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ABSTRACT

Index Terms—

1. INTRODUCTION

MRF ...
Bilevel image reconstruction ...
Previous work ...
Proposed model ...
The main contributions include (i) a 3-point-clique MRF

model that tolerant slow changes; (ii) a hybrid MRF model
that ensures the independency between cutset blocks and
keeps the sensitivity to change near block boundaries; and
(iii) a two-stage cutset reconstruction algorithm.

Paper structure ...

2. PREVIOUS WORK

2.1. MRF with 2-pt cliques

A bilevel image can be modeled by the Markov random field
(MRF). Let G = (V,E) be an 8-connected graph, where
V and E denote the nodes (vertices) and edges, modeling
the pixels and the connectivities in an image, respectively.
The MRF with 2-point cliques is defined on the 8-connected
graph. The 2-point cliques consist of horizontal, vertical and
diagonal neighboring nodes (Figure 1a). A node is associated
with 8 cliques (Figure 1b).

Let xs denote the value at pixel s. Given the MRF model,
the image values x are realized by maximizing the probability

p(x) =
1

Z
exp{−

∑
C

VC(x)}, x ∈ {0, 1} (1)

VC(x) =

{
−β, xs = xq, (s, q) ∈ C, β > 0
+β, xs 6= xq, (s, q) ∈ C, β > 0

(2)

where Z is a normalization constant, C denotes the collection
of cliques, and q denotes a neighboring node of s. Such model
has been used in cutset reconstruction of bilevel images [1, 2].

2.2. Cutset-MRF

The term cutset was first proposed in lossy bilevel image com-
pression that relies on the reconstruction of bilevel images

(a) 2-pt cliques

(b) A node (blue) asso-
ciated with 8 cliques

(c) Cutset (blue); unsampled nodes (gray)

Fig. 1: MRF and cutset associated with 2-point cliques

from cutsets. Given a 2D Cartesian grid, a A cutset typically
takes samples on evenly spaced rows and columns of a 2D
Cartesian grid (e.g. Figure 1c, sampling step N = 4). The
grid can be decoupled into (N + 1) × (N + 1) blocks, con-
sisting of 4N cutset nodes on the shared block boundaries
and (N−1)× (N−1) unsampled nodes in the block interior.
Based on the 2-point-clique MRF model, the interior nodes
can be completely described by the cutset nodes that enclose
them. Therefore, the inferring of unsampled nodes in each
block is independent with other blocks. The optimization un-
der MRF model is thus reduced to seeking optimal path(s)
that partition the block interior given the boundary.

In complicated blocks, however, the optimal partition in
MRF sense may not lead to a truthful reconstruction. Thus,
additional connection bits are encoded to improve the choice
of partition paths in bilevel image compression where the
original images are accessible [1, 2]. Figure 3 shows exam-
ples when the connection bits are needed. The connection bits
indicate which runs of same valued nodes on block to connect
via the interior nodes. For example, two black runs are con-
nected in the first reconstruction example in Figure 3d while
two white runs are connected in the second reconstruction ex-
ample.



3. PROPOSED APPROACH

3.1. Cutset-MRF Graph Partition

The reconstruction of the block interiors given the block
boundaries can be reinterpreted as graph partition that op-
timizes the following: (i) the connection of runs that used
as graph partition roots; and (ii) the optimal graph partition
paths given the connection of runs. After partition, the edges
between neighboring nodes of different values are being re-
moved, result in disconnected subgraphs (representing the
reconstructed segments). A graph partition path is referred
to as a polyline that cut the edges during the graph partition
process.

The cutset-MRF with connection bit approach satisfies
these two stages of graph partition: the connection bits in-
dicate which runs to connect; while the 2-point-clique MRF
model generates the optimal graph partition paths given the
connection bits. The connection bits, however, can not be ob-
tained in actual image reconstruction applications where the
originals are not available. Without the connection bits, the
2-point-clique MRF model alone is bias towards shorter par-
tition paths, thus fails to provide a realistic graph partition
model.

To address these issues, we propose a novel two stage
cutset-MRF approach that optimizes the graph partition with-
out any reference image. More specifically, it consists of a
2-point-clique MRF model that optimizes the graph partition
paths given each possible connection of runs and a hybrid
MRF model optimizes the connection. The hybrid MRF
model includes a 3-point-clique MRF model that aims to
eliminate the bias towards shorter graph partition paths and
consequently allows the segments on the block boundary to
extend into the block interior and a complimentary 2-point-
clique MRF model active only near the block boundary.

3.2. 3-point-clique MRF Model

The main draw back the 2-point-clique MRF model is that
it penalizes any change of values in a clique of neighboring
nodes, thus discourages the formation of segments. We pro-
pose a 3-point-clique MRF model that allows the values to
change slowly across the field.

Assume the graph is infinite. We define a MRF model
associated with a 3-point-clique function

VC(x) =

 β0, xs−1
= xs0 = xs+1

β1, xs−1 6= xs0 6= xs+1

β2, o.w.
(3)

where C denotes a collection of 3-point cliques, including
the horizontally, vertically and diagonally connected 3 nodes
(Figure 2a); s−1,0,+1 ∈ C; s0 is the clique center node; and
β0,1,2 ∈ <. A node s in an infinite graph is associated with
12 (3 horizontal, 3 vertical and 6 diagonal) 3-point cliques

(a)

(b)
(c)

(d)

Fig. 2: MRF with 3-point cliques. (a) 3-point cliques, in-
cluding the horizontally, vertically and diagonally connected
3 nodes. (b) the neighborhood associated with the 3-point
cliques with current node denoted in blue and neighboring
nodes denoted in green. (c) the three conditions in equation
(4): no change, slow change and fast change; the colors are
interchangeable. (d) MRF model defined with 3-point cliques
in the graph and 2-point cliques at the boundary.

(Figure 2b). The conditions for β0, β2 and β1 model the uni-
form, slow change and fast change of values within a clique
(Figure 2c). It is intuitive to encourage uniform clique by set-
ting β0 < 0 and discouragefastchangebysettingβ1 > 0.
We propose a special case of equation (3) that treats the slow
change and uniform cliques equally while penalizes the fast
change:

VC(x) =

{
+β, xs−1

6= xs0 6= xs+1

−β, o.w.
(4)

where s−1,0,+1 and C are the same as in equation (3) and
β > 0. It is a special case of (3) by setting β0 = β2 = −β
and β1 = +β.

The main difference from previous work is that rather than
penalizing any change, only fast change is penalized. Conse-
quently, there’s no bias towards shorter graph partition paths.

3.3. Boundary Condition

Based on the 3-point-clique MRF model, a cutset can be de-
coupled into blocks to reconstruct the interior independently
from other blocks only if the cutset and the shared block
boundaries are two-node-wide. Otherwise, the reconstruction
of the entire image has to be optimized simultaneously, not
guaranteed with a closed form solution. We propose a hybrid
MRF model by replacing the 3-point cliques with 2-point
cliques where the boundary violates the interdependency
under the 3-point-clique MRF model. The modified clique
function is

VC(x) =

{
η3VC3

, 3-pt-clique available
η2VC2

, o.w.
(5)

where VC2
and VC3

are specified in equation (2) and (4), re-
spectively; and η2, η3 > 0 are scaling factors. The resulted



graphical model of a one-node-wide cutset block is shown in
Figure 2d. The proposed hybrid model ensures the indepen-
dency between cutset blocks.

Moreover, it is intuitive to extend the boundary value into
the neighboring interior nodes while allow some freedom of
value change away from the boundary where the nodes are
not directly connected to the boundary nodes. The proposed
hybrid model is sensitive to any change near block boundary
while tolerant to slow change elsewhere.

3.4. Algorithm

The maximization of p(x) in equation (1) is equivalent to
the minimization of MRF energy E =

∑
C VC(x) for all

x. Therefore we express the optimization problem in terms
of MRF energy minimization. The reconstruction of a cutset
block is summarized in Algorithm 1. If multiple xi exist for

Algorithm 1 Cutset-MRF Graph Partition

Require: Block boundary specification b, MRF parameter
β, η2, η3

Ensure: The optimal realization of nodes x in the block
1: procedure RECONSTRUCT(b,x)
2: for i-th combination of connection of runs do
3: Find xi s.t. argminE with VC in (2)
4: end for
5: Find x ∈ {xi} s.t. argminE with VC in (5)
6: return x
7: end procedure

a given i, we choose the straight line partition because it is
one of the optimal solution in 2-point-clique MRF sense and
is supported by statistical result in [3]. If multiple x exist, we
use one of the optimal solutions.

4. EXPERIMENTAL RESULTS

4.1. MRF Model Analysis

We analyze the MRF models in the second stage of graph
partition algorithm. Figure 3 demonstrate several typical
examples of different optimal reconstructions to the same
block boundary specification based on different MRF mod-
els. The proposed 3-point-clique MRF model with 2-point-
clique boundary condition differs from the 2-point-clique
MRF model in reconstruction a, c and e. In these examples,
the 2-point-clique MRF model prefers short partition paths
(connecting black runs); while the proposed model toler-
ant the slow change to form segments in block interior but
focus on the change between boundary nodes and interior
nodes, thus reduces the disconnected flat runs in reconstruc-
tion. It leads to substantial improvement in continuity of
segments, shown in Figure 4. As for the design the clique
function, both VC3

and VC2
in equation (5) are important.

The former ensures the fair comparison of partition paths
regardless of their length (e.g. Figure 3a) while avoid fast
change of node values (e.g. Figure 3bc). The latter is sen-
sitive to the change between boundary nodes and interior
nodes, which is essential to extending the value of boundary
nodes to interior. It is also important to treat slow change
and uniform cliques equally in non-boundary condition. The
alternative designs of the 3-point clique function VC3 , such as
(β0, β1, β2) = (−β, 0,+β) or (β0, β1, β2) = (−β,+β,+β)
in equation (3), behave essentially like the 2-point clique
function in equation (2), thus are bias towards shorter parti-
tion paths.

4.2. Visual Result

Figure 4 illustrate examples of cutset reconstruction based on
the 2-point-clique MRF model and the proposed hybrid MRF
model. The reconstructions from 2-point-clique MRF are ob-
tained with our extension of [1] that considers up to four black
and white runs as compared to two in the original work. The
MRF parameters are β = 1, η2 = η3 = 1. The proposed
MRF model is insensitive to parameters as long as they sat-
isfy β > 0, η2 > 0, η3 > 0. The cutsets are obtained at
sampling step N = 8 (a typical sampling step) and 16 (a
challenging sampling step). It demonstrate that the proposed
approach substantially improves the reconstruction. The pro-
posed approach makes better decision in whether to connect
flat runs (e.g. the fourth row in Figure 4). The improvement
of the example the second row mainly comes from the types
of block with a nearly flat corner run, corresponding to block
reconstruction example in Figure 3e. There are some cases
that the connection of runs can not be determined accurately
without any extra information (e.g. the broken branches in the
example of Figure 4).



(a) minE2(B), E3(W ) (b) minE2(B), E3(B) (c) minE2(B), E3(B) (d) minE2(B), E3(W ) (e) minE2(B), E3(W )

Fig. 3: Compare MRF models in reconstruction. B and W denote the reconstruction resulted from connecting black and white
runs, resp. minE2,3 refers to the minimal (optimal) MRF energy based on the model in [1] and the proposed model.

Table 1: Comparison with other approaches in reconstruction
error rate

Dataset N
unsupervised supervised

[4] [5] [1] [1] ext. proposed [3]

our
bilevel
image
dataset

16 .075 .069 .075 .075 .049 .047
14 .065 .061 .063 .063 .042 .039
12 .056 .053 .051 .052 .034 .031
10 .047 .044 .039 .038 .027 .024
8 .038 .035 .030 .027 .019 .017
6 .027 .025 .016 .015 .013 .011
4 .015 .015 .007 .007 .007 .007
2 .005 .003 .002 .002 .002 .002

bilevel
shape
dataset

[6]

16 .064 .054 .049 .047 .043 .039
14 .056 .047 .041 .040 .036 .033
12 .048 .042 .033 .033 .029 .026
10 .040 .035 .025 .025 .023 .020
8 .032 .029 .019 .018 .017 .015
6 .022 .020 .013 .013 .012 .011
4 .012 .012 .006 .006 .006 .006
2 .003 .002 .002 .002 .002 .002

4.3. Comparison of Approaches in Reconstruction Error

We tested the propose approach on an in-house bilevel im-
age dataset containing 13 complicated bilevel images and a
large bilevel shape dataset [6] containing 5578 images. The
proposed approach is compared with the 2-point-clique MRF
approach [1] and its extension, two baseline inpainting ap-
proaches [4, 5] that adapted to bilevel images and a super-
vised pattern-based approach [3] at various cutset sampling
steps (N = {16, 14, 12, 10, 8, 6, 4, 2}), shown demonstrated
in Table 1. The cutset sampling is efficient when the number
of sampled nodes is less than the unsampled ones, i.e. when
N >= 6. It demonstrates that the proposed hybrid MRF ap-
proach substantially outperforms other unsupervised methods
when N >= 6. For completeness of the paper, the proposed
approach is also compared with a supervised approach that
utilizes the statistics from a dataset of segmented images. The
proposed approach largely reduces the gap towards the su-
pervised approach even though the reconstruction in the pro-
posed approach is only based on the boundary specifications.

4.4. Computational Cost

The proposed approach is quite efficient in terms of computa-
tional cost. The straight line partition is within optimal solu-
tions in terms of 2-point-clique MRF, thus Algorithm 1 line 3
has a closed form solution and can be reduced to implementa-
tion of Bresenham’s line. The combinations of connection of
runs are limited, therefore, Algorithm 1 line 5 only computes
equation (5) for a limited number of times, which mainly con-
sist of summation and comparison. Compared with the ap-
proach in [1], the additional computations are introduced by
the 3-point clique function, which is quite light weighted. In
contrast the inpainting approaches [4, 5] and the pattern-based
approach [3] requires much more computational resources.

5. CONCLUSION

In this paper, we proposed a 3-point-clique MRF model and
two stage algorithm for reconstructing bilevel images from
cutsets. Moreover, we adapt the 3-point-clique MRF model
to a hybrid MRF model for one-node-wide cutsets. The pro-
posed approach leads to substantial improvement over previ-
ous cutset-MRF approaches in both visual quality and recon-
struction error rate. It yields the new state-of-the-art in un-
supervised bilevel cutset reconstruction and largely reduces
the gap towards the supervised method. The cutset-MRF ap-
proaches are computationally efficient. We believe the cutset
reconstruction can be further improved by introducing global
information or statistical information.
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