D455 – Distributed Computing Systems

Winter 2005-2006

Telnet System

Project Proposal

This project requires implementation of a server and a client program. The server is a daemon that continuously listens to a fixed port number for incoming requests, performs necessary actions in the local system, and returns the results to the client program. The client is an application that can communicate both with a human user and the server program, in order to submit the user’s requests to the server, receive the results, and display the results to the user. All communications between the client and the server has to be implemented using sockets.

Definition: Telnet is a protocol for remote computing on the Internet. It allows a computer to act as a remote terminal on another machine, anywhere on the Internet. This means that when you telnet to a particular host and port, the remote computer (which must have a telnet server) accepts input directly from your computer (which must have a telnet client) and output for your session is directed to your screen.

Implementation: You are allowed to use Java or C++ to implement this project, but it is recommended that you take advantage of Java technology if you chose to do the Extended Project (the one that includes a GUI as explained below).

Project Team: The basic project is originally intended for one person. However, if you prefer to do the extended version of the project as described below, you can work as a team of two.
BASIC PROJECT (for 1 person):

1. Server
The server program is in charge of the following activities:

1. listening to a port number for incoming requests, and accepting a connection from the client (one client connection at a time is good enough)

2. receiving a request from a client and performing necessary actions on the local system to satisfy the request

3. sending a text response to the client, containing the outcome of the request

4. maintaining information about user accounts and login passwords

5. keeping track of each active user’s current directory in the local system

2. Client
The client program is responsible for the following:

1. inputting the login information from the user and connecting to the server

2. waiting for human user’s input

3. sending the user’s input as a request to the server and waiting for the response

4. receiving the output from the server

5. displaying the output to the user and waiting for the next input

Minimum Requirements for Basic Project:

Socket communications should be used in order to implement the communications between the server and client. The basic project should support the following commands:

· login <user> <password> : connect to the server using the provided login information
· logout : disconnect from the server

· list : lists the files in the current directory

· chdir <directory> : changes the current directory to the given one
· mkdir <directory> : creates a new directory with the given directory name, under the current directory
· rmdir <directory> : removes the directory with the given directory name, under the current directory
· who : list the names of all active users (names of users currently logged in)
· read <filename> : read and display the contents of the file with the given filename inside the current directory

· create <filename> : create a new file with the given filename inside the current directory

· write <filename> <text> : append the given text at the end of the file with the given filename inside the current directory (assume each new text should be written into a new line in the file)

· delete <filename> : delete the file with the given filename inside the current directory
EXTENDED PROJECT (for team of two):

Required GUI for the Extended Project:

The extended project should include everything listed for the basic project and provide an enhanced client with a GUI (Graphical User Interface) that is used for interacting with the user. The GUI should enable the user to input commands and view the output.

Moreover, the GUI should enable the user to open a file, edit it, and save it. In order to accomplish this, you need to include a text area object and a few button objects in your GUI. An example GUI might look like the following:

[image: image1.png]=1olx]

Telnet Client

When the user clicks the “Open” button with his/her mouse, a new window should be open in order to let the user select one of the files in the current directory.

The “Save” button should cause overwriting the file at the server side with the current contents of the editing window of the GUI.

When user clicks the “Close” button, the client GUI should disappear and the client program should terminate after disconnecting from the server.

Optional Functionality for the Extended Project:
You may implement the following extra functionality for the extended project, if you like the challenge. This part is completely optional:

· Server should be able to accept simultaneous connections from more then one client. In order to achieve this, you need to apply multi-thread programming techniques. If you use Java as your implementation language, you will see that Java provides thread and thread group related classes in order to take care of most details. If you choose another language for your implementation, you may have to deal with many difficult details of multi-thread programming. Therefore, Java language is strongly recommended for the optional “simultaneous connections” capability in this project.

· Server should allow clients to connect and disconnect as many times as they like, while allowing at most one connection per client at any time.

· Client functionality does not require any extensions, but you should be able to start multiple instances of your client at different machines or at the same machine.
Implementation: It is possible to implement this project using both C++ and Java, but we recommend that you take advantage of Java AWT technology for this project. AWT (Abstract Windowing Toolkit) is a Java package distributed with standard Java Development Kit (JDK) by Sun Microsystems and any available Java development toolkit. AWT provides Java classes for easy development of GUI in Java language.

INFORMATION SOURCES:

You can find a large number of web pages about Java programming language and AWT package (AWT is needed only for the extended project). Simply go to any search engine, such as Google, and search for Java and AWT. There exist also many books on Java programming. You can find those books at almost any bookstore (e.g., Borders, Barnes and Noble, etc.).

There exist many Java development toolkits. You can download the latest toolkit from Sun Microsystems’ web site (http://java.sun.com/j2ee/download.html#sdk), or use an integrated development environment provided by other software companies (e.g. JBuilder by Borland available at http://www.borland.com/products/downloads/download_jbuilder.html).

The following is a list of a few web sites containing information about Java programming language:

· http://java.sun.com/
· http://java.sun.com/docs/books/tutorial/
· http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html
· http://math.hws.edu/javanotes/
· http://leepoint.net/notes-java/
You can find information and examples about Java AWT in the following web sites:

· http://www.javaworld.com/javaworld/jw-07-1996/jw-07-awt.html
· http://www.oreilly.com/catalog/javawt/book/
· http://java.sun.com/j2se/1.4.2/docs/api/java/awt/package-summary.html
EXAMPLE CODE:

You can use the following code as a skeleton for the client GUI, if you decide to do the extended project as a team of two people. This code was compiled and tested using Borland JBuilder version 9.

package telnet;

import java.awt.*;

import java.awt.event.*;

/**

 * <p>Title: Telnet</p>

 * <p>Description: Telnet Project</p>

 * <p>Copyright: Copyright (c) 2005</p>

 * <p>Company: </p>

 * @author Peter Scheuermann

 * @version 1.0

 */

public class TelnetClientGUI extends Panel {

 TextArea textcontent = new TextArea();

 Button openbutton = new Button();

 Button savebutton = new Button();

 Button closebutton = new Button();

 Label label1 = new Label();

 public TelnetClientGUI() {

 try {

 jbInit();

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 private void jbInit() throws Exception {

 this.setLayout(null);

 textcontent.setText("");

 textcontent.setBounds(new Rectangle(24, 59, 334, 147));

 openbutton.setLabel("Open");

 openbutton.setBounds(new Rectangle(54, 235, 71, 25));

 openbutton.addActionListener(new TelnetClientGUI_openbutton_actionAdapter(this));

 savebutton.setLabel("Save");

 savebutton.setBounds(new Rectangle(153, 235, 71, 25));

 savebutton.addActionListener(new TelnetClientGUI_savebutton_actionAdapter(this));

 closebutton.setLabel("Close");

 closebutton.setBounds(new Rectangle(248, 235, 71, 25));

 closebutton.addActionListener(new TelnetClientGUI_closebutton_actionAdapter(this));

 label1.setFont(new java.awt.Font("Dialog", 1, 18));

 label1.setText("Telnet Client");

 label1.setBounds(new Rectangle(123, 22, 131, 21));

 this.add(textcontent, null);

 this.add(openbutton, null);

 this.add(savebutton, null);

 this.add(closebutton, null);

 this.add(label1, null);

 }

 void openbutton_actionPerformed(ActionEvent e) {

 }

 void savebutton_actionPerformed(ActionEvent e) {

 }

 void closebutton_actionPerformed(ActionEvent e) {

 }

 public static void main(String args[]) {

 //

 Frame frame = new Frame("Telnet Client");

 TelnetClientGUI gui = new TelnetClientGUI();

 WindowListener l = new WindowAdapter() {

 public void windowClosing(WindowEvent e) { System.exit(0); }

 };

 frame.addWindowListener(l);

 //frame.getContentPane().add(TelnetClientGUI, BorderLayout.CENTER);

 frame.add(gui, BorderLayout.CENTER);

 frame.setSize(400, 300);

 frame.show();

 }

}

class TelnetClientGUI_openbutton_actionAdapter implements java.awt.event.ActionListener {

 TelnetClientGUI adaptee;

 TelnetClientGUI_openbutton_actionAdapter(TelnetClientGUI adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e) {

 adaptee.openbutton_actionPerformed(e);

 }

}

class TelnetClientGUI_savebutton_actionAdapter implements java.awt.event.ActionListener {

 TelnetClientGUI adaptee;

 TelnetClientGUI_savebutton_actionAdapter(TelnetClientGUI adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e) {

 adaptee.savebutton_actionPerformed(e);

 }

}

class TelnetClientGUI_closebutton_actionAdapter implements java.awt.event.ActionListener {

 TelnetClientGUI adaptee;

 TelnetClientGUI_closebutton_actionAdapter(TelnetClientGUI adaptee) {

 this.adaptee = adaptee;

 }

 public void actionPerformed(ActionEvent e) {

 adaptee.closebutton_actionPerformed(e);

 }

}

