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ABSTRACT 

In a previous study we investigated the roughness of real world textures taken from the CUReT database.  We showed 
that people could systematically judge the subjective roughness of these textures.  However, we did not determine which 
objective factors relate to these perceptual judgments of roughness.  In the present study we take the first step in this 
direction using a subband decomposition of the CUReT textures.  This subband decomposition is used to predict the 
subjective roughness judgments of the previous study.  We also generated synthetic textures with uniformly distributed 
white noise of the same variance in each subband, and conducted a perceptual experiment to determine the perceived 
roughness of both the original and synthesized texture images.  The participants were asked to rank-order the images 
based on the degree of perceived roughness.  It was found that the synthesis method produces images that are similar in 
roughness to the original ones except for a small but systematic deviation. 
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1. INTRODUCTION 
In our daily life, visual, auditory, or tactile textures provide information about events and objects in the environment.  
For example, the visual appearance of a road may indicate whether we are about to drive over a smooth or a bumpy 
surface.  The granularity of sandpaper is a good predictor of how it will feel when we touch it.  Textures also provide 
strong clues about the material composition of objects in the environment.  For example, we can recognize flour from its 
visual appearance, or cotton from the way it feels and sounds.  The primary focus of this paper is on the perception of 
visual textures.  Many different attributes can be used to describe our experience of visual textures, for example, 
roughness, sharpness, and pleasantness.  However, little is known about what image features may be good predictors of 
such attributes.  In Van Egmond, et al.1 the subjective roughness and pleasantness of images from the CUReT database2 
were determined.  It was found that the roughness judgments were systematic and could differentiate between images. 
The pleasantness judgments, on the other hand, were less systematic and seemed to cluster subjects into two groups, 
those who found rough images pleasing and those who found rough textures unpleasing.  This study takes the next step 
in trying to find an objective predictor of subjective visual roughness.  The proposed predictor is based on a subband 
decomposition and analysis of the variance of the subband coefficients.  In addition, to test the hypothesis that visual 
roughness can be determined from the variance of the subband coefficients, we synthesize images with the same subband 
variance and conduct subjective tests to determine if these images evoke the same experience of roughness.  
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1.1. Visual roughness research 
Roughness is an attribute that has strong tactile roots.  Bergmann, Tiest, and Kappers3 compare the haptic and visual 
perception of roughness, while Ho et al.4,5 attempt to relate roughness to surface attributes, direction of illumination, and 
viewpoint.  Another study of how surface parameters affect visual perception of roughness is reported by Padilla, et al.6  
However, there has been relatively little work in deriving metrics that can directly estimate visual roughness from 
images; for example, Sarkar and Chaudhuri7 examine the relation between visual perception of roughness and fractal 
dimension.  

1.2. Statistical descriptions of visual textures: Deriving a measure for uniformly distributed textures. 
Motivated by the texture analysis/synthesis literature,8,9 we base our texture analysis on multiscale frequency 
decomposition. Such decompositions have been widely used for acoustic and visual signal analysis and compression, as 
they provide good approximations of early acoustic and visual processing in mammals.  A number of decompositions 
have been used, including steerable filters,10  the Gabor transform,11,12 as well as separable subband and wavelet 
decompositions.  The latter are simpler to implement and have been widely used in image compression and quality 
evaluation.13 The main drawback of such separable decompositions is that they cannot discriminate between the two 
diagonal directions .  On the other hand, the filters can be designed to have fairly sharp cutoffs, and hence very little 
aliasing and interference between the different subbands.  In this paper we adopt the generalized quadrature mirror filter 
bank (GQMF)14 that was used in the development of the perceptual image coder.15  (We use an 8x8 GQMF 
decomposition.)  An added advantage of using this filter bank is that direct measurements of subband sensitivity 
thresholds have been obtained (for certain viewing conditions: 53.6 cycles per degree). 

Our goal is to derive a metric of texture roughness.  Our first hypothesis was that perceived texture roughness correlates 
with the distribution of energy in the subbands.  As we will see below, our subjective data supports this hypothesis.  The 
question then was how the energy (i.e., variance) in each subband affects the perceived roughness.  Another question was 
whether our objective metric should take into consideration the sensitivity of each subband, that is, whether the variances 
should be normalized by the subband sensitivity thresholds, or equivalently, expressed as just noticeable distortion (JND) 
ratios.  In the following, we will refer to such normalized variances as perceptually weighted variances. 

If indeed the perceived texture roughness depends only on subband variance, then any texture with the same variance 
should lead to the same perceived roughness.  The simplest such texture that one can generate is one that consists of 
white noise of the given variance in each subband.  This ignores higher order subband statistics, such as skewness and 
kurtosis (third and fourth order statistics, respectively), as well as pixel correlations within and across subbands.  Our 
hypothesis then would that such simple synthesized textures would have the same perceived roughness as the original 
textures.  Note that, since both the original and synthesized textures are perceived by the observer, the perceptual 
weighting should only be used in the calculation of perceived roughness, not in the texture synthesis. 

2. Subjective visual roughness and variances in subbands 
In Van Egmond, et al.1 the subjective roughness of 49 images of the CUReT database2 was determined.  The selected set 
corresponds to lightning and viewing condition 122: the polar angle of the viewing direction was .88, the azimuthal 
angle of the viewing direction was -2.38, the polar angle of the illumination direction was .88, and the azimuthal angle of 
the illumination direction was -.76.  The subjective roughness was obtained by conducting a pairwise comparison of 
circular cutouts from the grayscale component of the 49 CUReT textures.  The circular shape and the conversion to 
grayscale were used in order to limit the possibility of identification or even recognition.  Therefore, it was suggested 
that only the structural aspects of these images were evaluated by the participants.  However, no analysis was conducted 
to determine the main objective predictors of subjective roughness.  Here, we first analyze these images with a basic 
statistic, i.e., the variance of the distribution of energy in each subband (i.e., the standard deviation, SDEV).  To 
determine if the SDEV would be a predictive measure, the first step is to determine if there is a systematic relation 
among the textures using the distribution of energy in the subband decomposition of the CUReT textures.  



2.1. Associations between subjective roughness judgments on CUReT textures and perceptually weighted 
variances of energy in subbands 
In order to establish if there is a systematic association between the subjective roughness judgments and the perceptually 
weighted variances in the subbands of the textures, correlations between the 49 textures were determined on the basis of 
the perceptually weighted variances in the 64 subbands.  The resulting correlations (N=1176) varied between  .15 and  
.998.  Ninety percent of the correlations were higher than .50 and 75% was higher than .75. This indicates that the 
textures are highly correlated on the basis of the perceptually weighted variances in their subbands.  We choose one 
specific example to explain this relation. In Figure 1 the standard deviations of the distributed energy determined for the 
64 subbands of CUReT image 47 are shown as a function of the standard deviations of the distributed energy determined 
for the 64 subbands of CUReT image 17.  These textures were chosen because CUReT image 47 was judged as the 
roughest texture and CUReT image 17 was judged as the smoothest texture (see, Table 1, Van Egmond et al.1). It can be 
seen that for each subband there is a systematic increase in the perceptually weighted variance between image 17 and 47.  
This is confirmed by conducting a linear regression analysis with SDEV of both textures as input.  The relation can be 
expressed by: Texture_47 = -0.71 + 8.52*Texture_17. The explained variance is very high (R2=.97). In addition it can be 
seen that especially the lower subbands contribute the most to the relation between these two textures.  This observed 
relation between the lower subbands is very similar across textures. Moreover, taking CUReT image 17 as reference the 
slope of the regression line systematically increases with the judged roughness of most of the other images.  Thus, it may 
be concluded that an increase of the perceptually weighted variances of the energy distribution in the subbands may be a 
good predictor for the subjective roughness judgments. 

 

Figure 1. The perceptually weighted variances (SDEV) of 64 subbands for CUReT image 47 (roughest picture, Table 1, van 
Egmond et al.,1) as a function of the perceptually weighted variances of 64 subbands for CUReT image (smoothest 
picture, Table 1, van Egmond et al.,1 ).  The most relevant subbands have been indicated by their number.  

2.2. Perceptually weighted variances in subbands related to subjective roughness 
The analysis in Section 2.1 suggested that there is a systematic relation between perceptually weighted variances and 
subjective roughness.  In order to test this, two analyses were performed: a multi-dimensional scaling analysis and a 



correlational analysis.  To reduce the dimensionality of the data  (a 49 by 64 matrix) the data were analyzed using multi-
dimensional scaling.  The data were analyzed using the PROXSAL module in SPSS 18. In the first step of this analysis 
the similarity distances between the textures were determined using a Euclidean distance measure.   In the second step, a 
scaling model was chosen that transformed distances with an interval proximity transformation with a 2D solution.  This 
2D solution had a normalized raw stress of .0028 and Dispersion Accounted For of .997.  This indicates that the solution 
represents the data very well.  

 
Figure 2. 2D scaling solution of the perceptually weighted variance of the energy in the subbands of CUReT textures.  The 

numbers are the CUReT numbers.  Images indicated with a diamond were selected for Experiment 1. 

In Figure 2 the 2D scaling solution is shown.  It can be readily seen that the textures are systematically distributed along 
the first dimension (x-axis).  On the second dimension (y-axis) the textures are somewhat differentiated but not that 
strong. This differentiation appears to be the strongest for the textures in the right half of the panel (right from 0.4 on the 
x-axis).  A visual analysis of the textures showed that the roughness of the textures appeared to be increasing from left to 
right.  Thus, the first dimension appears to capture the subjective roughness.  A visual analysis of the textures positioned 
on the second dimension was more difficult to explain.  However, it could be suggested that textures positioned low on 
Dimension 2 show higher order regularities than textures that are positioned high on Dimension 2. In other words, if 
these textures are differentiated on this dimension they do not show a uniformly distributed texture. In order to determine 
if Dimension 1 was associated with subjective roughness, correlations between the two dimensions and the subjective 
roughness judgments (see, Table 1, Van Egmond et al.1) were determined.  The correlation between Dimension 1 and the 
subjective roughness judgments was very high (r = -.88; note that in Table 1 of Van Egmond, et al.1 the rougher a texture 
was judged the more negative the scale value was; this explains the negative correlation) and a very low correlation 
between Dimension 2 and the subjective scale values was found (r = -.05). 



In conclusion, we have shown that there is a systematic relation between the subjective roughness judgments and the 
distribution of energy in subbands. This raises the question that if there is such a strong relation then it may be possible 
to synthesize images based on the distribution of energy in the subbands that are similar in roughness to the original 
textures. 

3. EXPERIMENT  
Seventeen images were selected from the set of 49 images used in Van Egmond et al.,1  They were selected such that 
they were equally distributed on Dimension 1 of Figure 2 and were not differentiated by Dimension 2.  The textures are 
indicated with diamonds in Figure 2.  A set of seventeen synthetic images were also generated, containing uniformly 
distributed white noise in each subband with variance equal to the variance of the corresponding subband of the 
corresponding original texture image.  The synthesized images had the same mean values as the original images.  In four 
of the synthesized images (1, 2, 6, and 12), the base (lowest horizontal and vertical frequency) band was set to zero, 
because the original image contained very low frequency variations that, when evenly distributed over the subband, 
resulted in funny artifacts that did not resemble the original texture. 

In Figure 3 sixteen original textures of the CUReT database and the sixteen corresponding synthesized textures are 
shown.  In each panel the top-row displays the original and the bottom-row the synthesized versions.  Below each texture 
the CUReT numbers are presented with extension “o” and “s” representing the original and synthesized textures 
respectively.  It can be seen that the synthesized textures capture the roughness aspects of the original textures very 
nicely.  To test this similarity in roughness a rank-order task with the 34 images was conducted.  Participants had to 
rank-order the textures on the basis of their roughness. 

 
Figure 3. 16 original textures of the CUReT database and 16 synthesized textures created using the energy distributions in 

the subbands and uniformly distributed white noise.  In each panel the top row presents the original textures and the 
bottom row the synthesized textures.  Note that the 17th texture (CUReT number 54) is left out only because of 
graphical displaying issues.  

3.1. Method 
Participants had to rank-order 34 images (17 original textures from the CUReT database and 17 synthesized images) on 
the basis of their perceived roughness.   



3.1.1. Participants 
Twenty participants (average age M=21.4 years) volunteered in this experiment.  All were students from the Delft 
University of Technology and had normal or corrected-to-normal vision. 

3.1.2. Stimuli 
Seventeen textures from the CUReT database were used.  The textures were selected on the basis of their distribution 
along Dimension 1 of Figure 2 that represented roughness.  The lighting and viewing conditions were as follows: the 
polar angle of the viewing direction was .88, the azimuthal angle of the viewing direction was -2.38, the polar angle of 
the illumination direction was .88, and the azimuthal angle of the illumination direction was -.76.  These were the same 
conditions as in Van Egmond, et al.1 The original textures were converted to grey-scale and a circular region on the 
texture was selected.  After the subband analysis of the original textures, the synthesized images were generated using 
the variance of the energy in the subbands and uniformly distributed white noise.  The images were printed on laminated 
paper so that the subjects could rank-order them on a table. 

3.1.3. Procedure 
The images were placed in random order on a table.  A participant was asked to rank-order them on the basis of the 
perceived roughness.  The images were marked and the experimental leader wrote down the rank-order after a participant 
completed the task. 

3.2. Results  
The data were analyzed in four steps.  First, a 2 dimensional scaling solution of the rank-order data was calculated.  
Second, these dimensions were then correlated with the dimensions of the 2D scaling solution of the perceptually 
weighted variances in the subbands for the original and synthesized textures.  Third, a 1D scaling solution of the rank-
order data was determined in order to establish if there was a systematic difference in judgment of the original and 
synthesized textures.  Fourth, an overall statistical measure of the perceptually weighted subbands was determined and 
correlated with the roughness judgments represented by the 1D scaling solution. 

A multi-dimensional scaling solution was determined for the rank-order data to reduce the dimensionality of the data 
matrix using PROXSCAL, SPSS 18. The similarity distances between the textures were determined using a Euclidean 
distance measure. A scaling model was employed that transformed the distances with an ordinal untied proximity 
transformation using a 2D solution. The 2D solution has a value of Normalized Raw Stress of .0004 and a Dispersion 
Accounted For of .9996.  Although this shows that the 2D solution represents the ranking data very well, the 1D solution 
showed even a better fit. The 1D solution has a value of Normalized Raw Stress of .0003 and a Dispersion Accounted 
For of .9997.  This means that the 1D solution is the best representative of the roughness ranking judgments. In order to 
display the actual images of the original and synthesized textures legible, we chose to represent these in the 
2-dimensional space.  In Figure 4 the original and the synthesized textures are represented on the two dimensions.  It can 
be readily seen that the first dimension is the most important one.  A visual analysis shows that the textures appear to 
become rougher from left to right.  The second dimension shows differentiation only at the outer points of Dimension 1. 
The horseshoe form confirms that in fact the 1D solution is the proper one.  The original and synthesized smoother 
textures (presented on the left side in Figure 4) appear to be situated closer together than the rougher textures.  For 
example, the distances on Dimension 1 between the original and synthesized textures 13 and 18 are relatively large 
compared to other textures.  In addition, one can distinguish visually three main clusters on the outer left side (smooth), 
on the outer right side (rough) and in the middle (medium rough) of Dimension 1.   

In Section 2.2 it was shown that the perceptually weighted variance of the energy in the subbands of the 49 original 
CUReT textures was highly associated with subjective roughness (note that the subjective roughness measure was 
obtained in Van Egmond et al.1 by a different paradigm, i.e., pairwise comparison).  Therefore, a 2D scaling solution was 
calculated for the perceptually weighted variance of the energy in the subbands of the 17 original and 17 synthesized 
textures. The method of scaling was the same as described in Section 2.2.  The 2D solution had a dispersion accounted 
for of .998 and a Normalized Raw Stress of .002.  The values on Dimension 1 of the subjective roughness solution 
correlated highly with those on Dimension 1 of the 2D solution of the weighted variances (r = .93) but low with those on 
Dimension 2 of the 2D solution of the weighted variances (r = .16).  As expected, the values on Dimension 2 of the 2D 
subjective roughness solution hardly correlated with those on Dimensions 1 and 2 of the 2D solution of the weighted 



variances (respectively, r = -.004 and r = .21). This indicates that, in line with what we found for the original 49 CUReT 
images, the perceptually weighted variances of energy in the subbands again explain the subjective roughness judgments.   

 

 
Figure 4. 2 Dimensional scaling solution of ranking data on roughness on synthesized and original (CUReT) textures.  The 

numbers indicate the CUReT number, the “o” the original texture, the “s” the synthesized texture. 

Because only one dimension of the 2D scaling solution of the weighted variances appears to be an important measure in 
explaining the subjective roughness measure—which also is best represented on one dimension—an aggregated measure 
of the weighted variances was used to predict subjective roughness.  The formula for objective roughness as function of 
the variance of the kth subband σk

2 and the corresponding just noticeable distortion threshold tk (where K is the number of 
subbands) is: 

  

 

In Figure 5 objective roughness as a function of subjective roughness (1D scaling solution) is presented for the original 
(left frame) and the synthesized (right frame) textures separately. It can be seen that there is a strong association between 
the objective roughness measure and the subjective roughness judgments for the original (r = .94) and the synthesized 
textures (r = .95). In both pictures, the textures 11, 18, 54, and 47 tend to deviate from the overall trend.  In general it can 
be concluded that the objective roughness measure is a good predictor for subjective roughness judgments for both 
original and synthesized images. 



 

 
Figure 5. Objective roughness as a function of subjective roughness. In the left frame the values for the original textures are 

presented; in the right frame the values of the synthesized textures are presented. The density ellipse is the bivariate 
normal ellipse (p=.95). Numbers indicate the CUReT numbers. 

 

Although for both original and synthesized textures the objective roughness measure showed a strong association with 
the subjective roughness judgments, a careful look at Figure 4 reveals a systematic difference between original and 
synthesized textures. To confirm this difference, a regression analysis was conducted with the subjective roughness 
values of the original textures as a predictor for the subjective roughness values of the synthesized textures (the values 
from the 1D scaling solution were used).  In Figure 6 the subjective roughness values for the synthesized textures are 
presented as a function of the subjective roughness values for the original textures.  It can be clearly seen that there is a 
strong systematic relation between the values of the original textures and the values of the synthesized textures.  This 
was confirmed by the regression analysis.  The regression showed a strong fit: Synthesized = -.23 + .78 Original, 
F(1,15)=457.39, p<.0001; and a high explained variance (R2=.97). The fact that the slope significantly deviates from one 
suggests that there is indeed a systematic deviation between the judgments on the original and synthesized textures: the 
synthesized textures are judged to be less rough than the original ones and this difference increases with the roughness of 
the original texture.  This difference can be explained in part by the fact that the variance of the synthesized images was 
found to be lower than that of the original images.  This was true even though the images were synthesized with the same 
variances as the original textures.  However, imperfections in the filter design account for an energy leakage or 
cancellation, as replacing the actual subband contents with white noise destroys the perfect aliasing cancellation property 
of the GQMF subband decomposition.  Other factors may also account for this systematic bias, for example, texture 
synthesis may change the glossiness or other attributes of the textures, which may have an effect on perceived roughness.  
Indeed, the relation of roughness to other perceptual texture attributes will be examined in future studies.  



 
Figure 6. Subjective roughness (1D solution) of synthesized textures as a function of the subjective roughness (1D solution) 

of the original textures.  Numbers identify the CUReT numbers. 

 

4. Discussion 
There are two main findings in this study.  First, it has been established that subband analysis produces a strong and 
simple predictor for subjective roughness measures on uniformly distributed textures.  This predictor has been based on 
the distribution of energy in these subbands.  Furthermore, this has been confirmed by using two subjective experimental 
paradigms.  In Van Egmond, et al,1 a pairwise comparison task has been employed, and in the present study, a rank-
ordering task has been employed.  Both experimental paradigms yield the same relationship between subjective 
judgments and subband analysis.  Second, the subjective roughness of the synthesized textures is highly similar to that of 
the roughness of the original textures.  This shows that by using the variation of energy in the subbands and uniform 
white noise as a source, the experienced roughness can be recreated.  This may have important implications for 
synthesizing textures in virtual environments.  However, there appears to be a systematic deviation between the 
synthesized textures and the original textures.  The cause of this difference is a topic of further investigation.  
Furthermore, note that only uniformly distributed textures have been used, without any directional or other higher order 
cues. However, it may be interesting to investigate if these higher order aspects can be captured in a simple additive 
model such as the one we proposed in this paper.  In conclusion, it has been shown that by using very simple measures 
one can effectively predict and generate textures.  Our next step will be to investigate if a similarly simple measure may 
be a good predictor for the structural aspects in textures.   
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