D455 – Distributed Computing Systems

Homework Assignment No. 2

Due: March 3, 20006

Winter 2005/6

Prof. P. Scheuermann

1. Consider a file F that is present in a distributed system of N processes (N >= 4). The mutual exclusion required on this file has the following safety and liveness conditions (different from those discussed in class):

Safety: At most one process may obtain write access to the file at a time. At most 4 processes may obtain read access to the file at a time. If a process has write access to the file, no other processes should be able to read or write it.

Liveness: Requests to access and release the resource eventually succeed.

a) Describe a token ring-algorithm for the above problem.

b) Show that your algorithm guarantees both the Safety and Liveness properties defined above.

2. In a certain system , each process typically uses a critical section many times

 before another process requires it. Explain why Ricart and Agrawala’s multicast

 -based mutual exclusion algorithm is inefficient for this case, and describe how to

 improve its performance.

3. Consider a deadlock detection scheme for a single server. Describe precisely when edges are added to and removed from the wait-for-graph.

Illustrate your answer with respect to the following transactions T, U and V at the server.

 When U releases its write lock on i, both T and V are waiting to obtain

 write locks on it. Does your scheme work correctly if T (first come) is

 granted the lock before V? If your answer if ‘No’, then modify your

 description.

 Note: write(i)55 assigns the value of 55 to i.

4. Consider two transactions Ti and Tj which both transfer funds from an account x

located at site 1 to an account y located at site 2. As we are interested only in the read

and write operations, the two transactions can be described by the following sequence of

operations:

Ti : Ri(x) Wi(x) Ri(y) Wi(y)

Tj : Rj(x) Wj(x) Rj(y) Wj(y)

assuming that each transaction reads x, decrements its value, writes the new value, reads y, increments its value, and writes the new value.

Assume that these two transactions are activated almost simultaneously and consider the following execution at each site:

	Site 1
	Site 2

	Ri(x)

Wi(x)

Rj(x)

Wj(x)
	Ri(y)

Wi(y)

Rj(y)

Wj(y)

In this representation of execution, the fact that operation Ri(y) appears next to Rj(x) means that these two operations start at the same time. Therefore, Tj begins reading x immediately after Ti has written x, although Ti is not yet terminated.

(i) Is this distributed execution schedule serializable? If so, what is the global serialization order. If not, why not?

(ii) Can this distributed execution schedule be generated by a strict 2-phase locking protocol (I don’t care if it is a centralized or a distributed 2PL mechanism)? If it can, indicate the locking/unlocking sequence. If it cannot, explain why not.
5a. For the following transaction execution histories (we also used the equivalent term “schedule”; they are the same) (i) indicate the conflicting operations and their order of execution (< or >) by filling out the following table (e.g., look at the first line of the table that indicates that conflicting operations A(x),B(x) occur in the order A(x) < B(x) in H1,H2,H3 and in the order A(x) > B(x) in H4), and (ii) indicate which ones are conflict equivalent and why (Ignore the Commit (C) and Abort (A) operations.).

H1 = W2(x),W1(x),R3(x),R1(x),C1,W2(y),R3(y),R3(z),C3,R2(z),C2
H2 = R3(z),R3(y),W2(y),R2(z),W1(x),R3(x),W2(x),R1(x),C1,C2,C3

H3 = R3(z),W2(x),W2(y),R1(x),R3(x),R2(z),R3(y),C3,W1(x),C2,C1
H4 = R2(z),W2(x),W2(y),C2,W1(x),R1(x),A1,R3(x),R3(z),R3(y),C3
Conflicting ops H1 H2 H3 H4

A(x),B(x)

< < < >
5b. For each of the histories H1 −H4 above, indicate which are serializable and which are

not. For the serializable ones, give the serialization order. For those that are not indicate why not. (you will only get points if you justify your answer)

T�
U�
V�
�
�
write(i)66�
�
�
write(i)55�
�
�
�
�
�
write(i)77�
�
�
commit�
�
�

