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Abstract—Most researches in ad hoc networks focus on routing and not much work has been done on data access. A common

technique used to improve the performance of data access is caching. Cooperative caching, which allows the sharing and coordination

of cached data among multiple nodes, can further explore the potential of the caching techniques. Due to mobility and resource

constraints of ad hoc networks, cooperative caching techniques designed for wired networks may not be applicable to ad hoc

networks. In this paper, we design and evaluate cooperative caching techniques to efficiently support data access in ad hoc networks.

We first propose two schemes: CacheData, which caches the data, and CachePath, which caches the data path. After analyzing the

performance of those two schemes, we propose a hybrid approach (HybridCache), which can further improve the performance by

taking advantage of CacheData and CachePath while avoiding their weaknesses. Cache replacement policies are also studied to

further improve the performance. Simulation results show that the proposed schemes can significantly reduce the query delay and

message complexity when compared to other caching schemes.

Index Terms—Cooperative cache, cache management, cache replacement policy, ad hoc networks, data dissemination, simulations.
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1 INTRODUCTION

WIRELESS ad hoc networks have received considerable
attention due to the potential applications in battle-

field, disaster recovery, and outdoor assemblies. Ad hoc
networks are ideal in situations where installing an
infrastructure is not possible because the infrastructure is
too expensive or too vulnerable. Due to lack of infrastruc-
ture support, each node in the network acts as a router,
forwarding data packets for other nodes. Most of the
previous research [7], [11], [12], [25] in ad hoc networks
focuses on the development of dynamic routing protocols
that can efficiently find routes between two communicating
nodes. Although routing is an important issue in ad hoc
networks, other issues such as information (data) access are
also very important since the ultimate goal of using ad hoc
networks is to provide information access to mobile nodes.
We use the following two examples to motivate our
research on data access in ad hoc networks.

Example 1. In a battlefield, an ad hoc network may consist
of several commanding officers and a group of soldiers
around the officers. Each officer has a relatively powerful
data center, and the soldiers need to access the data
centers to get various data such as the detailed
geographic information, enemy information, and new
commands. The neighboring soldiers tend to have
similar missions and thus share common interests. If
one soldier accessed a data item from the data center, it is
quite possible that nearby soldiers access the same data
some time later. It saves a large amount of battery power,
bandwidth, and time if later accesses to the same data are
served by the nearby soldier who has the data instead of
the faraway data center.

Example 2. Recently, many mobile infostation systems have
been deployed to provide information for mobile users.
For example, infostations deployed by a tourist informa-
tion center may provide maps, pictures, and the history
of attractive sites. Infostations deployed by a restaurant
may provide menus. Due to limited radio range, an
infostation can only cover a limited geographical area. If
a mobile user, say Jane, moves out of the infostation
range, she will not be able to access the data provided by
the infostation. However, if mobile users are able to form
an ad hoc network, they can still access the information.
In such an environment, when Jane’s request is for-
warded to the infostation by other mobile users, it is very
likely that one of the nodes along the path has already
cached the requested data. Then, this node can send the
data back to Jane to save time and bandwidth.

From these examples, we can see that if mobile nodes are
able to work as request-forwarding routers, bandwidth and
power can be saved, and delay can be reduced. Actually,
cooperative caching [22], [8], [6], which allows the sharing and
coordination of cached data among multiple nodes, has
been widely used to improve the Web performance.
Although cooperative caching and proxy techniques have
been extensively studied in wired networks, little has been
done to apply this technique to ad hoc networks. Due to
mobility and resource constraints, techniques designed for
wired networks may not be applicable to ad hoc networks.
For example, most research on cooperative caching in the
Web environment assumes a fixed topology, but this may
not be the case in ad hoc networks due to mobility. Since the
cost of the wireless link is different from the wired link, the
decision regarding where to cache the data and how to get
the cached data may be different.

In this paper, we design and evaluate cooperative
caching techniques to efficiently support data access in ad
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hoc networks. Specifically, we propose three schemes:
CachePath, CacheData, and HybridCache. In CacheData,
intermediate nodes cache the data to serve future requests
instead of fetching data from the data center. In CachePath,
mobile nodes cache the data path and use it to redirect
future requests to the nearby node which has the data
instead of the faraway data center. To further improve the
performance, we design a hybrid approach (HybridCache),
which can further improve the performance by taking
advantage of CacheData and CachePath while avoiding
their weaknesses. Simulation results show that the pro-
posed schemes can significantly improve the performance
in terms of the query delay and the message complexity
when compared to other caching schemes.

The rest of the paper is organized as follows: In Section 2,
we present the CacheData scheme and the CachePath
scheme. Section 3 presents the HybridCache scheme. The
performance of the proposed schemes is evaluated in
Section 4. Section 5 discusses the related work. Section 6
concludes the paper.

2 PROPOSED BASIC COOPERATIVE CACHE

SCHEMES

In this section, we propose two basic cooperative cache
schemes and analyze their performance.

2.1 System Model

Fig. 1 shows part of an ad hoc network. Some nodes in the
ad hoc network may have wireless interfaces to connect to
the wireless infrastructure such as wireless LAN or cellular
networks. Suppose node N11 is a data source (center), which
contains a database of n items d1; d2; . . . ; dn. Note that N11

may be a node connecting to the wired network which has
the database.

In ad hoc networks, a data request is forwarded hop-by-
hop until it reaches the data center and then the data center
sends the requested data back. Various routing algorithms
have been designed to route messages in ad hoc networks.
To reduce the bandwidth consumption and the query delay,
the number of hops between the data center and the
requester should be as small as possible. Although routing
protocols can be used to achieve this goal, there is a
limitation on how much they can achieve. In the following,
we propose two basic cooperative caching schemes:
CacheData and CachePath.

2.2 Cache the Data (CacheData)

In CacheData, the node caches a passing-by data item di
locally when it finds that di is popular, i.e., there were many

requests for di, or it has enough free cache space. For
example, in Fig. 1, both N6 and N7 request di through N5, N5

knows that di is popular and caches it locally. Future
requests by N3, N4, or N5 can be served by N5 directly. Since
CacheData needs extra space to save the data, it should be
used prudently. Suppose the data center receives several
requests for di forwarded by N3. Nodes along the path N3 �
N4 �N5 may all think that di is a popular item and should
be cached. However, it wastes a large amount of cache
space if three of them all cache di. To avoid this, a
conservative rule should be followed: A node does not cache
the data if all requests for the data are from the same node. As in
the previous example, all requests received by N5 are from
N4, which in turn are from N3. With the new rule, N4 and
N5 do not cache di. If the requests received by N3 are from
different nodes such as N1 and N2, N3 will cache the data. If
the requests all come from N1, N3 will not cache the data,
but N1 will cache it. Certainly, if N5 receives requests for di
from N6 and N7 later, it may also cache di. Note that di is at
least cached at the requesting node, which can use it to
serve the next query.

This conservative rule is designed to reduce the cache
space requirement. In some situations, e.g., when the cache
size is very large or for some particular data that are
interested by most nodes, the conservative rule may
decrease the cache performance because data are not cached
at every intermediate node. However, in mobile networks,
nodes usually have limited cache spaces and we do not
assume that some data are interested by all nodes. Therefore,
the conservative rule is adopted in this paper.

2.3 Cache the Data Path (CachePath)

The idea of CachePath can be explained by using Fig. 1.
Suppose node N1 has requested a data item di from N11.
When N3 forwards the data di back to N1, N3 knows that N1

has a copy of di. Later, if N2 requests di, N3 knows that the
data center N11 is three hops away whereas N1 is only
one hop away. Thus, N3 forwards the request to N1 instead
of N4. Note that many routing algorithms (such as AODV
[17] and DSR [11]) provide the hop count information
between the source and destination. By caching the data
path for each data item, bandwidth and the query delay can
be reduced since the data can be obtained through fewer
number of hops. However, recording the map between data
items and caching nodes increases routing overhead. In the
following, we propose some optimization techniques.

When saving the path information, a node need not save
all the node information along the path. Instead, it can save
only the destination node information, as the path from
current router to the destination can be found by the
underlying routing algorithm.

In CachePath, a node does not need to record the path
information of all passing-by data. For example, when di
flows from N11 to destination node N1 along the path
N5 �N4 �N3, N4 and N5 need not cache the path
information of di since N4 and N5 are closer to the data
center than the caching node N1. Thus, a node only needs to
record the data path when it is closer to the caching node
than the data center.

Due to mobility, the node which caches the data may
move. The cached data may be replaced due to the cache
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size limitation. As a result, the node which modified the
route should reroute the request to the original data center
after it finds out the problem. Thus, the cached path may
not be reliable and using it may adversely increase the
overhead. To deal with this issue, a node Ni caches the data
path only when the caching node, say Nj, is very close. The
closeness can be defined as a function of its distance to the
data center, its distance to the caching node, the route
stability, and the data update rate. Intuitively, if the
network topology is relatively stable, the data update rate
is low, and its distance to the caching node (denoted as
Hði; jÞ) is much lower than its distance to the data center
(denoted as Hði; CÞ), the routing node should cache the data
path. Note that Hði; jÞ is a very important factor. If Hði; jÞ is
small, even if the cached path is broken or the data are
unavailable at the caching node, the problem can be quickly
detected to reduce the overhead. Certainly, Hði; jÞ should
be smaller than Hði; CÞ. The number of hops that a cached
path can save is denoted as

Hsave ¼ Hði; CÞ �Hði; jÞ;

where Hsave should be greater than a system tuning
threshold, called T H , when CachePath is used.

2.3.1 Maintain Cache Consistency

There is a cache consistency issue in both CacheData and
CachePath. We have done some work [4], [5] on maintain-
ing strong cache consistency in the single-hop-based
wireless environment. However, due to bandwidth and
power constraints in ad hoc networks, it is too expensive to
maintain strong cache consistency, and the weak consis-
tency model is more attractive. A simple weak consistency
model can be based on the Time-To-Live (TTL) mechanism,
in which a node considers a cached copy up-to-date if its
TTL has not expired, and removes the map from its routing
table (or removes the cached data) if the TTL expires. As a
result, future requests for this data will be forwarded to the
data center.

Due to TTL expiration, some cached data may be
invalidated. Usually, invalid data are removed from the
cache. Sometimes, invalid data may be useful. As these data
have been cached by the node, it indicates that the node is
interested in these data. When a node is forwarding a data
item and it finds there is an invalid copy of that data in the
cache, it caches the data for future use. To save space, when
a cached data item expires, it is removed from the cache
while its id is kept in “invalid” state as an indication of the
node’s interest. Certainly, the interest of the node may
change, and the expired data should not be kept in the
cache forever. In our design, if an expired data item has not
been refreshed for the duration of its original TTL time (set
by the data center), it is removed from the cache.

When cooperative caching is used, mobile nodes need to
check passing-by data besides routing. This may involve
cross-layer optimization, and it may increase the processing
overhead. However, the processing delay is still very low
compared to the communication delay. Since most ad hoc
networks are specific to some applications, cross-layer
optimization can also reduce some of the processing
overhead. Considering the performance improvement, the
use of cooperative cache is well justified.

2.4 Performance Analysis

In this section, we analyze the performance of the proposed
schemes. The performance metric is the distance (hop
count) between a requester and a node that has the
requested data. This node can be a caching node, or the
data center when no caching node is found. Reducing the
hop count can reduce the query delay, the bandwidth, and
the power consumption since fewer nodes are involved in
the query process. Further, reducing the hop count can also
reduce the workload of the data center since requests
served by caches will not be handled by the data center.

The notations used in the analysis are as follows:

. H: The average number of hops between a mobile
node and the data center.

. Pdd: The probability that a data item is in the cache in
the CacheData scheme.

. Pdp: The probability that a data item is in the cache in
the CachePath scheme.

. Ppp: The probability that a path is in the cache in the
CachePath scheme.

. Pi: The probability that a cached item is not usable.
This may be caused by TTL expiration or broken
paths because of node movement.

. Ld: In CacheData, the average length of the path for a
request to reach the node (or the original server)
which has a valid copy of the data. If the requester
has a valid copy of the data, Ld ¼ 1 for ease of
presentation.

. Lp: In CachePath, the average length of the path for a
request to reach the node (or the original server)
which has a valid copy of data. Lp ¼ 1 if the
requester has a valid copy of the data.

We make some assumptions to simplify the analysis. For
example, we assume that parameters such as Pdd, Pdp, Pdp,
and Pi in all nodes are the same. These assumptions allow
us to study the ad hoc network where these parameters are
affected by various factors such as cache size, topology
changes, node/link failures, etc. Most of these factors are
not easy to model, especially when they can affect each
other. The simulation results in Section 4 match the
analytical results and verify that these assumptions are
reasonable.

Given these notations, we can obtain the expected
number of hops that a request takes from node Ni to the
node which has the data. Let P 0d ¼ Pddð1� PiÞ, then

Ld ¼ P 0d � 1þ ð1� P 0dÞ � P 0d � 2þ . . .

þ ð1� P 0dÞ
Hði;CÞ�1 � P 0d �Hði; CÞ

¼
XHði;CÞ
k¼1

ð1� P 0dÞ
k�1 � P 0d � k

� 1

Pd0
¼ 1

Pddð1� PiÞ
:

ð1Þ

This equation is an approximation of Ld since, in
practice, Pdd may be different at different nodes. Equation
(1) helps us understand the effects of many important
factors, and we believe the approximation is reasonable.
Note that Ld is bounded by H. When P 0d is not too small, i.e.,
not less than 1=H, line 4 of (1) provides an adequate
approximation.
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To calculate Lp, three cases need to be considered:

1. The requested data item is in the local cache.
2. A path is found in the local cache which indicates Ni

caches the requested data. Two subcases are
possible:

a. A valid data item is found in Ni.
b. The data item in Ni is not usable because of

broken path or TTL expiration.
3. No data or path is found in the local cache.

Let P 0p ¼ Pdpð1� PiÞ. The probabilities of Cases 1, 2(a),

2(b), and 3 are P 0p, ð1� P 0pÞPppð1� PiÞ, ð1� P 0pÞPppPi, and

ð1� P 0pÞð1� PppÞ , respectively. The number of hops needed

for a request to get the data is 1 for Case 1 and 1þ Lp for

Case 2(a) and Case 3. Note that, for Case 3, the distance is

not H because intermediate nodes also check their local

cache for the requested data or path. Thus, it is different

from forwarding the request directly to the data center. For

Case 2(b), the request needs to travel 1þ Lp to reach Ni.

Then, it is redirected to the data center which is H away. At

last, the data item is sent back to the requester in H hops.

Therefore, the average number of hops needed for the

request1 ð1þ LpÞ þH þH=2 ¼ H þ ð1þ LpÞ=2.
Thus,

Lp ¼ P 0p � 1þ ð1� P 0pÞ � Ppp�

Pi H þ Lp þ 1

2

� �
þ 1� Pið ÞðLp þ 1Þ

� �

þ ð1� P 0pÞð1� PppÞð1þ LpÞ:

ð2Þ

So,

Lp ¼
Pp0 þ ð1� Pp0ÞPpp PiH � Pi

2 þ 1Þ
� �

þ ð1� P 0pÞð1� PppÞ
1� ð1� Pp0ÞPpp 1� Pi

2

� �
� ð1� P 0pÞð1� PppÞ

:
ð3Þ

In (3), Ppp is specific to CachePath. Therefore, it needs

to be fixed when comparing Lp to Ld. If Ppp ¼ 0,

Lp ¼ 1=ðPdpð1� PiÞÞ, and, if Ppp ¼ 1, then

Lp ¼
Pdpð1� PiÞ Pi

2 � PiH
� �

þ PiH � Pi
2 þ 1

� �
1� ð1� Pdpð1� PiÞÞ 1� Pi

2 Þ
� � : ð4Þ

Ppp ¼ 1 gives the performance upper bound of Cache-

Path. Equations (1) and (4) are still complex as they contain

several parameters. We can fix some parameters to get a

better understanding of the relation between Ld and Lp.
Suppose Pi ¼ 0 (i.e., all the data items in the cache are

valid), we have

Ld ¼
1

Pdd
and Lp ¼

1

Pdp
: ð5Þ

CachePath needs less cache space to store extra data.2

Therefore, Pdd < Ppd when the cache size is not very big,

which means Lp < Ld.

Suppose Pdd ¼ Pdp. This assumption favors CacheData
since, in practice, the cache size is limited andPdd < Pdp. Fig. 2
shows some numerical results of CachePath and CacheData
by comparing their average path lengthsLp andLd under two
different H values: five and 10. As can be seen, in both cases,
Lp is similar to Ld when Pi is small, which shows the
advantage of CachePath considering that the assumption
Pdd ¼ Pdp favors CacheData when the cache size is small. If the
cache size is large enough so that Pdp is similar to Pdd,
CacheData performs better as Ld is similar to or less than Lp.
WhenPi is high, the difference betweenLp andLd is also high
because many requests follow paths that lead to data not
useful in CachePath when Pi is high, which is essentially
chasing the wrong path. In such a situation, it is better to adopt
CacheData because it does not redirect requests.

Comparing these two cases: H ¼ 5 and H ¼ 10 in Fig. 2,
we can see that a large H value decreases the performance
of CachePath when compared to CacheData. This is because
the penalty of chasing a wrong path is high when the
network size is large (large H). We can summarize the
analytical results as follows:

. Both schemes can reduce the average number of
hops between the requester and the node which has
the requested data. For example, when Pi ¼ 0, the
number of hops can be reduced if the cache hit ratio
is greater than 1=H. If there is no cached data or path
available, our schemes fall back to traditional
caching scheme, where requests are sent directly to
the data center.

. When the cache size is small, CachePath is better
than CacheData; when the cache size is large,
CacheData is better.

. When the network size is small (small H), CachePath
is a good approach; when the network size is large,
CacheData performs better.

. When the data items are updated slowly or mobile
nodes move slowly, i.e., Pi is small, CachePath is a
good approach; in other cases, CacheData performs
better.

3 A HYBRID CACHING SCHEME (HYBRIDCACHE)

The performance analysis showed that CachePath and
CacheData can significantly improve the system perfor-
mance. We also found that CachePath performs better in
some situations such as small cache size or low data update
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Fig. 2. Performance comparison.

1. The average number of hops is the round-trip distance divided by two.
2. Note that a cached path only contains the final destination node id, as

explained in Section 2.3. We assume that the size of any data item is larger
than the size of a data id.



rate, while CacheData performs better in other situations.
To further improve the performance, we propose a hybrid
scheme HybridCache to take advantage of CacheData and
CachePath while avoiding their weaknesses. Specifically,
when a node forwards a data item, it caches the data or path
based on some criteria. These criteria include the data item
size si, the TTL time TTLi, and the Hsave. For a data item di,
the following heuristics are used to decide whether to cache
data or path:

. If si is small, CacheData should be adopted because
the data item only needs a very small part of the
cache; otherwise, CachePath should be adopted to
save cache space. The threshold value for data size is
denoted as T s.

. If TTLi is small, CachePath is not a good choice
because the data item may be invalid soon. Using
CachePath may result in chasing the wrong path
and end up with resending the query to the data
center. Thus, CacheData should be used in this
situation. If TTLi is large, CachePath should be
adopted. The threshold value for TTL is a system
tuning parameter and denoted as T TTL.

. If Hsave is large, CachePath is a good choice because
it can save a large number of hops; otherwise,
CacheData should be adopted to improve the
performance if there is enough empty space in the
cache. We adopt the threshold value T H used in
CachePath as the threshold value.

These threshold values should be set carefully as they

may affect the system performance. Their effects and how to

set them are studied through simulations in Sections 4.2.1

and 4.2.2.
Fig. 3 shows the algorithm that applies these heuristics in

HybridCache. In our design, caching a data path only needs

to save a node id in the cache. This overhead is very small.

Therefore, in HybridCache, when a data item di needs to be

cached using CacheData, the path for di is also cached.

Later, if the cache replacement algorithm decides to remove

di, it removes the cached data while keeping the path for di.

From some point of view, CacheData degrades to Cache-

Path for di. Similarly, CachePath can be upgraded to

CacheData again when di passes by.

3.1 Cache Replacement Policy

Because of limited cache size, a cache replacement policy

must be adopted to evict data from the cache when new

data arrive. One widely used cache replacement policy is

LRU, which removes the least-recently-used data from the

cache. However, some researches ([21], [27]) show that LRU

can be outperformed by policies that consider various

system parameters such as the data size, transfer time, data

invalidation rate, etc. The problem with policies proposed

in [21], [27] is that they require the input of many system

parameters that are constantly changing and not easy to

estimate.
In this paper, we focus on two parameters that are easier

to get. The first parameter is the data size si. Data with

larger size are better candidates for replacement because

they occupy a large amount of cache space. Replacing them

can make room for more incoming data items. The second

parameter is OrderðdiÞ, the order of di according to the

access interest. Let k ¼ OrderðdiÞ, then di is the kth most

frequently accessed data. Intuitively, data that are less likely

to be accessed should be replaced first. Our policy, called

the Size*Order cache replacement policy (SXO), combines

these two parameters in the following value function:

valueðdiÞ ¼ si �OrderðdiÞ: ð6Þ

The data item with the largest valueðdiÞ is replaced from the

cache first.
In (6), si is known to mobile nodes because di is in the

cache. Although OrderðdiÞ is not available, it can be derived

from the mobile node’s access rate to di, denoted as ai. In

order to get ai, we can apply similar techniques used by

Shim et al. [21] as follows:

ai ¼
K

T � TaiðKÞ
; ð7Þ

where T is the current time and TaiðKÞ is the time of the

Kth most recent access. If less than K samples are available,

all available samples are used. It is shown in [21] that K can

be as small as two or three to achieve the best performance.

Thus, the spatial overhead to store recent access time is

relatively small. Once the access frequency to each data

item is available, it is easy to get the OrderðdiÞ value.
Because OrderðdiÞ is given through estimation, we

cannot guarantee that valueðdiÞ used in the cache replace-

ment is absolutely accurate. Therefore, the SXO policy

should remain effective even if OrderðdiÞ is not very

accurate. In our simulations, the sensitivity of SXO to data

inaccuracy is studied by introducing noise to OrderðdiÞ. The

result shows that SXO is able to perform well even when

OrderðdiÞ is not very accurate.
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4 PERFORMANCE EVALUATION

The performance evaluation includes four sections. The
simulation model is given in Section 4.1. In Section 4.2, we
verify the analytical results of CacheData and CachePath
and compare them to HybridCache and SimpleCache,
which is the traditional cache scheme that only caches the
received data at the query node. Section 4.3 compares
HybridCache to SimpleCache and the cooperative caching
scheme proposed by Lau et al. [13], referred to as Flood-
Cache. FloodCache is designed for accessing multimedia
data in ad hoc networks. When a query comes, it relies on
flooding to find the nearest node that has the requested
data. In both Sections 4.2 and 4.3, all schemes use LRU as
the cache replacement policy. In Section 4.4, we study the
effect of cache replacement policies on the query delay and
compare the performance of HybridCache-SXO, which is
the HybridCache scheme using the SXO cache replacement
policy, to SimpleCache and HybridCache which use LRU.

4.1 The Simulation Model

The simulation is based on ns-2 [14] with the CMU wireless
extension. In our simulation, both AODV [17] and DSDV
[16] were tested as the underlying routing algorithm. To
save space, only the results based on DSDV are shown here
because of the similarity between these two results.

The node density is changed by choosing the number of
nodes between 50 and 100 in a fixed area. We assume that the
wireless bandwidth is 2 Mb/s, and the radio range is 250m.

4.1.1 The Node Movement Model

We model a group of nodes moving in a 1500m � 320m
rectangle area, which is similar to the model used in [25].
The moving pattern follows the random way point move-
ment model [3]. Initially, nodes are placed randomly in the
area. Each node selects a random destination and moves
toward the destination with a speed selected randomly
from (0 m/s, vmax m/s). After the node reaches its
destination, it pauses for a period of time and repeats this
movement pattern. Two vmax values, 2 m/s and 20 m/s, are
studied in the simulation.

4.1.2 The Client Query Model

The client query model is similar to what has been used in
previous studies [4], [27]. Each node generates a single
stream of read-only queries. The query generating time
follows exponential distribution with mean value Tquery.
After a query is sent out, the node does not generate a new
query until the query is served. The access pattern is based
on Zipf-like distribution [28], which has been frequently
used [2] to model nonuniform distribution. In the Zipf-like
distribution, the access probability of the ith (1 � i � n) data
item is represented as follows:

Pai ¼
1

i�
Pn

k¼1
1
k�

;

where 0 � � � 1. When � ¼ 1, it follows the strict Zipf
distribution. When � ¼ 0, it follows the uniform distribu-
tion. Larger � results in more “skewed” access distribution.

The access pattern of mobile nodes can be location-
dependent; that is, nodes that are around the same location

tend to access similar data, such as local points of interests.
To simulate this kind of access pattern, a “biased” Zipf-like
access pattern is used in our simulation. In this pattern, the
whole simulation area is divided into 10 (X axis) by 2
(Y axis) grids. These grids are named grid 0, 1, 2,... 19 in a
column-wise fashion. Clients in the same grid follow the
same Zipf pattern, while nodes in different grids have
different offset values. For example, if the generated query
should access data id according to the original Zipf-like
access pattern, then, in grid i, the new id would be ðidþ
n mod iÞ mod n, where n is the database size. This access
pattern can make sure that nodes in neighboring grids have
similar, although not the same, access pattern.

4.1.3 The Server Model

Two data servers: server0 and server1 are placed at the
opposite corners of the rectangle area. There are n data
items at the server side and each server maintains half of the
data. Data items with even ids are saved at server0 and the
rests are at server1. The data size is uniformly distributed
between smin and smax. The data are updated only by the
server. The servers serve the requests on a FCFS (first-come-
first-service) basis. When the server sends a data item to a
mobile node, it sends the TTL tag along with the data. The
TTL value is set exponentially with a mean value. After the
TTL expires, the node has to get the new version of the data
either from the server or from other nodes before serving
the query.

Most system parameters are listed in Table 1. The second
column lists the default values of these parameters. In the
simulation, we may change the parameters to study their
impacts. The ranges of the parameters are listed in the third
column. For each workload parameter (e.g., the mean TTL
time or the mean query generate time), the mean value of the
measured data is obtained by collecting a large number of
samples such that the confidence interval is reasonably
small. In most cases, the 95 percent confidence interval for
the measured data is less than 10 percent of the sample mean.

4.2 Simulation Results: HybridCache

Experiments were run using different workloads and
system settings. The performance analysis presented here
is designed to compare the effects of different workload
parameters such as cache size, mean query generate time,
node density, node mobility, and system parameters such
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as TTL and � on the performance of SimpleCache,
CacheData, CachePath, and HybridCache.

4.2.1 Fine-Tuning CachePath

As stated in Section 2.3, the performance of CachePath is
affected by the threshold value T H as a path is only cached
when its Hsave value is greater than T H . A small T H means
more paths are cached, but caching too many less-valuable
paths may increase the delay because the cached paths are
not very reliable. A large T H means only some valuable
paths are cached. However, if T H is too large, many paths
are not cached because of the high threshold. As shown in
Fig. 4, T H ¼ 2 achieves a balance, and we use it in the rest of
our simulations.

4.2.2 Fine-Tuning HybridCache

In HybridCache, if a data item size is smaller than T s, it is
cached using CacheData. If T s is too small, HybridCache
fails to identify some small but important data items; if it is
too large, HybridCache caches all the data using CacheData.
To find an optimal value for T s, we measure the query
delay as a function of T s. As T s is related to data size, in
Fig. 5a, we use a relative value: T s=ðSmin þ SmaxÞ, which can
give us a clearer idea of what the threshold value should be.

As shown in Fig. 5a, when the threshold value increases
from 10 percent to 40 percent, the query delay drops
sharply since more data are cached. If the threshold value

keeps increasing beyond 40 percent, more passing-by data
are cached, and the cache has less space to save the accessed
data. As a result, some important data may be replaced, and
the delay increases. We find that a threshold value of
40 percent gives the best performance.

Fig. 5b shows the effect of T TTL on the average query
delay. The lowest query delay is achieved when T TTL ¼
5; 000 seconds. Compared to Fig. 5a, the performance
difference between different T TTL is not significant. This
is because the database we studied has heterogeneous data
size. Data size varies from 1 KB to 10 KB. As data size is a
very important factor for caching, it makes the effect of
T TTL less obvious.

4.2.3 Effects of the Cache Size

Fig. 6 shows the impacts of the cache size on the cache hit
ratio and the average query delay. Cache hits can be
divided into three categories: local data hit, which means
that the requested data item is found in the local cache,
remote data hit, which means that the requested data item is
found in one of the intermediate node when the request is
forwarded in the network, and path hit, which means that a
path is found for the request and a valid data item is found
in the destination node of that path. Both remote data hit
and path hit are considered as remote cache hits because the
data are retrieved from remote nodes.

From Fig. 6a, we can see that the local hit ratio of
SimpleCache is always the lowest. When the cache size is
small, CacheData performs similar to SimpleCache because
small cache size limits the aggressive caching of CacheData.
When the cache size is large, CacheData can cache more
data for other nodes. These data can be used locally and,
hence, the local data hit ratio increases. CachePath does not
cache data for other nodes, but its cached data can be
refreshed by the data passing by. Therefore, its local data hit
ratio is still slightly higher than that of SimpleCache.
HybridCache prefers small data items when caching data
for other nodes. Therefore, it can accommodate more data
and achieve a high local data hit ratio.

Although CacheData and CachePath have a similar local
data hit ratio in most cases, CacheData always has a higher
remote data hit ratio because it caches data for other nodes.
Especially when the cache size is large, more data can be
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Fig. 4. Fine-tuning CachePath.
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cached in CacheData and its remote data hit ratio is

significantly higher than that of CachePath. HybridCache

has a high remote data hit ratio due to similar reasons as for

its high local data hit ratio. Even if the path hit is not

considered, HybridCache still has highest cache hit ratio in

most cases. It is worth noticing that CachePath and

HybridCache almost reach their best performance when

the cache size is 800 KB. This demonstrates their low cache

space requirement. This particularly shows the strength of

HybridCache as it also provides the best performance at the

same time.
Because of the high cache hit ratio, the proposed schemes

perform much better than SimpleCache (see Fig. 6).

Comparing CachePath with CacheData, when the cache

size is small, CachePath has lower query delay because its

path hit helps reduce the average hop count. When the

cache size is greater than 800 KB, these two schemes have

similar total cache hit ratio, but CacheData has higher local

data hit ratio and remote data hit ratio. Because the average

hop count of local and remote data hit is lower than that of

path hit, CacheData achieves low query delay. This figure

also agrees with the performance analysis of CachePath and

CacheData in Section 2.4.

Comparing all three proposed schemes, we can see that

HybridCache performs much better than CacheData or

CachePath, because HybridCache applies different schemes

(CacheData or CachePath) to different data items, taking

advantage of both CacheData and CachePath. As the result

of the high local data hit ratio, remote data hit ratio, and

overall cache hit ratio, HybridCache achieves the best

performance compared to other schemes.

4.2.4 Effects of the Query Generate Time

Fig. 7 shows the average query delay as a function of the

Tquery. Both low mobility (Vmax ¼ 2 m/s) and high mobility

(Vmax ¼ 20 m/s) settings are studied. We notice that all the

trends are similar except CachePath. There are cases that

CachePath even performs worse than SimpleCache. This is

due to the fact that high node mobility causes more broken

paths, which affects the performance of CachePath. In a

high mobility setting, CacheData performs better and

HybridCache still performs the best in most cases.
When Tquery is small, more queries are generated and the

system workload is high. As a result, the average query

delay is high. As Tquery increases, less queries are generated

and the average query delay drops. If Tquery keeps

increasing, the average query delay only drops slowly or
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Fig. 6. The system performances as a function of the cache size. (a) Cache hit ratio. (b) Query delay.

Fig. 7. The average query delay as a function of the mean query generate. (a) Vmax ¼ 2 m/s. (b) Vmax ¼ 20 m/s.



even increases slightly. The reason is that the query
generating speed is so low that the number of cached data
is small and many cached data are not usable because their
TTL have already expired before queries are generated for
them. Fig. 7 verifies this trend.

Under heavy system workload (Tquery is small), Hybrid-
Cache can reduce the query delay by as much as 40 percent
compared to CacheData or CachePath. When the system
workload is extremely light, the difference between
different schemes is not very large. This is because under
an extreme light workload, the cache hit ratio is low.
Therefore, most of the queries are served by the remote data
center and different schemes perform similarly.

We can also find that, when the query generating speed
increases (Tquery decreases), the delay of HybridCache does
not increase as fast as other schemes. This demonstrates that
HybridCache is less sensitive to workload increases and it
can handle much heavier workload.

4.2.5 Effects of the Zipf Parameter �

The Zipf parameter � defines the access pattern of mobile
nodes. When � is small, the access distribution is more like a
uniform distribution. The average query delay is high since
the cache is not large enough to save all the data. When � is
large, the access is focused on the hot (frequently accessed)
data, and the average query delay is lower since most of
these hot data can be cached. By changing �, we can see how
different access patterns affect the performance. As shown
in Fig. 8, our schemes perform much better than the
SimpleCache scheme because the cooperation between
nodes can significantly reduce the query delay.

4.2.6 Effects of TTL

Fig. 9 shows the average query delay when the TTL varies
from 200 seconds to 10,000 seconds. TTL determines the
data update rate. Higher update rate (smaller TTL) makes
the cached data more likely to be invalidated and, hence,
the average query delay is higher. When the TTL is very
small (200 sec.), all four schemes perform similarly because
most data in the cache are invalid and then the cache hit
ratio is very low. Since SimpleCache does not allow nodes
to cooperate with other nodes, its average query delay does
not drop as fast as our schemes when TTL increases. The
delay of our schemes drops much faster as TTL increases
because nodes cooperate with each other to maximize the
benefit of low update rate.

Comparing CachePath to CacheData, CacheData per-
forms better when TTL is small, whereas CachePath
performs better when TTL is big. This result again agrees
with the performance analysis. HybridCache further re-
duces the query delay by up to 45 percent.

4.2.7 Effects of the Node Density

Fig. 10 shows the average query delay as a function of the
number of nodes in the system. As node density increases,
the delay of all four schemes increases because more nodes
compete for limited bandwidth. However, the delay of our
schemes increases much slower than SimpleCache. This
can be explained by the fact that more data can be shared
as the number of nodes increases in our schemes, which
helps reduce the query delay. When the total number of
nodes is small, HybridCache performs similar as Cache-
Data and CachePath. When the number of nodes increases,
HybridCache performs much better than other schemes.
This indicates that HybridCache scales well with the
number of nodes.

4.3 Simulation Results: Comparisons

In this section, we compare the performance of the
HybridCache scheme to the SimpleCache scheme and the
FloodCache scheme in terms of the query delay and the
message complexity. A commonly used message complex-
ity metric is the total number of messages injected into the
network by the query process [13]. Since each broadcast
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Fig. 8. The average query delay as a function of �. Fig. 9. The average query delay as a function of TTL.

Fig. 10. The average query delay under different node density.



message is processed (received and then rebroadcasted or
dropped) by every node that received it, “the number of
messages processed per node” is used as the message
complexity metric to reflect the efforts (battery power,
CPU time, etc.) of the mobile node to deal with the
messages.

4.3.1 Effects of the Cache Size

Fig. 11 shows the impacts of the cache size on the system

performance. Fig. 11a shows that the query delay decreases

as the cache size increases. After the cache size increases

beyond 800 KB, mobile nodes have enough cache size and

the query delay does not drop significantly. The Simple-

Cache scheme is outperformed by cooperative caching

schemes under different cache size settings. This demon-

strates that mobile nodes can benefit from sharing data with

each other.
FloodCache performs better compared to HybridCache in

terms of the query delay. This is because, by flooding,

FloodCache can find the nearest node that caches the

requested data, which reduces the query delay. However,

Fig. 11b shows that HybridCache incurs a much lower

message overhead than FloodCache. The message overhead

of HybridCache is even less than that of SimpleCache. The

reason is that HybridCache gets data from nearby nodes

instead of the faraway data center if possible. Therefore, the

data requests and replies need to travel fewer number of

hops and mobile nodes need to process fewer number of

messages. As the cache size increases, the cache hit ratio of

HybridCache increases and its message overhead decreases.

Because FloodCache uses flooding to find the requested

data, it incurs a much higher message overhead compared to

SimpleCache and HybridCache.
In FloodCache, the request is sent out through flooding,

and multiple copies of data replies may be returned to the

requester by different nodes that have the requested data. In

SimpleCache and HybridCache, this cannot happen be-

cause only one request is sent out for each query in case of

local cache miss. Fig. 11c shows that more than seven copies

of data replies are returned per query in FloodCache. The

number of duplicated data replies increases slightly as the

cache size increases because data can be cached in more

nodes. In our simulation, the data size is relatively small

(from 1 KB to 10 KB) and, hence, the duplicated messages

do not affect the performance significantly. For some other

environments such as multimedia accessing, transmitting

duplicated data messages may waste much more power

and bandwidth. As one solution, instead of sending the

data to the requester upon receiving a request, mobile

nodes which have the data may send back an acknowl-

edgment. The requester can then send another unicast

request to the nearest node among them to get the data. The

drawback of this approach is that the query delay will be

significantly increased.
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Fig. 11. The performance as a function of the cache size. (a) Query delay. (b) Message overhead. (c) Duplicated reply messages.

Fig. 12. The performance as a function of the mean query generate time Tquery. (a) Query delay. (b) Message overhead.



4.3.2 Effects of the Mean Query Generate Time Tquery
Fig. 12 shows the effects of Tquery on system performance.
HybridCache performs similar to FloodCache when Tquery is
small. When the system workload is low (Tquery is large), the
difference between HybridCache and FloodCache increases.
As explained in Section 4.2.4, when Tquery is large, many
cached data are not usable because of the TTL expiration.
Therefore, the cache hit ratio is very low. Because Flood-
Cache can find the nearest valid data, its query delay is
small. HybridCache may not find the valid data item before
a request reaches the data center. Therefore, its query delay
is a little bit longer. Fig. 12a shows that the query delay of
FloodCache is the lowest. However, as can be seen from
Fig. 12b, the message overhead of FloodCache is signifi-
cantly higher than that of HybridCache.

When considering the results from both Fig. 11 and
Fig. 12, we can see that FloodCache uses significantly higher
message overhead to get a very small query delay
improvement over HybridCache. Thus, FloodCache may
not be suitable for ad hoc networks where bandwidth and
power are scarce. HybridCache performs well because it
reduces the query delay compared to SimpleCache and
incurs much less overhead compared to FloodCache.

4.4 Simulation Results: Cache Replacement Policy

The effect of the cache replacement policy is shown in
Fig. 13. HybridCache-SXO denotes the HybridCache
scheme that applies the SXO cache replacement policy. In
order to study the effect of inaccurate input on SXO, noise is
introduced by changing the value function to:

valueðdiÞ ¼ si � ðOrderðdiÞ þ uniformð0; 20ÞÞ:

Note that the OrderðdiÞ used in SXO is already an estimated
value. Here, more noise (uniform(0, 20)) is added to the
estimated value to test the robustness of our scheme. The
result is shown in Fig. 13 as HybridCache-SXO(Err).

Fig. 13 shows that HybridCache-SXO clearly outper-
forms HybridCache when the cache size is small since data
size is a very important factor for cache replacement in SXO.
Because mobile nodes usually have limited cache size,
HybridCache-SXO is suitable for them. Even when noise is
deliberately introduced to valueðdiÞ, the performance is
almost the same as before, which shows the robustness of
the proposed cache replacement policy.

When cache size is large enough (more than 800KB), the
difference between HybridCache-SXO and HybridCache
becomes small. When mobile nodes have enough cache
space, there is always enough space for new data, and then
cache replacement policies does not affect the cache
performance too much. In such cases, we prefer Hybrid-
Cache due to its low complexity.

5 RELATED WORK

5.1 Caching Schemes in Wired Networks

Cooperative caching has been widely studied in the Web
environment. These protocols can be classified as message-
based, directory-based, hash-based, or router-based. Wes-
sels and Claffy introduced the Internet cache protocol (ICP)
[22], which has been standardized and is widely used. As a
message-based protocol, ICP supports communication
between caching proxies using a query-response dialog. It
has been reported that ICP scales poorly with an increasing
number of caches. Directory-based protocols for coopera-
tive caching enables caching proxies to exchange informa-
tion about cached content. The information is compressed
using arrays of bits. Notable protocols of this class include
Cache Digests [20] and summary cache [8]. The most
notable hash-based cooperative caching protocol constitutes
the cache array routing protocol (CARP) [19]. The rationale
behind CARP constitutes load distribution by hash routing
among Web proxy cache arrays. Wu and Yu introduced
several improvements to hash-based routing, considering
network latency and allowing local replication [24]. Web
cache coordination protocol (WCCP) [6], as a router-based
protocol, transparently distributes requests among a cache
array. These protocols usually assume fixed network
topology and often require high computation and commu-
nication overhead. However, in an ad hoc network, the
network topology changes frequently. Also, mobile nodes
have resource (battery, CPU, and wireless channel) con-
straints and cannot afford high computation or commu-
nication overhead. Therefore, existing techniques designed
for wired networks may not be applied directly to ad hoc
networks.

5.2 Caching Schemes in Wireless Networks

Most of the previous research [7], [11], [12], [25] in ad hoc
networks focuses on routing, and not much work has been
done on data access. The directed diffusion proposed by
Intanagonwiwat et al. [10] addressed the cooperation
among sensor nodes during data collection. Ye et al. [26]
applied the query-forwarding concept to sensor networks.
They proposed a two-tier data dissemination (TTDD) model
for wireless sensor networks. TTDD requires the construc-
tion of a grid structure in fixed sensor networks. The nodes
at the grid crossing points work as routers, which forward
queries to the source and forward data to the sink.
Although both approaches use cache, their focus is on data
aggregation and compression for sensor networks, not on
cooperative caching and data access.

To effectively disseminate data in ad hoc networks, data
replication and caching can be used. Data replication
schemes in ad hoc networks have been studied by Hara
[9]. However, these schemes may not be very effective due
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to the following reasons: First, because of frequent node
movement, powering off or failure, it is hard to find stable
nodes to host the replicated data. Second, the cost of initial
distribution of the replicated data and the cost of redis-
tributing the data to deal with node movement or failure is
very high.

Similar to the idea of cooperative caching, Papadopouli
and Schulzrinne [15] proposed a 7DS architecture, in which
a couple of protocols are defined to share and disseminate
data among users that experience intermittent connectivity
to the Internet. It operates either on a prefetch mode to
gather data for serving the users’ future needs or on an on-
demand mode to search for data on a single-hop multicast
basis. Unlike our work, they focus on data dissemination
instead of cache management. Further, their focus is the
single-hop environment instead of the multihop environ-
ment as in our work.

A cooperative caching scheme designed specifically for
accessing multimedia objects in ad hoc networks has been
proposed by Lau et al. [13]. When a query comes, this
scheme relies on flooding to find the nearest node that has
the requested object. Using flooding can reduce the query
delay since the request may be served by a nearby node
instead of the data center faraway. Thus, it is good for
multimedia applications which have strict delay require-
ments. Another benefit of using flooding is that multiple
nodes that contain the requested data can be found. If the
data size is very large, when the link to one node fails, the
requester can switch to other nodes to get the rest of the
requested data. Using flooding incurs significant message
overhead. To reduce the overhead, in [13], flooding is
limited to nodes within k hops from the requester, where k
is the number of hops from the requester to the data center,
but the overhead is still high. In a wireless network where
nodes are uniformly distributed, on average, there are
�k2 nodes within k-hops range of a mobile node. Therefore,
�k2 messages are needed to find a data item using this
method. Moreover, when a message is broadcast in the
network, many neighbors will receive it. Even if the mobile
node is able to identify and drop duplicated messages, each
node still needs to broadcast the messages at least once to
ensure full coverage. If a node has c neighbors, on average,
the total number of messages needs to be processed is c�k2.
Although the message complexity is still Oðk2Þ, the constant
factor may be very high, especially when the network
density is high.

5.3 Cache Replacement Policies

Aggarwal et al. [1] classifies the existing cache replacement
policies into three categories: direct-extension, key-based, and
function-based. In the direct-extension category [18], tradi-
tional policies such as LRU or FIFO are extended to handle
data items of nonhomogeneous size. The difficulty with
such policies in general is that they fail to pay sufficient
attention to the data size. In the key-based policies [23], keys
are used to prioritize some replacement factors over others;
however, such prioritization may not always be ideal.
Recently, function-based replacement policy has received
considerable attention [1], [21], [27]. The idea in function-
based replacement policies is to employ a function of
different factors such as time since last access, entry time of

the data item in the cache, transfer time cost, data item

expiration time, and so on. For example, the LNC-R-W3-U

algorithm, proposed by Shim et al. [21], aims to minimize

the response time in Web caching. Their cost function

incorporates many system parameters such as the transfer

time, the document size, and the invalidation rate. In [27],

we proposed a generalized cost function for wireless

environments. However, the solution was proposed for

cellular networks and we did not consider mobility, which

is different from this work.

6 CONCLUSIONS

In this paper, we designed and evaluated cooperative

caching techniques to efficiently support data access in ad

hoc networks. Specifically, we proposed three schemes:

CachePath, CacheData, and HybridCache. In CacheData,

intermediate nodes cache the data to serve future requests

instead of fetching data from the data center. In CachePath,

mobile nodes cache the data path and use it to redirect

future requests to the nearby node which has the data

instead of the faraway data center. HybridCache takes

advantage of CacheData and CachePath while avoiding

their weaknesses. Cache Replacement policies are also

studied to further improve the cache performance. Simula-

tion results showed that the proposed schemes can

significantly reduce the query delay when compared to

SimpleCache and significantly reduce the message com-

plexity when compared to FloodCache.
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