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ABSTRACT The point-by-point measurement of image similarity has
) o _ been shown to not be in accordance with human perception,
We focus on the evaluation of texture similarity metr'csespecially in textured areas [2, 3]. This prevents imagel (an
for structurally lossless or nearly structurally lossless image video) compression algorithms from using spatial (and tem-
compression. By stru_cturally Ioss_less we mean that _th_é—orig_ oral) prediction for encoding textured regions, becatse t
nal and compressed images, while they may have visible diliochastic nature of textures results in large predictivors
ferences in a side-by-side comparison, they have similakqu \hen conventional metrics are used. However, large patches
ity so that one cannot tell which is the original. This is par-of texture (e.g., of grass, sand, clouds, forest) could in@si
ticularly important for textured regions, which can havg-si  yeplaced with previously encoded patches with indistisbui
nificant point-by-point differences, even though to the Bam  gpje characteristics without any significant effect on piaed
eye they appear to be the same. As in traditional metrics, t&texture quality. This requires texture similarity metritt
ture similarity metrics are expected to provide a monotoniGccount for the stochastic nature of textures and allowifsign
relationship between measured and perceived distortion. Ticgnt point-by-point deviations that do not affect textape
evaluate metric performance according to this criterioe, w pearance [4,5]. Indeed, the development of such metrics and
introduce a systematic approach for generating synth@tic t 5 petter understanding of texture is key to further advairces
ture distortions that model variations that occur in ndttea image compression, as well as other image analysis applica-
tures. Based on such distortions, we conducted subjective etjons such as computer visions and content-based retf@jval
periments with a variety of original texture images andefiff  The goal of this paper is to evaluate the performance of textu
ent types and degrees of distortions. Our results indit¢ete t similarity metrics for the purposes of image compression.
recently proposed structural texture similarity metries\pde In order to achieve structurally lossless or nearly struc-

the best performance. turally lossless compression for textured areas, the gowl i
Index Terms— perceptual similarity, image quality have a metric that provides a monotonic relationship betwee
measured and perceived distortion. Such a metric can be used
both for quality assessment and as a tool within a compnessio
algorithm. However, as we pointed out in [6], such monotonic
The conventional problem of image quality evaluation con-metric performance can be achieved only at the high end of
sists of measuring point-by-point distortions between théhe similarity scale, where the structural distortionséa
original and the compressed image. This is true for bothher a small effect on perceived quality, or do not affect per
the peak-signal-to-noise ratio (PSNR) giaiceptual metrics  ceived quality at all. Of course, after a certain point, when
that incorporate low-level properties of the human visyals the quality is unacceptable, there is no need for monottyici
tem [1]. The goal of the latter is to measure deviations fronthe metric should simply give low values. It is also impottan
perceptually lossless compression, that is, images cannot beto have an absolute measure of image similarity, so that con-
distinguished in a side-by-side comparison at a given displ sistent image quality can be achieved across differentstype
resolution and viewing distance [1]. Instead, our focusris o of image content, both within an image and across different
structurally lossless compression [2], whereby the original images, as well as across different compression techniques
and compressed images may have visible differences in a To explore how metric predictions relate to perceived dis-
side-by-side comparison, but they have similar qualityhed t  tortion, and in particular, to test metric monotonicity aaat
one cannot tell which is the original. The goal of the qualitysolute performance, we need a systematic approach for ob-
metric is then to measure deviations from this standard ofaining different degrees of distortion for a variety of tieses
performance. This is particularly important for textured r and subjective experiments to rate such distortions. Hewev
gions, which can have significant point-by-point differeac  generating a set images with fine differences in type and leve
even though to the human eye they appear to be the same. of distortion is a difficult, if not impossible, task in thertext

1. INTRODUCTION



of real applications. We thus chose to generate synthetic di
tortions that model variations that occur in natural teggur
Based on such distortions, we conducted subjective exper:
ments with a variety of original texture images and différen -
types and degrees of distortions. Our results indicatertdzat
cently proposed structural texture similarity metricHiro-
vide the best performance.

Gideet al. [7] have conducted a similar subjective study.
where the goal was to build a comprehensive database of tex-
ture images with several sets and degrees of distortions, to
be used as a benchmark for comparison of different texture

. . : Including a broader set of local image statistics. In additi
quality metrics. While the overall goals are the same, our ex .
. . e . to the STSIM computation for each subband, STSIM2 also
periments are aimed at variations that occur naturallyn te

tures, with the goal of exploiting texture self-similariin computes terms that compare the cross-correlations betwee

. o . S subbands that correspond to adjacent scales for a givam orie
compression applications), rather than distortion induog . . . : L
traditional coding alaorithms such as noise. blur. cons tation, as well as different orientations within the samaec
: oding alg . L ’ » COMg STSIM2 then combines the results of STSIM and adds the
artifacts, shifts due to motion estimation, or synthesiselola . : ' S
. cross-correlation comparison terms to form a final simijari
on a parametric texture model [8].

The remainder of this paper is organized as follows. Sec§Core for two images. We will refer to this &SM2, to dis-

tion 2 provides a brief overview of similarity metrics. The tinguish it from the metric in [4]. In the remainder of this-pa

. . . . er, we use a three-scale, four-orientation steerablenmgra
experimental setup is presented in Section 3, the results i o - : )
. : ; . . decomposition, and sliding windows of siZex 7.
Section 4, while the final conclusions are drawn in 5.

Fig. 1. Original textures

3. EXPERIMENTAL SETUP

2. SSIMREVIEW Our goal is to determine how successful various similarity
Structural similarity metrics (SSIMs) [9] were developed metrics are in predicting the perceived degree of distoriio
for supra-threshold applications, such as perceptualigyo texture images. For our experiments, we chose ten different
compression, where significant changes are allowed that dgrayscale texture images, shown in Fig. 1. They range from
not affect image structure. When implemented in the imag@oise-like to highly structured images, and they exhibii di
domain, SSIMs allow non-structural contrast and intensityferent levels of susceptibility to different types and dwzg of
changes, while the complex wavelet version (CWSSIM) [10Hdistortions. The image resolutionig€8 x 128 pixels.
also allowssmall translations, rotations, and scaling changes.  As we discussed in the introduction, we chose to generate
SSIM (and CWSSIM) compares two images on a slid-synthetic distortions that model variations that occur at-n
ing window basis. In each window it computes three termsural textures. Since these include variations in positait,
the luminance term compares the means of pixels (or com-entation, and color [8], we implemented the following types
plex coefficients) in two corresponding windows, tloaitrast  of distortion: (1)random rotation of small local patches, (2)
term compares their variances, while steucture term com-  random shifts of small local patches, and (8hage warping,
putes the cross-correlation between the corresponding wirwhereby the images are distorted according to random de-
dows. The three terms are multiplied in each window, and awviations of the control points of an underlying mesh. The
eraged across windows to produce the overal image sinyilarit severity of each type of distortion can be easily manipalate
For CWSSIM, each subband produces a similarity score; thby varying the distortion parameters (probabilistic disir
total similarity is computed as their mean. tion of rotations, shifts, and mesh points). For the rotatio
For texture similarity, where significant point-by-point angles, shifts, and the control points of the warping, we as-
differences are possible between two texture images that asumed a uniform distribution of the corresponding variable
cording to the human eye can be considered as “identicakhe range of which determines the degree of distortion. Each
textures, Zhacet al. [4] proposed a new Structural Texture of the ten textures was distorted with three distortion algo
Similarity Metric (STSIM). Their metric removed the struc- rithms, with three degrees of severity for each distortigr-
ture term from the CWSSIM — which in spite of its name is in amples of the distorted images corresponding to threerdiffe
fact a point-by-point comparison — and added two new terment originals, are given in Fig. 2. From left to right, we have
that depend only on region statistics. The new terms compatéree rotation-distorted images, three shift-distoriages,
the first order correlation coefficients in the horizontalan and three warped images. For each type of distortion, the
vertical direction, so that for each sliding window, theylmu severity is increasing from left to right.
tiply four terms instead of three. Again, the final similgrit In our experiments, we usdd x 11 pixel patches, while
score is obtained by spatial and frequency pooling. the warping meshes wefex 5. This is because the smaller
The metric proposed in [5] extends the ideas of [4] bymeshes result in artifacts of similar scale as those of tigeta
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Fig. 2. Examples of distorted texture images: rotation (colum#) ltranslation (columns 4—6), warping (columns 7-9),

across originals. In order to determine metric performance
across different originals, the subjects were also askeathtio
the worst distortions for each of the original textures.

4. EXPERIMENTAL RESULTS

Eleven subjects participated in this experiment that caegha
the PSNR, SSIM, CWSSIM, STSIM, and STSIM2 metrics.

4.1. Analyzing the ranking results per original image

Analyzing the ranking data can be done in a number of ways.
In all cases, for each original image, we extract a 1-D vector
: that describes the subjective similarity between the pabi
(a) Original (c) High distortion and the nine distorted images. This vector is compared to the
values of each similarity metric. To measure the goodness of
fit, we use the Pearson’s correlation coefficient, whicheval
ates absolute metric performance, and the Spearman rank cor
relation coefficient, which describes how well a metric rank
the distorted images compared to the subjective rankinigs. T
reported values for Pearson’s and Spearmaragse the aver-
age correlation coefficients taken over all the originals.

The simplest approachiis to find the mean ranking for each
distorted image and use that as its “subjective” positiott wi
respect to the original. This is perhaps one of the oldesttec

Fig. 4. Grid points in the original and distorted meshes  hiques, proposed in 1770 by Jean-Charles de Borda, and to-

day usually known as Borda’s rule. He called this method
patches, as shown in Fig. 3. The reason for thisis illusirste  “election by order of merit,” i.e., the cumulative prefecen
Fig. 4, which shows the control points of the underlying meshgiven to a candidate is its final score.
Note that each disjoint set of four points on the grid can be One popular way to analyze this type of data is to use
seen as the control points of one rectangle (dashed linéh), w Thurstonian scaling [11]. It is applied on tpesference ma-
space between rectangles for smooth transitions, eftdgtiv trix P, where P(i, j) denotes how many times imagavas
producing deformations on rectangles of sigex 10. preferred to imagg, i.e., how many times imagevas ranked

For each of the ten original images, the subjects weras closer to the original than imageAfter pooling all the re-
asked to rank the distorted images frdest to worst, com-  sults, the preference matrix is scaled to represent peagest
pared to the original image. They were not allowed to give(“imagei was preferred to imaggin p percent of cases”) and
the same ranking to two distorted images. As a result, evergercentages are converted into z-scores. This can produce s
user provided rankings betweérand9 for the nine distorted gular values when we have perfect agreement among raters,
images corresponding to each original. This, however, proso an alternative has been proposed by Ktw. [12], which
duces data that can only be processed for a given original, navoids such undesirable behavior.

Fig. 3. Warping distortion with underlying meshes




| Algorithm | Borda’s rule| Thurstonian scalg¢ MDS | algorithm always outperforms, or is tied with, the other al-

PSNR 0.72 0.72 0.72 gorithms, which shows its usefulness for compression appli
SSIM 0.74 0.74 0.74 cations.Future research will include a broader range ofjena
CWSSIM 0.84 0.84 0.83 deformations, as well as more thorough subjective testiny a
STSIM 0.88 0.88 0.87 the incorporation of the metric into a compression alganith
STSIM2 0.88 0.88 0.87 PSNR| SSIM | CWSSIM | STSIM | STSIM2
Table 1. Pearson’s for different analysis methods | | | | | |
| Algorithm | Borda’s rule| Thurstonian scalg MDS | [ 053 | 060 066 | 067 [ 068 |
PSNR 067 066 067 Table 3. Kendall’s coefficient of agreement
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