorithm [37], but this is not our concern. In the following,
we show how to convert this algorithm into a single-round
protocol with the same complexity.

B. An Efficient Single-Round Protocol

First, we define the complete multi-round protocol as the
variation of the basic multi-round protocol from the previous
subsection where in each round, we split all blocks in half and
send hashes for all the resulting smaller blocks, including those
whose ancestors have already found matches on a higher level.
(Obviously, this is not a communication-efficient algorithm.)
Due to the above lemma, both variations have the property
that on each level at most k hashes do not find a match.

Our second required ingredient is a systematic erasure code,
which we now discuss briefly. We refer to [31] for a more
detailed discussion. In an erasure code, we are given m source
data items of some fixed size s each, which are encoded into
m′ > m encoded data items of the same size s, such that if any
m′−m of the encoded data items are lost during transmission,
they can be recovered from the m correctly received encoded
data items. Note that it is assumed here that a receiver knows
which items have been correctly received and which are lost. A
systematic erasure code is one where the encoded data items
consist of the m source data items plus m′ − m additional
items. In our application, which requires a systematic erasure
code, the source data items are hashes, and we refer to the
m′ − m additional items as erasure hashes.

Our algorithm is essentially a communication-efficient
single-round simulation of the complete multi-round algo-
rithm. Suppose we know an upper bound k on the edit distance
with block moves between the files. Then on each level, we
can simulate the complete multi-round algorithm according to
the following rules:

• Any hash value sent in the complete multi-round protocol
that would not be sent in the basic multi-round protocol



(since it corresponds to a block whose ancestor has
already found a match) is not transmitted, as it can be
recreated at the client by evaluating the hash function on
the corresponding part of the match.

• Any hash value that would be sent by the basic multi-
round algorithm (since it corresponds to a block with
no matched ancestors) is also not sent to the client, but
considered lost.

• Since on each level there can be at most 2k such blocks
that are declared lost, we can recreate the entire level of
hashes at the client by sending 2k extra erasure hashes,
computed with a systematic erasure code from all hashes
on a level, and then recovering the lost hashes.

To summarize, the algorithm works as follows:

(1) The server partitions fnew recursively into blocks from
size bmax down to bmin, and for each level computes all
block hashes.

(2) The server applies a systematic erasure code to each level
of hashes except the top level, and computes 2k erasure
hashes for each level.

(3) In one message, the servers sends all hashes at the highest
level to the client, plus the 2k erasure hashes for each
level.

(4) The client, upon receiving the message, recovers the
hashes on all levels in a top-down manner, by first
matching the top-level hashes. Then on the next level,
the hash function is applied to all children of blocks
that were already matched on a higher level in order to
compute their hashes, and the 2k erasure hashes are used
to recover the hashes of the at most 2k blocks with no
matched ancestors.

(5) At the bottom level with block size bmin, we assume that
the hash is simply the content of the block, and thus we
can recover the current file at the client.

Assuming no hash collisions, the algorithm correctly simu-
lates the complete multi-round algorithm. Choosing as before
bmax = �n/k�2, bmin = lg(n), and hashes of size 4 lg n bits,
we get the following result:

Theorem 1: Given a bound k on the edit distance with
block moves between fold and fnew, the erasure-based file
synchronization algorithm correctly updates fold to fnew

with probability at least 1 − 1
n , using a single message of

O(k lg(n) lg(n/k)) bits.
We note that there are highly efficient single-message pro-
tocols for estimating file distances according to a variety
of edit distance measures; see [8]. These results imply that
the above bound can be achieved by a single-round protocol
even if there is no a-priori known bound on the file distance
k, if the request message from client to server is used to
estimate k. To our knowledge, this result is the first feasible
single-round protocol for file synchronization that is provably
communication-efficient with respect to edit distance with
block moves, or any distance measure allowing for block
operations. Another interesting property of the protocol is that
by broadcasting a single message, the current version can

be communicated to many clients holding different outdated
versions.

C. A Practical Protocol Based on Erasure Codes

While the protocol from the previous subsection is effi-
ciently implementable and has reasonable performance, it does
suffer from two main shortcomings that make it inferior to
rsync and other existing protocols in practice.

• The protocol requires us to estimate an upper bound
on the file distance k. This adds complexity to the
implementation, and while there are efficient protocols for
this, we need to make sure that we do not underestimate,
since otherwise the client is unable to recover the current
file. Thus, to be sure we may have to send more than
needed.

• More importantly, the algorithm does not support com-
pression of unmatched literals but essentially sends them
in raw form as hashes. The performance of rsync and
other protocols such as [37] is significantly improved
through the use of compression for literals. There are
some tricks that one can use to integrate compression into
the algorithm, but this seems to lead either to variable-
size data items in the erasure coding at the leaf level, or
to severely reduced compression if we force all items to
be of the same size.

To address these problems we design another erasure-based
algorithm that works better in practice. The main change is
that now, as in rsync, hashes are sent from client to server
as part of the request, while the server uses the hashes to
identify common blocks and then sends the unmatched literals
in compressed form. In fact, similar to the way the first
algorithm was obtained from the basic and complete multi-
round algorithms by adding erasure hashes, the new algorithm
can be obtained by adding erasure hashes to a multi-round
algorithm similar to those in [15], [22] that sends hashes
from client to server. (These algorithms are essentially multi-
round versions of rsync, which explains the similarity of our
algorithm below to rsync.) In the following description, note
that the first three steps are identical to the previous algorithm
but with the roles of client and server exchanged.

(1) The client partitions fold recursively into blocks from size
bmax down to bmin, and for each level computes all block
hashes.

(2) The client applies a systematic erasure code to each level
i of hashes except the top level, and computes mi erasure
hashes for each level, for some appropriate mi discussed
later.

(3) In one message, the client sends all hashes at the highest
level to the server, plus the mi erasure hashes for each
level i.

(4) The server, upon receiving the message, attempts to
recover the hashes on all levels in a top-down manner,
by first matching the top-level hashes. Then on the next
level i, if the number of blocks without any matched
ancestor is at most mi, the hash function is applied to



all blocks that do have a matched ancestor, and the mi

erasure hashes are used to recover the hashes of the other
blocks. Otherwise, we stop at the previous level of hashes.

(5) We now use the hashes on the lowest level that was
successfully decoded, in exactly the same way they are
used in rsync or in our variations of rsync. Thus, common
blocks are identified and all unmatched literals are sent
in compressed form to the client.

If we set the parameters as in the theoretical algorithm, we
can show that this algorithm achieves the same performance
bounds, assuming an upper bound on the file distance k
that can be used to choose appropriate mi (and making the
reasonable assumption that compression does not significantly
increase the size of the literals). However, even if we do
not have an upper bound on k, the algorithm degrades more
gracefully: While the previous algorithm fails to transmit fnew

if not enough erasure hashes are available, this algorithm, like
rsync, will still correctly transmit fnew though possibly at
increased cost. In the worst case, when not enough erasure
hashes are available to encode any of the lower levels, the
algorithm will achieve the same performance as rsync on block
size bmax.

In practice, we will usually choose bmax to be similar to or
slightly larger than the default block size of 700 used by rsync,
and then use a smaller value of bmin maybe around 100 to
200 bytes. The mi for the different levels are determined as a
fraction ri of the total number of hashes on a particular block.
For example, if we have 50 blocks on the second highest level
(i = 2), we might choose r2 = 0.2 which means that we use
m2 = r2 · 50 = 10 erasure hashes on this level. Then we
will be able to decode this second level successfully provided
that at most 20% of the hashes on the highest level did not
find a match in fold. Thus, by assuming some minimum rate
of matches on the higher levels we can decrease the cost of
hashes at the lower levels and hence afford to go to smaller
block sizes on very similar files. We experimented with a
number of choices of bmax, bmin, and the ri.

We implemented the algorithm based on an implementation
of systematic erasure codes by Rizzo, available at
http://info.iet.unipi.it/∼luigi/fec.html.
The erasure code implementation is based on Vandermonde
matrices, and achieves encoding and decoding rates of several
MB per second. Given that the hashes are much smaller than
the actual files, this translates to a file processing speed of
tens to hundreds of MB/s. Thus, we do not expect coding to
be a bottleneck in most cases. We chose the number of bits
per hash as lg(n) + lg(y) + k for k = 10, where y is the total
number of hashes (top-level and erasure hashes) sent from
client to server.

We integrated two additional optimizations into the imple-
mentation, both of which are completely orthogonal to the
erasure coding approach and very simple to add. First, we
integrated decomposable hashes, first proposed in [33] and
recently rediscovered in [37], which allow the hash of a child
block to be computed from the hashes of its parent and its

sibling, halving the number of hashes transmitted on all except
the top level. In particular, we apply erasure coding only to
left siblings and compute the hashes of the right siblings at the
server after decoding left siblings. Second, we added the half-
block alignment approach from Subsection II-E. Alternatively,
we could also integrate continuation hashes [37] instead of
half-block alignments to get additional minor improvements,
but this has not been implemented yet.

Figure III.2. Results on gcc data with the best possible parameter settings for
the following methods (from left to right): rsync, the optimized rsync from
Subsection II-C, the erasure-code approach with decomposable hashes, the
half-block alignment approach, the erasure-code approach with decomposable
hashes and half-block alignment, and the optimized multi-round approach
from [37]. Results on the left are for all files, while results on the right are
only for changed files in the collection.

Figure III.3. Results on emacs data with the best possible parameter settings
for the following methods (from left to right): rsync, the optimized rsync from
Subsection II-C, the erasure-code approach with decomposable hashes, the
half-block alignment approach, the erasure-code approach with decomposable
hashes and half-block alignment, and the optimized multi-round approach
from [37]. Results on the left are for all files, while results on the right are
only for changed files in the collection. Note that the y-axis starts from 2000
KB.

In Figures III.2 and III.3 we show experimental results
comparing the erasure-code approach to the various optimized
methods discussed in this paper. For each method, we show the
best result that we obtained. The result from [37] essentially
provides a upper bound on what we can realistically hope
to gain with a single-round approach, barring further break-



throughs in techniques. We see that the erasure-code based
approach does about 10% better than the other approaches
on gcc, but provides only negligible improvements on emacs.
Recall that the two versions of gcc are more similar to each
other than the emacs versions. The best block size for gcc
was fairly large, around 700% bytes, since most matches were
already found at such large block sizes and the cost of using
smaller blocks would outweigh any benefits due to additional
matches. The erasure-code approach allows us to effectively
use smaller blocks in gcc without paying the full cost of each
block, since many matches already occur at higher levels.

We also show results for both collections were we only
consider files that differ in the two versions. The motivation for
this is that even in scenarios that use a single-round protocol,
there is often an extra initial round of communication where
client and server exchange lists of file names, last modification
dates, and possibly file checksums in order to identify the
files that need to be synchronized. As we see the results
are not substantially different for this case. We note that one
problem with the erasure-based approach is how to select the
optimum setting of the parameters, i.e., the block sizes and the
thresholds ri. We used for each method the best setting that
we could find for each collection; this maybe gives erasure
coding an advantage since there are more parameters and thus
more knobs that we can tweak to optimize performance. It is
an open problem to come up with good rules for choosing
parameters, and possibly one could use an extra initial round
to exchange statistics that allow a good choice of parameters
for each file.

The erasure-based approach presented here allows for a
number of additional optimizations and could be used to
design other new algorithms. For example, one could design
protocols with two or more round-trips that first send a very
small number of erasure hashes, and then send additional
erasure hashes in the next round if needed to successfully
decode the lower levels. Thus, instead of processing one
level of blocks in each round, as the previous multi-round
approaches do, this approach would simultaneously add redun-
dancy to several levels until decoding succeeds on the other
side. This idea could potentially also be generalized into a
digital fountain approach [5] for broadcasting updated content
to clients that may have different old versions.

One could also try to combine erasure coding with error
correcting codes where the positions of corrupted symbols are
unknown to the decoder. The current algorithm chooses the
bit strength of the hashes such that it is unlikely that there
are any false matches at all in the entire file. This could be
relaxed to a bit strength such that most matches are correct
(even though there are likely to be some false matches in a
larger file), if we use an error correcting code that can correct
a few corrupted hashes due to false matches at the parent level.
Thus, in this scenario a number of hashes would be known to
be lost (erasure case), while a few others in unknown positions
would be corrupted (ECC case). We believe there are other
interesting protocols that can be designed with our approach.

IV. RELATED WORK

In the following, we give a brief summary of related work.
The rsync algorithm proposed by Tridgell and MacKerras is
described in [39], [41], and is the basis of the very widely
used rsync open source tool. There are a number of theoretical
studies of the file synchronization problem [8], [7], [23],
[24]. In particular, Orlitsky [23], [24] presents almost tight
bounds for the problem with varying numbers of communica-
tion phases, under some assumptions about the assumed file
distance metric. As explained, these results typically require
exponential time for decoding; while this is allowable under
the standard model for communication complexity [14], it
makes the algorithms impractical. Within this framework, [26]
discusses a relationship between Error Correcting Codes and
file synchronization.

Various practical multi-round algorithms are proposed in
[33], [8], [7], [10], [25], [15], [37], [22]. These algorithms are
based on recursive partitioning of unmatched blocks, mostly
in a breadth-first manner with the exception of [10]. The al-
gorithms in [15], [22] send hashes from client to server, while
the others send hashes in the other direction. Experimental
results for multi-round algorithms are provided in [15], [25],
[37], [22].

Some available open source tools for delta compression
are described in [13], [16], [38], and an overview of delta
compression and file synchronization techniques and their
applications is given in [36]. Note that delta compression can
be seen as a special case of file synchronization where the
outdated file is known to the encoder.

A number of authors have studied problems related to
identifying disk pages, files, or data records that have been
changed or added or deleted, or that differ between two or
more replicas; see, e.g., [1], [4], [17], [18], [19], [20], [27],
[33]. Common approaches for these problems are based on
hashing or coding techniques. The problem setup differs from
ours in that data is assumed to be partitioned into fixed units
such as pages, records, or files, that are treated as atomic.
Recent work on the set reconciliation problem in [20], [2],
[35] also falls into this category. Very recent independent
work by Chauhan and Trachtenberg [6] shows how to use
set reconciliation techniques for file synchronization.

Hash-based techniques similar to rsync have been explored
by the OS and Systems community for purposes such as
compression of network traffic [34], distributed file systems
[21], distributed backup [9], and web caching [30]. These
techniques use string fingerprinting techniques [12] to partition
a data stream into blocks, as we did in Subsection II-D.

V. CONCLUSIONS AND OPEN QUESTIONS

In this paper, we have studied single-round protocols for
file synchronization. Our main contribution has been a new
approach based on the use of erasure codes. Using this ap-
proach, we have derived a single-round protocol that is feasible
and communication-efficient with respect to a common file
distance measure, and another protocol that shows promising



improvements over rsync in experiments. We expect additional
slight gains once we fully optimize the implementation and
parameter settings. We hope to make a stable and high-
performance version of the new practical algorithm available
in the near future, as part of a library of file synchronization
operations. We expect that our approach can be used to derive
other interesting single- and multi-round protocols.

It would be interesting to explore the trade-off between
bandwidth consumption and the number of round-trips. We
suspect that an approach with two or three rounds might do
significantly better than the single-round approaches in this
paper. Closely related to this problem is how to adaptively
choose the best algorithm and parameter setting for a given
pair of files, say by exchanging samples or other statistics
at the start of the synchronization. In addition, there are
a number of interesting open theoretical questions on file
synchronization problems. The current communication bounds
for feasible protocols are still a logarithmic factor from the
lower bounds for most interesting distance metrics, even for
multi-round protocols.
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