
ECE 455- Distributed Computing Systems

Winter 2005-06

RPC Implementation with TCP/IP Sockets in C
This assignment will be done in groups of two--you are responsible for finding your partners. For this assignment you are required to implement a crude version of Remote Procedure Call. Normally this would require some degree of compiler support. However, we will simplify the interface so that the basic RPC is there, and it is only a matter of syntactic sugar to clean up appearances.

For the RPC implementation, we require three processes: a client, a server, and a binder. You will implement, using TCP/Sockets
 , the client stub, the server stub and the binder. It is up to the user to write the client and server, and you may assume that they are (almost) perfect coders (This assumption is there so that you don't have to do a ton of code checking for correctness!). The mistakes they may make, and which you have to check for, are things like not registering before invoking the server execute function, calling a RPC that isn't there yet, starting the client before the server, etc. They never make mistakes with respect to parameters in the function calls. The three portions you are responsible for work (briefly) as follows:

1. The client side must request from the binder the IP address and port number of a server capable of handling the request. It must then marshal the parameters into a message and send the request to the server. It then retrieves the result and returns it to the calling client.

2. The server side must take registrations from the server and register them with the binder. It must then listen for client requests and, upon receiving such, identify the desired procedure in the server, call it with the appropriate parameters (extracted from the client request), and return the results to the client stub.

3. The binder must take registration requests from the server processes and maintain a database of servers and associated procedures. It must also service location requests from the client processes, either returning IP address and port information for a suitable server, or indicating that no such server exists. Finally, since we may wish to terminate the entire system in a reasonably graceful fashion, the binder should also respond to a terminate request message, which it will then use to send terminate messages to all associated servers. After that, it will terminate itself. Clients can be expected to terminate themselves gracefully without
assistance.

The following are detailed specifications.

1 Client Side

The client will execute a RPC by calling the rpcCall function. The signature of this function is:

int rpcCall(char * name, int * argTypes, void ** args);

First, note that the integer returned is the result of executing the rpcCall function, not the result of the procedure that the rpcCall was executing. That is, if the rpcCall failed (e.g. if there was no server that provided the desired procedure), that would be indicated by the integer result. For successful execution, the returned value should be 0. If you wish to indicate a warning, it should be a number greater than 0. A severe error (such as no available server) should be indicated by a number less than 0. The procedure that the rpcCall is executing is, therefore, not able to directly return a value. However, it may do so via some argument. The name argument is the name of the remote procedure to be executed. A procedure of this name must have been registered with the binder.

The argTypes array specifies the types of the arguments, and whether the argument is an”input to", “output from", or “input to and output from" the server. Each argument has an integer to encode the type information. These will collectively form the argTypes array. Thus argTypes[0] specifies the type information for args[0], and so forth. The argument type integer will be broken down as follows. The first byte will specify the input/output nature of the argument. Specifically, if the first bit is set then the argument is input to the server. If the second bit is set the argument is output from the server. The remaining 6 bits of this byte are currently undefined and must be set to 0. The next byte contains argument type information. The types are the standard C types, including the null terminated string.

#define ARG_CHAR 1
#define ARG_SHORT 2
#define ARG_INT 3
#define ARG_LONG 4
#define ARG_FLOAT 5
#define ARG_DOUBLE 6
#define ARG_STRING 7

In addition, we wish to be able to pass arrays to our remote procedure. The lower two bytes of the argument type integer will specify the length of the array. Arrays are limited to a length of 216 . If the array size is 0, the argument is considered to be a scalar, not an array. Note that it is expected that the client programmer will have reserved sufficient space for any output arrays. You may also find useful the definitions:

#define ARG_INPUT 31
#define ARG_OUTPUT 30

For example, the type “(1 << ARG_INPUT) | (ARG_INT << 16) | 20" represents an array of 20 integers being sent to the server. “(1 << ARG_INPUT) | (1 << ARG_OUTPUT) | (ARG_DOUBLE << 16) | 30" on the other hand is 30 doubles sent to and returned from the server.

Since we do not know how many arguments there are, the last value we pass in the argTypes array is 0, thus the size of argTypes is 1 greater than the size of args (Please refer to the sample code given later). The args array is an array of pointers to the different arguments. For strings and arrays, they are specified by pointers in C/C++. We can use these pointers directly, instead of the addresses of the pointers. For example, if we have char stringVar[] = "string" we will use stringVar in the argument array, not &stringVar.

Thus, if the client wished to execute result = sum(int vect[LENGTH]), the code would be:

// result = sum(vector);
#define PARAMETER_COUNT 2 // Number of RPC arguments
#define LENGTH 23 // Vector length

int argTypes[PARAMETER_COUNT+1];
void **args = (void **)malloc(PARAMETER_COUNT * sizeof(void *));

argTypes[0] = (1 << ARG_OUTPUT) | (ARG_INT << 16); // result
argTypes[1] = (1 << ARG_INPUT) | (ARG_INT << 16) | LENGTH; // vector
argTypes[2] = 0; // Terminator

args[0] = (void *)&result;
args[1] = (void *)&vector;

rpcCall("sum", argTypes, args);

Note that if there is a result to be returned, this result is always the first element in args. To implement the rpcCall function you will need to send an information request message to the binder to locate the server of the function. If this results in failure the rpcCall should return some negative integer. Otherwise, it should return zero. After a successful information request, you will need to send an execute request message to the server. The specific message communication will be described in the “Protocols" description.

2 Server Side

On server side, there is a RPC infrastructure program and several server functions. Server functions provide actual services, such as sum(int a, int b). For each server function, there is a corresponding skeleton that does the marshalling and unmarshalling for the actual server function. The RPC infrastructure program registers server functions with the binder and then wait for requests which it will service. The signature of the register function is

int rpcRegister(char *name, int *argTypes, function f);

where function is defined as

typedef int (*function)(int *, void **);

The result returned is 0 for a successful registration, positive for a warning (e.g. this is the same as some previously registered procedure), or negative for failure (e.g. could not locate binder). The first two parameters are the same as those for the rpcCall function. The third parameter is the address of the skeleton; this skeleton corresponds to the server function that is being registered. The binder does not need to know this, but the RPC infrastructure program will need to know it in order to execute it, which means the RPC infrastructure program keeps a local database that maps the name and argTypes to the supplied skeleton function.

The rpcExecute function has the signature:

IntrpcExecute(void)

It hands over control to the skeleton, which is expected to unmarshall the message, call the appropriate procedures as requested by the clients, and marshall the returns. It returns 0 for normally requested termination (the binder has requested termination of the server) and negative otherwise (e.g. if there are no registered procedures to serve). During the normal course of operation, this will be the last instruction that the server RPC infrastructure code writes.

To implement the register function you will need to send a register message to the binder. The specific message communication will be described in Section 5 under Protocols description. The header files of the server functions and corresponding skeletons are provided for you—please download them from RPCheaders.tar. You are responsible for writing actual skeletons and the RPC infrastructure. The Teaching Associate will implement actual server functions according to the given header files to test the RPC system.

3 Binder

The binder accepts the information request message and the register requests and replies as defined in the “Protocols" section (Section 5). It must maintain a database of procedures that have been registered with it, including arguments, so that when it receives an information request it can respond appropriately. The database will be of the form:

procedure signature, location

The specific details of how you manage this database are up to you, including how you wish to deal with duplicate procedure signatures. There must be some mechanism for the server and the client to know where the binder is and what port it is listening to. Since this will be dynamic and since we have no control over the /etc/services files, we will use two environment variables. Specifically, the binder must print two distinct lines of the form

BINDER_ADDRESS <machine>
BINDER_PORT <port number>

where <machine> is the machine name or IP address where the binder is executing and <port number> is the port number that the binder is listening to. This allows the user at the server or client machine, before executing the server or client, to set these values in the shell. The server and client stubs must read these from the environment and call the binder appropriately. Notice that if other students are doing this in the same time you may find out the static port number is often occupied by some other programs. You better bind to the next available port number rather than a static port.

4 System Termination

To gracefully terminate the system a client executes the function:

int rpcTerminate (void);

The client stub is expected to pass this request to the binder. The binder in turn will inform the servers, which are all expected to gracefully terminate. Clients are expected to terminate on their own cognizance.

In a real system only privileged clients would be able to execute this function, the binder would be expected to authenticate the request, and the servers would authenticate the request from the binder. We will omit client authentication for the sake of simplicity, but we will have very crude binder authentication by the servers. Specifically, they should verify that the termination request comes from the binder's IP address.

5 Protocols

We now define a suggested message protocol. Strictly speaking, this is hidden behind the API just defined, and so you may choose any protocol scheme you wish. However, it is recommended that you at least understand it before trying your own technique. Also, it is likely that the Teaching Associate will be less able to provide assistance if you create your own mechanism.

There are several messages that must be sent and replied to for this system to function. In no particular order, they are the server/binder messages, the client/binder messages, and the client/server messages. Since messages are not quite the same as data structures, in that they do not have clear boundaries, it is strongly recommended that they take the following form:

Length, Type, Message

Where Length is an integer indicating the message length, Type is an integer indicating the type, and then the message follows. Thus, it is possible to read the first eight bytes to determine the length and type, and then know how much more needs to be read, and how to respond to it. In the following descriptions, we will only identify the type and message information. The type is in “all caps."

5.1 Server/Binder Message

This message will need to identify the function and the argument types, and the IP address and port number so that the binder can register the procedure. The message will be:

REGISTER, name, argTypes, IP address, port

The binder will respond with either REGISTER SUCCESS or REGISTER FAILURE, with an integer following both message types to indicate warnings or errors, if any.

5.2 Client/Binder Message

This message will need to identify the function and the argument types so that the binder can determine if it has such a function. The message will be:

INFO_REQUEST, name, argTypes

where name and argTypes are the respective parameters from the rpcCall call. The binder will respond to this with a message of the form:

INFO_REPLY, IP address, port

In the normal course of events, IP address will be the integer IP address of the server host and the socket will be a short indicating the port that the server is listening to. To indicate failure, the IP address value will be 0, and the reason, if any (this is for your implementation to decide), will be in the port number.

5.3 Client/Server Messages

These messages are needed to execute the remote procedure. It requires the argument types and values, as well as the procedure name. Thus, the message is:

EXECUTE, name, argTypes, args

The response is:

EXECUTE_SUCCESS, name, argTypes, args

upon successful execution and

EXECUTE_FAILURE, reasonCode

for failure, where reasonCode is an integer reason for failure.

5.4 Terminate Messages

To terminate the servers and binder a client sends a terminate message of the form:

TERMINATE

to the binder. The binder sends the same message to all servers which, after verifying it is from the binder, terminate. It is not necessary, for the purposes of this assignment, to deal with this any more cleanly than as is described.

6 Requirements

You are required to implement this RPC system as described. You can only use C/C++ implement it. To compile the client we will execute the command:

g++ client.o -lrpc -o client

And likewise for the server. Note that the functions must be in a library librpc.a.

You are also required to write a makefile. By typing gmake it can generate the RPC library and executables.

 Write a README file, describing how to compile and run your RPC system; also document any dependencies or other things.

You do not need to write a user manual or a test document. However, short of reading your code in detail, determining how you implemented the system beyond what is described here is non-trivial. You are therefore required to write a system manual describing how your system is implemented. A system manual should describe how the code is structured. If you don't know what a system manual should look like, imagine that you had to maintain the code that you are writing, but that you did not write the code. Someone else did. What would you need to know about the code in order to maintain it? The system document should be clear and concise. You may find a figure to be helpful in describing your system.

For those who are not familiar with the process of creating a static library, you can check the
following link.

http://www.linux.com/howtos/Program-Library-HOWTO/static-libraries.shtml

In coding this assignment, you may find useful to use a debugger, e.g., gdb is available in the Wilkinson environment; the gdb user doc can be found at

http://sources.redhat.com/gdb/current/onlinedocs/gdb_toc.html

� The sample TCP/Socket client/server code are provided. Please download them from SampleTCPCode The gzipper tar file contains two directoris: Example and Select that you can use.

