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ABSTRACT 
 

Adleman with his pioneering work set the stage for the 
new field of bio-computing research [1].  His main idea 
was to use actual chemistry to solve problems that are 
either unsolvable by conventional computers, or require 
an enormous amount of computation.  The main focus of 
our research is to consider the application of molecular 
computing to the domain of digital signal processing 
(DSP).  In this paper we consider matching problems that 
arise in signal processing applications and are amenable to 
a DNA-based solution.  Digital data are encoded in DNA 
sequences using a sophisticated codeword set that satisfies 
the Noise Tolerance Constraint (NTC) that we introduce. 
NTC, one of the main contributions of our work, takes 
into account the presence of noise in digital signals by 
exploiting the annealing between non-perfect 
complementary sequences.  We propose an algorithm to 
map binary values into DNA codewords by satisfying a 
number of constraints, including the NTC.  Using that 
algorithm we retrieved 128 codewords that enables us to 
use a DNA based approach to digital signal matching. 

 
 

1. INTRODUCTION 
 
Matching of digital signals is a fundamental problem that 
arises in many signal-processing applications.  It can be 
used as a search or classification mechanism by 
quantifying the similarity between signals.  For example, a 
search mechanism is essential for database retrieval, and 
signal classification is a key system component in data 
mining applications.  Furthermore, a number of important 
problems in signal and image processing, like motion and 
disparity estimation, are matching type problems. 

One of the key characteristics of the digital signal-
matching problem is the fact that the matches are typically 
imprecise, due to the nature of the problem or the 
presence of noise in the data, which is almost always 
inevitable.  Thus, to solve the matching problem it is 
necessary to quantify the similarity between signals. 

Another key characteristic of the digital signal-
matching problem is the enormous amount of computation 
that is typically required to find the optimal solution.  It is 
thus of critical importance to find efficient 
implementations that can provide optimal or near optimal 
solutions.  An additional requirement is the scalability of 
the solution. 

In this paper we demonstrate the feasibility of using 
DNA techniques to solve digital signal matching 
problems.  We address for the first time the presence of 
noise and inexact matches in digital data, and provide the 
necessary framework that utilizes the characteristics of the 
DNA molecules to overcome the associated problems. 

The constraints routinely used in the field of bio-
computing are adequate for most existing applications, for 
which non-specific hybridization is generally not 
desirable.  In contrast, non-specific hybridization can be 
very useful (and is actually necessary) in signal 
processing applications, where an exact match is typically 
not possible.  Therefore, there is a need to develop a 
codeword design scheme that will successfully address the 
problem of imperfect matching of digital signal data.  As 
presented in [4], base mismatches affect the 
thermodynamic stability of duplexes.  By carefully 
placing mismatches and assigning signal values to DNA 
codewords, we can inherently take care of the imperfect 
matches by controlling the temperature of the 
hybridizations.  To model hybridization efficiency we use 
the melting temperature instead of Hamming distance, 
since for the size of codewords we are interested in, 
melting temperature is a better descriptor. 
 

2. DNA-BASED SIGNAL MATCHING 
 
The DNA composition and aqueous-solution chemistry 
can be used to solve matching type problems [1],[2].  
DNA sequences are formed using four nucleotides 
(bases), adenine (A), thymine (T), guanine (G), and 
cytosine (C). The chemical structure of these nucleotides 
allows for unique pairing between A-T and G-C. Every 
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DNA sequence has chemically distinct ends known as 5’ 
and 3’. 

A DNA sequence (single strand) has its unique 
Watson-Crick complement (single strand).  This can be 
done by replacing every A with a T and vice versa, and 
every G with a C and vice versa.  If two complementary 
sequences meet in a solution under appropriate conditions 
they will hybridize and form a double stranded sequence. 
This hybridization or annealing is called specific, in 
contrast to non-specific, which takes place when two 
sequences not completely complementary (thus containing 
mismatches) hybridize. 

Solution of matching problem can be achieved 
utilizing the annealing or hybridization property of DNA, 
which provides the matching mechanism.  DNA annealing 
is one of the characteristic properties of DNA that is 
indispensable for the function of all biological life.   

What makes DNA annealing particularly suited for the 
matching problem is the fact that it depends only on the 
concentration of elements and is independent of the total 
number of elements.  This is a very important difference 
with traditional digital databases, in which the search time 
depends on the size of the database.  It is this property of 
DNA annealing, combined with its high compactness, 
which makes DNA an excellent information storage 
medium. 

Although in [5] we considered a more complicated 
matching scenario for simplicity the following matching 
problem will be considered.  Assuming the presence of 
two signals S1 and S2 of length N and K<N respectively, 
with signal values in the range [0,255] we want to find 
‘best’ matches (locations) of the signal S2 in S1.  In signal 
processing this has been a common problem and most 
commonly the mean squared error is used as a 
minimization criterion to identify the ‘best’ matches. 

The same problem can be solved with DNA chemistry 
if we assume the presence of a function that maps digital 
data into DNA sequences.  The target is the DNA 
sequence representation of S1 and the probe is the 
complementary DNA sequence representation of S2.  
When the target and the probe meet in a solution they will 
hybridize at the position that has the maximum 
thermodynamic stability.  The stability depends on the 
reaction temperature and the solution’s salt concentration.  
Although the benefit of using a DNA approach may not 
seem clear now, imagine the case of different target 
sequences in the solution and the problem of detecting the 
presence of a unique probe in the whole set.  The benefit 
of using DNA is obvious in this case since the “execution 
time” will not change because such a reaction depends 
only on the concentration of the sequences and not on 
their number.  It is therefore easy to see the extension of 
this work to DNA based databases of digital data where 
one needs to search for a pattern (probe) in a whole set of 
data (targets). 

2.1. Codeword design 
 
The first challenge towards a DNA-based solution of any 
computational problem is the coding of the digital data 
into DNA sequences.  Thus, codeword design for DNA 
computation has been a very active research topic [2].  
During the codeword design process, certain constraints 
need to be enforced for improving the fidelity of DNA 
based computation.  DNA hybridization depends on 
parameters such as salt and DNA concentrations and 
temperature.  If the temperature is not appropriately 
chosen, then two strands that are expected to hybridize 
will not, resulting in an error.  Also an error results if two 
sequences hybridize when they are expected not to.  In 
order to describe these constraints we first introduce the 
appropriate notation.  

We denote a DNA sequence of length l in a 5’ to 3’ 
direction taking values from the alphabet {A,T,G,C} by xl. 
xl

C is the Watson-Crick complement of the sequence in the 
3’ to 5’ direction.  Reading a sequence from right to left 
can form the reverse of a sequence, xl

R.  
The following (standard) constraints on codewords 

have been proposed and used extensively [2]. All 
constraints refer to codewords of the same length l.  The 
constraints are divided in two groups.  The self-
constraints and the group constraints: 
Self-Constraints depend only on the codeword under 
examination and are: 
• Consecutive bases. In some applications consecutive 
occurrences of the same base increase the number of 
errors 
• Self-Complementarity. A codeword must not be self-
complementary. 
• The GC content constraint. The ratio of the sum of 
occurrences of G and C bases in a codeword and the 
length of the codeword must lie in a certain range.  
Group constraints depend on the codeword and the rest of 
the codewords and are: 
• Hamming distance. For all possible distinct pairs of 
codewords ,l lx w  the Hamming distance ( , )H l ld x w   (the 
number of base differences between two words) must be 
greater than a threshold HE .  
• Reverse Complement. For all possible distinct pairs of 
codewords ,l lx w  the following must be true 

( , )R C
H l l RCd x w E≥ .  

• Frame-Shift. If we denote the concatenation of two 
codewords  and l lx w , by l lx w , then no other codeword 

{ , }l l lz x w≠  can be found in the concatenation. In other 
words no codeword must result from the suffix of one 
codeword and the prefix of another. 
• Melting temperature TM. The melting temperature TM of 
a duplex is defined as the temperature at which half of the 



strands are in the double-stranded state. TM  for perfect and 
non-perfect (mismatch containing) duplexes can be 
estimated under some constraints based on a nearest 
neighbor model [4].     

Melting temperature is typically used to estimate 
duplex stability and hybridization efficiency under given 
conditions. ( , )C

M l lT x w  denotes the melting temperature of 
the duplex formed by two DNA sequences, lx  in the 5’ to 
3’ direction and C

lw  in the 3’ to 5’ direction.    If we 
consider two signal values ,x wp p  with DNA 
representations ,l lx w  respectively, they will have melting 
temperature ( , )C

M l lT x w .  Ideally we want to design the 
DNA codewords in such a way that the melting 
temperature between DNA codewords must be inversely 
proportional to the absolute difference of the encoded 
signal values.  In the case when x wp p= , ( , )C

M l lT x w  must 
be maximized.  To accomplish this, we introduce a new 
constraint, the Noise (or inexact match) Tolerance 
Constraint (NTC), that addresses the problem of assigning 
DNA codewords to neighboring signal values: 

( )

( ) ( )

maximized
1( , )

l x l w

x w

C
M l l x w p

x w

x w p

for x C p and w C p

if p p

T x w if p p T
f p p
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ε
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where ( )f x  represents  any monotonically increasing 
function of x. 

According to this constraint, duplexes formed by 
codewords assigned to neighboring signal values must 
have (similar) high melting temperature, while duplexes 
outside this neighborhood must have melting temperatures 
lower than a threshold T.  The neighborhood is defined by 
the parameter TP, which is a function of the amount of 
mismatch or noise in the data.  The threshold T and the 
neighborhood range [-TP,+TP] are the main parameters of 
the constraint that must be specified.  The NTC replaces 
the Hamming distance and melting temperature 
constraints, and can be combined with the other 
constraints.   

Another important aspect in codeword design and 
experimental setup is scalability (e.g., with increasing 
database size and number of codewords).  Scalability has 
been a great challenge in all DNA computation efforts, 
and therefore, addressing it is critical. 
 

3. ALGORITHMS FOR CODEWORD DESIGN 
 
With the introduction of the NTC, the codeword design 
problem changes drastically.  As we saw above, it must be 
reformulated so that it takes into account the new NTC 
constraint.   

Figure 1. Block diagram of the algorithm. 
 
Another very important design parameter is the codeword 
length, which must be kept small to reduce the overall 
DNA sequence length, and thus, cost. 

The algorithm we developed accepts as input all the 
desired design parameters, such as, codeword length, 
desired constraints, and noise tolerance parameters.  The 
output is an n-bit set of codewords that best satisfy the 
input constraints.  As can been seen from Figure 1 the 
algorithm breaks down the problem into two independent 
tasks: the generation of codewords that satisfy the 
standard constraints listed above and the assignment of 
codewords to signal values.   

In Part 1 all possible codewords of a given length l, 
that satisfy the self-constraints are generated and placed in 
the input pool.  To initiate the next step a codeword is 
randomly selected from the input pool and moved to the 
output pool.  (Every time a codeword is selected from the 
input it is removed from it as well).  Implementing the 
frame shift constraint a pruning step follows, according to 
which, all codewords from the input pool that have as 
suffix or prefix part of this codeword are eliminated. 

After initialization the algorithm continues by 
randomly picking codewords from the input pool.  If the 
word is not reverse-complementary to all codewords in 
the output pool, the word is moved to the output pool and 
the pruning step is repeated.  The algorithm continues 
with the remaining codewords in the input pool, until 
none are left or a certain number of random draws have 
taken place.  The elements in the pool at the end of the 
algorithm depend on the starting codeword and the order 
in which the codewords were chosen.  All random draws 
follow a uniform distribution. 

In order to assign pixel values to DNA codewords an 
algorithm that implements the NTC is used, identified as 
Part 2.  In principle a codeword is assigned to a value 
such that the thermodynamic stability with codewords 
assigned to values in the neighborhood defined by TP are 
monotonically decreasing and are above the threshold T 
while codewords further away are less than T.  Ideally the 
melting temperature between a codeword assigned to a 
value and codewords assigned to adjacent ones will have 
a ‘bell’ shaped profile.  This process is implemented 
utilizing a combination of stochastic search and a greedy 

 Satisfy 
Self-Constraints Start Satisfy 

Group-Constraints 
Satisfy 
NTC 

4 l 
Codeword 

length l 

N< 4 l 
K< N 

256 

Part I Part 2 



 
(a) 

 
(b) 

Figure 2. In (a) the melting matrix of the 128 codewords 
is shown. Melting temperatures under 15 °C have been 
omitted for visualization reasons. The color bar gives the 
correspondence between color and temperature. In (b) the 
Hamming distance between the 128 codewords is shown. 

 
optimization algorithm.  The convergence of the 
algorithm depends on the selected thresholds, codeword 
length, and size of the available pool.  

 
4. SIMULATION RESULTS 

 
We have implemented a thermodynamic simulator to 
calculate melting temperatures of perfect or non-perfect 
DNA duplexes based on the models presented in [4]. We 
have also implemented the algorithm described in the 
previous section, and succeeded in retrieving 128 
codewords of length 10 that satisfy all the imposed 
constraints. Specifically, the parameters were: consecutive 
bases 2 GC content 50 %, and for the NTC they were TP 
=3 and T=15 °C.   

Figure 2(a) depicts in two dimensions the melting 
matrix for the 128 codewords.  The melting matrix is 
acquired by calculating the TM of all possible codeword 
pairs.  It is obvious that the maximums occur in the main 
diagonal since these values correspond to perfect 
hybridizations.  In the same figure, two lines are plotted in 
TP distance parallel to the main diagonal that show the 
significance of the parameter TP.  As the figure shows, all 
allowed hybridizations of codewords must have TM higher 
than 15 °C and lie in the region defined by these lines. 

To illustrate that melting temperature is a better 
descriptor of hybridization efficiency compared to 
Hamming distance, we include in Figure 2(b) the 
Hamming distance between codewords (white for the 
maximum Hamming distance of 10, black for 0, and linear 
gray levels for intermediate values).  Notice the variation 
of the Hamming distance throughout the codeword set and 
especially outside the main diagonal and its 3-point 
neighborhood. 
 

5. CONCLUSIONS 
 
The codeword design techniques we propose are the first 
to utilize imperfect matches.  Instead of over constraining 
the codeword design problem by trying to avoid unwanted 
hybridizations, we propose an entirely new design 
approach that incorporates “unwanted” hybridizations in 
order to account for noise and inexact matches in the data.   

We presented a greedy algorithm for finding good 
codewords utilizing the noise tolerance constraint, 
although there is huge room for improvement. We have 
also developed an evolutionary approach to codeword 
design, according to which all constraints are satisfied 
simultaneously [5]. 

Our work is the first to use a DNA computing 
approach in digital signal processing.  Although a simple 
matching problem was used as a proof of concept, the 
same mechanism can be used in developing DNA based 
databases of digital signals. 
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