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An Adaptive Clustering Algorithm for Image
Segmentation

Thrasyvoulos N. Pappas

Abstract—The problem of segmenting images of objects with
smooth surfaces is considered. The algorithm we present is a
generalization of the K-means clustering algorithm to include
spatial constraints and to account for local intensity variations
in the image. Spatial constraints are included by the use of a
Gibbs random field model. Local intensity variations are ac-
counted for in an iterative procedure involving averaging over
a sliding window whose size decreases as the algorithm pro-
gresses. Results with an eight-neighbor Gibbs random field
model applied to pictures of industrial objects, buildings, aerial
photographs, optical characters, and faces, show that the al-
gorithm performs better than the K-means algorithm and its
nonadaptive extensions that incorporate spatial constraints by
the use of Gibbs random fields. A hierarchical implementation
is also presented and results in better performance and faster
speed of execution.

The segmented images are caricatures of the originals which
preserve the most significant features, while removing unim-
portant details. They can be used in image recognition and as
crude representations of the image. The caricatures are easy to
display or print using a few grey levels and can be coded very
efficiently. In particular, segmentation of faces results in bi-
nary sketches which preserve the main characteristics of the
face, so that it is easily recognizable.

I. INTRODUCTION

E present a technique for segmenting a grey-scale
image (typically 256 levels) into regions of uniform
or slowly varying intensity. The segmented image con-
sists of very few levels (typically 2-4), each denoting a
different region, as shown in Fig. 1. It is a sketch, or
caricature, of the original image which preserves its most
significant features, while removing unimportant details.
It can thus be the first stage of an image recognition sys-
tem. However, assuming that the segmented image re-
tains the intelligibility of the original, it can also be used
as a crude representation of the image. The caricature has
the advantage that it is easy to display or print with very
few grey levels. The number of levels is crucial for spe-
cial display media like paper, cloth, and binary computer
screens. Also, the caricature can be "coded very effi-
ciently, since we only have to code the transitions be-
tween a few grey levels.
We develop an algorithm that separates the pixels in the
image into clusters based on both their intensity and their

Manuscript received April 5, 1990; revised February 18, 1991.

The author is with the Signal Processing Research Department, AT&T
Bell Laboratories, Murray Hill, NJ 07974.

IEEE Log Number 9106031.

Fig. 1. Grey-scale image and its four-level segmentation.

relative location. The intensity of each region is assumed
to be a slowly varying function plus noise. Thus we as-
sume that we have images of objects with smooth sur-
faces, no texture. We make use of the spatial information
by assuming that the distribution of regions is described
by a Gibbs random field. The parameters of the Gibbs
random field model the size and the shape of the regions.

A well-known clustering procedure is the K-means al-
gorithm [1], [2]. When applied to image segmentation this
approach has two problems: it uses no spatial constraints
and assumes that each cluster is characterized by a con-
stant intensity. A number of algorithms that were recently
introduced by Geman and Geman [3], Besag [4], Derin
and Elliot [5], Lakshmanan and Derin [6], and others, use
Gibbs random fields and can be regarded as an extension
of this algorithm to include spatial constraints. They all
assume, however, that the intensity (or some other param-
eter) of each region is constant.

The technique we develop can be regarded as a gener-
alization of the K-means clustering algorithm in two re-
spects: it is adaptive and includes spatial constraints. Like
the K-means clustering algorithm, our algorithm is itera-
tive. Each region is characterized by a slowly varying in-
tensity function. Given this intensity function, we define
the a posteriori probability density function for the dis-
tribution of regions given the observed image. The den-
sity has two components, one constrains the region inten-
sity to be close to the data and the other imposes spatial
continuity. The algorithm alternates between maximizing
the a posteriori probability density and estimating the in-
tensity functions. Initially, the intensity functions are
constant in each region and equal to the K-means cluster
centers. As the algorithm progresses, the intensities are
updated by averaging over a sliding window whose size
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progressively decreases. Thus the algorithm starts with
global estimates and slowly adapts to the local character-
istics of each region.

Our algorithm produces excellent caricatures of a va-
riety of images. They include pictures of industrial ob-
jects, buildings, optical characters, faces, and aerial pho-
tographs. The binary sketches of faces, in particular,
preserve the main characteristics of the face, so that it is
easily recognizable. They can thus be used both as rep-
resentations of the face and as input to a face recognition
system.

The performance of our technique is clearly superior to
K-means clustering for the class of images we are consid-
ering, as we show with several examples. It is also better
than the nonadaptive extensions of K-means clustering that
incorporate spatial constraints by the use of Gibbs random
fields. Our experimental results indicate that the perfor-
mance of the algorithm is also superior to existing region
growing techniques (see [7] for a survey). In the two-level
segmentation case our technique compares favorably to
other adaptive thresholding techniques that can be found
in [8], [9].

We also compare our adaptive clustering algorithm with
the edge detector of [10], [11]. Its advantage over the edge
detection approach is that it works with regions. In the
edge detection case it is often difficult to associate regions
with the detected boundaries. In our case regions are al-
ways well defined. The comparison becomes particularly
interesting when we consider the case of faces. We will
show that it is usually easier to recognize a face from a
bilevel caricature than from its edges.

We conclude our presentation of the adaptive clustering
algorithm by considering a hierarchical multigrid imple-
mentation. We construct a pyramid of different resolu-
tions of an image by successively filtering and decimating
by two, starting from the highest resolution image. The
development relies on understanding the behavior of the
algorithm at different levels of the resolution pyramid: The
hierarchical implementation results in better performance
and faster speed of execution.

The model for the class of images we are considering
is presented in Section II. The algorithm is presented in
Section III. In Section IV we examine the behavior of the
algorithm on a variety of images. In Section V we con-
sider a hierarchical implementation of the algorithm. The
paper’s conclusions are summarized in Section VI.

II. MobDEL

We model the grey-scale image as a collection of re-
gions of uniform or slowly varying intensity. The only
sharp transitions in grey level occur at the region bound-
aries. Let the observed grey scale image be y. The inten-
sity of a pixel at location s is denoted by y,, which typi-
cally takes values between 0 and 255. A segmentation of
the image into regions will be denoted by x, where x; =
i means that the pixel at s belongs to region i. The number
of different region types (or classes) is K. In this section
we develop a model for the a posteriori probability den-
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sity function p(x| y). By Bayes’ theorem

px|y) & p(y|x)p(x) 1)

where p(x) is the a priori density of the region process
and p( y|x) is the conditional density of the observed im-
age given the distribution of regions.

We model the region process by a Markov random field.
That is, if N, is a neighborhood of the pixel at s, then

pxs|x,, all ¢ # 5) = p(x;|x,, q € N). ?)
We consider images defined on the Cartesian grid and a
neighborhood consisting of the 8 nearest pixels. Accord-
ing to the Hammersley-Clifford theorem [12] the density

of x is given by a Gibbs density which has the following
form:

1
pu>=2enﬁ}-§l%u@. 3)

Here Z is a normalizing constant and the summation is
over all cliques C. A clique is a set of points that are
neighbors of each other. The clique potentials V¢ depend
only on the pixels that belong to clique C.

Our model assumes that the only nonzero potentials are
those that correspond to the one- and two-point cliques
shown in Fig. 2. The two-point clique potentials are de-
fined as follows:

if x; = x4 and s, qe C

%m={6’, @
+8, if x; # x, and s, g € C.

The parameter 3 is positive, so that two neighboring pix-
els are more likely to belong to the same class than to
different classes. Increasing the value of 8 has the effect
of increasing the size of the regions and smoothing their
boundaries. The one-point clique potentials are defined as
follows: ‘

Vex) = o, and seC, all i. (5

The lower the value of o, the more likely that pixel s
belongs to class i. Thus, the parameters o reflect our a
priori knowledge of the relative likelihood of the different
region types. In the remainder of this paper we will as-
sume that all region types are equally likely and set o' =
0 for all i. A more extensive discussion of Gibbs random
fields can be found in [3]-[5].

The conditional density is modeled as a white Gaussian
process, with mean p! and variance ¢°.' Each region i is
characterized by a different u; which is a slowly varying
function of s. Thus, the intensity of each region is mod-
eled as a signal ! plus white Gaussian noise with variance

if x;=1i

The combined probability density has the form
1
px|y) o exp {—Z 22 L T Wl - %3 Vc(x)}
(6)

'Note that the superscript i in ji! and o is an index, not an exponent. The
few instances in the text where an exponent is used, as in o2, should be
obvious from the context.
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Fig. 2. Cliques for Gibbs probability density function.

We observe that the probability density function has two
components. One constrains the region intensity to be
close to the data. The other imposes spatial continuity.

Note that if the intensity functions u. do not depend on
s, then we get a model similar to those used in [3]-[5]. If
we also set 3 = 0, then we get the K-means algorithm.
Thus our technique can be regarded as a generalization of
the K-means clustering algorithm. The Gibbs random field
introduces the spatial constraints, and the pixel depen-
dence of the intensity functions makes it adaptive. We
found both of these additions to be essential for the pro-
posed algorithm.

If we assume that the parameter 8 and the noise vari-
ance o” are known, then we must estimate both the distri-
bution of regions x and the intensity functions u!. This
will be done in the following section. Note that the only
constraint we impose on the functions g’ is that they are
slowly varying. The estimation procedure we present in
the following section uses this fact and implicitly imposes
the constraint. The problem with using a parametric model
(e.g., polynomial) for the region intensities is that, since
the regions and intensity functions must be estimated con-
currently, the parametric model becomes sensitive to in-
accurate and fragmented region estimates.

Alternative models for the conditional density are pos-
sible. For example, Chalmond [13] and Dinten [14] use
Besag’s autonormal model [4] in the context of image res-
toration, and Bouman and Liu [15], [16] use an autore-
gressive model for segmentation of textured images.

We would like to point out that the Gibbs field is a good
model of the region process only if we have a good model
for the conditional density. The Gibbs model by itself is
not very useful. It is easy to see that, in the absence of an
observation, the optimal segmentation is just one region.
In their discussion of the Ising model, Kindermann and
Snell [17] observe that the Gibbs field is ill behaved if
there is no strong outside force (observed image with
edges, in our case).

III. ALGORITHM

In this section we consider an algorithm for estimating
the distribution of regions x and the intensity functions
. Note that the functions u; are defined on the same grid
as the original grey-scale image y and the region distri-
bution x. Like the K-means clustering algorithm, our al-
gorithm is iterative. It alternates between estimating x and
the intensity functions u..

First, we consider the problem of estimating the local
intensity functions. Given the region labels x, we estimate
the intensity ug at each pixel s as follows. We average the
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Fig. 3. Local average estimation.

grey levels of all the pixels that belong to region i and are
inside a window of width W centered at pixel s, as shown
in Fig. 3. When the number of pixels of type i inside the
window centered at s is too small, the estimate pk is not
very reliable. At these points the intensity pu; is undefined.
When this happens, x,; cannot be assigned to level i. Thus
we have to pick the minimum number of pixels Ty, that
are necessary for estimating ug. The higher this threshold
the more robust the computation of .. On the other hand,
any small isolated regions with area less than this thresh-
old may disappear. Thus the presence of this threshold
strengthens the spatial constraints. A reasonable choice
for the minimum number of pixels necessary for estimat-
ing p!is T = W, the window width. This value of the
threshold guarantees that long one-pixel-wide regions will
be preserved. ‘

We have to obtain estimates of ug for all region types i
and all pixels s. Clearly, the required computation is enor-
mous, especially for large window sizes. Instead, we
compute the estimates u; only on a grid of points and use
bilinear interpolation to obtain the remaining values. The
spacing of the grid points depends on the window size.
We chose the spacing equal to half the window size in
each dimension (50% overlap). Fig. 4 shows a window
and the location of the centers of adjacent windows. The
functions ! are smooth and therefore the interpolated val-
ues are good approximations of the values we would ob-
tain by an exact calculation. Note that the larger the win-
dow the smoother the functions, hence the spacing of the
grid points increases with the window size. Note also that,
because of the dependence of the grid spacing on the win-
dow size, the amount of computation is independent of
window size.

Fig. 5 shows an original image, its two-level segmen-
tation, and the local intensity functions for the two levels.

Second, we consider the problem of estimating the dis-
tribution of regions. Given the intensity functions u;, we
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Fig. 4. Window locations for local average estimation.
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Fig. 5. Local intensity functions. (a) Original image. (b) Two-level segmentation. (c) Level O intensity function. (d) Level 1
intensity function.

want to maximize the a posteriori probability density (6)  can be done using the Gibbs sampler and simulated an-
to obtain the MAP estimate of x. Finding the global max-  nealing [3]. Instead, we maximize the conditional density
imum of this function requires a lot of computations. It  at each point x, given the data y and the current x at all
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other points:
px; |y, x, all g # 5)
= p(x; | ys, X4 q € Ny)

1
& exp {— 79 Lys — P - XEC Vc(x)}- (7

The equality on the left follows from the Markovian prop-
erty and the whiteness of the noise. The maximization is
done at every point in the image and the cycle is repeated
until convergence. This is the iterated conditional modes
(ICM) approach proposed by Besag [4], sometimes also
called the greedy algorithm [18]. It corresponds to instan-
taneous freezing in simulated annealing. Bouman and Liu
use this greedy algorithm in their multiple resolution ap-
proach for image segmentation [15], [16]. The order in
which the points are updated within a cycle depends on
the computing environment [4]. In our implementation the
updating was done in a raster scan. This procedure con-
verges to a local maximum [4]. It stops when the number
of pixels that change during a cycle is less than a thresh-
old (typically M /10 for an M X M image). The conver-
gence is very rapid, usually in less than five cycles, con-
sistent with Besag’s observations.

Now we consider the overall adaptive clustering algo-
rithm. We obtain an initial estimate of x by the K-means
algorithm [2]. Starting from this segmentation, our algo-
rithm alternates between estimating x and estimating the
intensity functions u!. We define an iteration to consist of
one update of x and one update of the functions p'. The
window size for the intensity function estimation is kept
constant until this procedure converges, usually in less
than ten iterations (The number of iterations could vary
with image content.) Our stopping criterion is that the last
iteration converges in one cycle. The whole procedure is
then repeated with a new window size. The adaptation is
achieved by varying the window size W. Initially, the
window for estimating the intensity functions is the whole
image and thus the intensity functions of each region are
constant. As the algorithm progresses, the window size
decreases. The reason for this is that in the early stages
of the algorithm, the segmentation is crude, and a large
window is necessary for robust estimation of the intensity
functions. As the algorithm progresses, the segmentation
becomes better, and smaller windows give more reliable
and accurate estimates. Thus the algorithm, starting from
global estimates, slowly adapts to the local characteristics
of each region. A detailed flowchart of our algorithm is
given in Fig. 6. The algorithm stops when the minimum
window size is reached. Typically we keep reducing the
window size by a factor of two, until a minimum window
size of W = 7 pixels.

If the window size is kept constant and equal to the
whole image, then the result is the same as in the ap-
proach of [3]-[6]. This nonadaptive clustering algorithm
is only an intermediate result of our adaptive clustering
algorithm. It results in a segmentation similar to the K-
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Fig. 6. Adaptive clustering algorithm.

means; only the edges are smoother. The strength of the
proposed approach lies in the variation of the window size
which allows the intensity functions to adjust to the local
characteristics of the image. Note that the estimation pro-
cedure imposes the smoothness constraint on the local in-
tensity functions. Also, there is no need to split our re-
gions into a set of connected pixels as is done in [19]. The

‘variable window size takes care of this problem.

We assume that the noise variance ¢ is known or can
be estimated independently of the algorithm. This is a rea-
sonable assumption in many cases, especially when we
have images obtained under similar conditions. From (6)
it follows that increasing o” is equivalent to increasing (3.
In fact, the parameter 3 of the Gibbs random field can be
chosen so that the region model is weaker in the early
stages (algorithm follows the data), and stronger in the
later stages (algorithm follows model) [4], [20]. In our
implementations we chose the constant value 8 = 0.5 for
all the iterations. Once the algorithm converges at the
smallest window size, then 3 could be increased to obtain
smoother segment contours. Thus, given an image to be
segmented, the most important parameter to choose is the
noise variance. In Section V we show that the perfor-
mance of the algorithm is reasonable over a wide range
of noise variances. In fact, the noise variance controls the
amount of detail detected by the algorithm.

We also have to choose the number of different regions
K. We found that K = 4 works well for most images.
Note that, in contrast to the K-means algorithm and some
of the other adaptive schemes [7], [8], the choice of X is
not critical because the adaptation of the intensity func-
tions allows the same region type to have different inten-
sities in different parts of the image. In the following sec-
tion we discuss the choice of K more extensively.
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. The amount of computation for the estimation of x de-
pends on the image dimensions, the number of different
windows used, the number of classes and, of course, im-
age content. As we pointed out earlier, the amount of
computation for each local intensity calculation does not
depend on the window size. We should also point out that
both the local intensity calculation and each cycle of the
probability maximization can be done in parallel. Thus,
even though the algorithm is very slow on serial ma-
chines, it can be considerably faster on a parallel com-
puter.

IV. EXAMPLES

In this section we examine the performance of the al-
gorithm on a variety of images. We discuss the choice of
the number of regions K, and compare adaptive clustering
to K-means clustering and edge detection.

An original image is shown in Fig. 7(a); the resolution
is 256 X 256 pixels and the grey-scale range is 0 to 255

(©)
Fig. 7. Example A. (a) Original image. (b) K-means algorithm (K = 4 levels). (c) Adaptive clustering (K = 4 levels).

(8 b). White Gaussian noise with ¢ = 7 grey levels has
been added to this image. Fig. 7(b) shows the result of
the K-means algorithm for K = 4 levels. The two prob-
lems we mentioned earlier are apparent. There are a lot
of isolated pixels and areas of uniform intensity (e.g.,
walls on lower right) are not well separated. Fig. 7(c)
shows the result of our adaptive algorithm for K = 4 lev-
els. The superior performance of the adaptive algorithm
is apparent. Both problems have been eliminated. We can
understand the limitations of the K-means algorithm when
we look at a scan line of the image. The dotted line in
Fig. 8(a) shows a horizontal scan line in the bottom half
of the image of Fig. 7(a), and the solid lines show the
four characteristic levels selected by the K-means algo-
rithm. The solid line of Fig. 8(b) shows the resulting seg-
mentation. We observe that while u° and p' are reason-
able models of the local image intensity, u? and u> are
not. This is because the selection of the four levels is
based on the histogram of the whole image and does not
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Fig. 8. K-means algorithm. (a) Image profile and characteristic levels. (b)
Image profile and model.

necessarily match the local characteristics. Fig. 9(a)
shows the intensity functions of the adaptive algorithm
and Fig. 9(b) shows the corresponding segmentation. The
intensity functions have indeed adapted to the local inten-
sities of the image.

Another original image is shown in Fig. 10(a); the res-
olution is 244 X 256 pixels and the grey-scale range is 0
to 255. The standard deviation of the noise was estimated
to be 0 = 7 grey levels. Fig. 10(b) shows the result of the
K-means algorithm. Fig. 10(c) shows the result of our
adaptive algorithm. Again we chose K = 4. The problems
we mentioned above are again evident in the K-means re-
sult. The adaptive algorithm gives a much better segmen-
tation, even though some problems are still present (e.g.,
the rings of the wrench in the lower right are not well
defined). Overall, we could say that the adaptive algo-
rithm produces a simple representation of the image, while
retaining most of the important information.

One of the important parameters in the adaptive clus-
tering algorithm is the number of classes K. In most clus-
tering algorithms the choice of the number of classes is
important and could have a significant effect on the qual-
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Fig. 9. Adaptive clustering algorithm. (a) Image profile and local intensity

functions (15 X 15 window). (b) Image profile and model (15 X 15 win-
dow).

ity of segmentation. Thus, many authors consider esti-
mating of the number of classes as a part of their segmen-
tation algorithms, for example [21], [16]. In the case of
the K-means algorithm, choosing the wrong number of
classes can be disastrous as we will see in the following
examples. However, our adaptive algorithm is quite ro-
bust to the choice of K. This is because the characteristic
levels of each class adapt to the local characteristics of
the image, and thus regions of entirely different intensities
can belong to the same class, as long as they are separated
in space.

Fig. 11(a) shows the result of the K-means algorithm
for K = 2. Because of the wide variation of the grey-scale
intensity throughout the image, a lot of detail has been
lost in the K-means case. Fig. 11(b) shows the result of
our adaptive algorithm for K = 2. Here most of the detail
in the image has been recovered.? We can argue that the

*Note that the thin oblique lines of Figs. 11(b) and 7(b) have disappeared
in Figs. 11(b) and 7(b), respectively. This is caused by the combination of
the Gibbs constraints and the threshold T,,;, defined in Section III. The only
one-pixel-wide features preserved are those of high contrast.
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(c)

Fig. 10. Example B. (a) Original image. (b) K-means algorithm (K = 4
levels). (c) Adaptive clustering (K = 4 levels).

segmentation is not perfect; indeed, some edges are miss-
ing (e.g., the sky in the upper right) and some spurious
edges are present (e.g., around the windows in the lower
left). Clearly, K = 4 results in a better segmentation.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40. NO. 4, APRIL 1992

(b)

Fig. 11. Example A. (a) K-means algorithm (K = 2 levels). (b) Adaptive
clustering (K = 2 levels).

In many images K = 4 is the best choice. This appears
to be related to the four-color theorem [22], even though
a proof would be very difficult. However, for K = 2 the
adaptive algorithm results in a very good representation
of the image, even though the individual segments don’t
always correspond to actual edges in the image. The value
of K = 2 is especially important because it simplifies both
the display (e.g., on paper or on binary computer screens)
and coding of the image.

As another example, consider the original image shown
in Fig. 12(a); the resolution is 512 X 512 pixels and the
grey-scale range is O to 255. The standard deviation of
the noise was assumed to be ¢ = 4 grey levels. Fig. 12(b)
shows the result of the K-means algorithm for K = 2. Fig.
12(c) shows the result of our adaptive algorithm. The ad-
vantage of the adaptive algorithm is apparent. For ex-
ample, an airstrip at the lower left of the image has dis-
appeared in the K-means case, but is nicely preserved by
the adaptive algorithm.



PAPPAS: ADAPTIVE CLUSTERING ALGORITHM

909

Fig. 12. Example C. (a) Original image. (b) K-means algorithm (K = 2 levels). (c) Adaptive clustering (K = 2 levels).

In some cases K is constrained by the statement of the
problem. For example, consider the image of Fig. 13(a).
Here K = 2 since each point of the image either belongs
to the character or to the background. The resolution is
64 X 64 pixels and the grey-scale range is O to 255. This
image was obtained by blurring the optical character *“ &’’
with a Gaussian filter (the standard deviation is 2.4 pixels)
and adding white Gaussian noise with ¢ = 10 grey levels.
Fig. 13(b) shows the result of the K-means algorithm. Fig.
13(c) shows the result of our adaptive algorithm. We ob-
serve that the adaptive algorithm recovers the hole in the
center of the character. This could be crucial in the correct
interpretation of the character. Thus our algorithm could
be an important component of an optical character rec-
ognition system.

The performance of the two-level adaptive algorithm is
particularly good on grey-scale images of human faces.
Consider the original image shown in Fig. 14(a); the res-
olution is 512 X 512 pixels and the grey-scale range is 0

to 255. The standard deviation of the noise was assumed
to be 0 = 7 grey levels. Fig. 14(b) shows the result of the
K-means algorithm and Fig. 14(c) shows the result of our
adaptive algorithm. The K-means algorithm produces an
image that is too light and, therefore, barely gets some of
the facial characteristics. The adaptive algorithm, on the
other hand, gives a very good sketch of the face. Note
that the nose is implied by a couple of black regions at its
base, much like an artist might sketch it with a few brush
strokes. In general, the K-means algorithm produces a bi-
nary image that may be too light or too dark, depending
on the overall image content. The proposed algorithm
adapts to the local characteristics and preserves the fea-
tures of the face.

The binary sketches preserve the characteristics of the
human faces as we have observed over several examples
obtained under different conditions (see Section V for
more examples). As we discussed, the sketches can be
used for displaying or printing on special media like pa-
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(a) (b) (c)
Fig. 13. Example D. (a) Original image. (b) K-means algorithm (K = 2 levels). (c) Adaptive clustering (K = 2 levels).

(a) ' (b)

il

(d)

Fig. 14. Example E. (a) Original image. (b) K-means algorithm (K = 2 levels). (c) Adaptive clustering (K = 2 levels). (d)
Edge detection.
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per, cloth and binary computer screens. They can be coded
with very few bits of data, since we only have to code the
transitions between a few grey levels. In [23] we show
that coding of typical face caricatures requires less than
0.1 b/pixel, which is substantially lower than what wave-
form coding techniques require.

The dual to image segmentation is edge detection. It is
thus interesting to compare our segmentation results with
an edge detector. Here we use the edge detector of Boie
and Cox [10], [11]. Fig. 14(d) shows the result of the
edge detector with integrated line detection; their algo-
rithm includes an automatic threshold selection. The al-
gorithm is very successful in detecting the most important
edges. We observe, however, that it is not as easy to rec-
ognize the person from the edges as it is from the binary
sketches. This demonstrates the advantage of representing
an image as a set of black and white regions, as opposed
to a set of edges. Note the basic tradeoff between region
segmentation and edge detection. As we mentioned, not
all region transitions correspond to edges in the image.
On the other hand, the detected edges do not necessarily
define closed regions.

As an indication of the amount of computation required
by the adaptive clustering algortihm, we look at the run-
ning time on a SUN SPARC station 1+. The computation
time for the four-level segmentation of Fig. 7(c) was 11
min of user time. The K-means clustering of Fig. 7(b)
required only 10 s of user time. The computation time for
the two-level segmentation of Fig. 11(b) was 7.6 min of
user time and for the K-means clustering of Fig. 11(a) 4
sec of user time. The resolution of these images is 256 X
256 pixels. When the resolution increases to 512 X 512
pixels, as in Fig. 12, the computation times become 35
min for the adaptive algorithm and 13 s for the K-means
algorithm. In our implementations we made no systematic
attempt to make the code more efficient, and the choice
of termination criteria was conservative.

V. HIERARCHICAL MULTIGRID IMPLEMENTATION

In this section we present a hierarchical implementation
of our segmentation algorithm. The goal is to improve
both its performance and speed of execution. The devel-
opment of such a hierarchical approach relies on under-
standing the behavior of the algorithm at different levels
of the resolution pyramid. In particular, we would like to
know how the various parameters of the algorithm change
with the resolution of the image.

We construct a pyramid of images at different resolu-
tions in the following way. Starting from the highest res-
olution image, we obtain the next image in the pyramid
by filtering and decimating by a factor of two. The low-
pass decimation filters we use have a sharp cutoff so that
the sharpness of the edges is preserved at the lower res-
olutions.

The image model we described in Section II can be
written as follows:

yl‘ = I.Y + ns (8)
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where I is the piecewise continuous signal and 7, is white
Gaussian noise with standard deviation o. The signal at
the next resolution has the same form

ys =I5 + ng ®

where I, the filtered and decimated I;, is approximately
piecewise continuous and n;, the filtered and decimated
ny, is approximately white Gaussian with standard devia-
tion ¢’ = ¢ /2. Thus, the model is still valid at the next
resolution and only the noise standard deviation o changes
by a factor of two.

Based on our previous discussion of the role of the pa-
rameter (3, it is reasonable to assume that it does not
change with resolution. Bouman and Liu [15], [16] adopt
a similar approach in their multiple resolution segmenta-
tion of textured images. An interesting alternative ap-
proach for the choice of the Gibbs parameters is proposed
by Gidas [24], who obtains an approximation of 3 at dif-
ferent resolutions based on a probabilistic model for the
whole pyramid. Given our choice of § and o, the only
remaining parameter is the detection threshold T,,. We
assume that T,,;, = W, the window width, is a reasonable
choice for the detection threshold T}, at the highest level.
As we lower the resolution we expect that significant fea-
tures become smaller and, therefore, we should reduce the
detection threshold T,;,. We decrease T,,;, by a factor of
two from one resolution to the next.

The hierarchical implementation of the algorithm is de-
scribed in Fig. 15. We start at the lowest resolution im-
age, and apply our segmentation algorithm as described
in the previous sections, starting from the K-means clus-
ters. When the minimum window size is reached, we
move to the next level in the pyramid and use the current
segmentation, expanded by a factor of two, as a starting
point. Since we now have a good starting point, we need
not iterate through the whole sequence of windows. We
start where we left off at the previous resolution, which
is twice the minimum window size of that resolution.

This approach reduces the amount of computation sig-
nificantly, since most iterations are at the lowest level of
resolution. The improvement in performance is also sig-
nificant as the following example indicates. In our imple-
mentations we used a four-level pyramid.

An original image is shown in Fig. 16(a); the resolution
is 512 X 512 pixels. We assume that the noise level of
this image is 0 = 8 grey levels. Fig. 16(b) shows the
result of the adaptive algorithm for K = 2 levels, applied
to the full-scale image. Fig. 16(c) shows the result of the
hierarchical implementation of the two-level adaptive al-
gorithm. Both result in very good segmentations. We can
argue, however, that the hierarchical segmentation has
better adjusted to the local image characteristics, as can
be seen by the difference in the lips and the area above
the hat.

As an indication of the potential computational savings
of the hierarchical implementation we look at the running
times of the two algorithms on a SUN SPARC station 1+.
The full-scale implementation of Fig. 16(b) required 36
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Fig. 15. Hierarchical adaptive clustering algorithm.

min of user time, while the hierarchical implementation
of Fig. 16(c) required only 8.2 min of user time. The first
(lowest resolution) stage required 10 s of user time, the
second 16 s, the third 118 s, and the last 348 s. Again,
no systematic attempt was made in our implementations
to improve the efficiency of the code.

We now look at the performance of the algorithm for
different noise-level estimates. An original image is shown
in Fig. 17(a); the resolution is 512 X 512 pixels. Figs.
17(b)-(e), show the result of the hierarchical implemen-
tation of the adaptive algorithm (K = 2) for noise level
estimates 0 = 4, 8, 16, and 32 grey levels, respectively.
The original image is the same in all cases. Observe how
the amount of detail detected by the algorithm decreases
as the noise variance increases. This example illustrates
that the algorithm’s performance is reasonable over a wide
range of noise variances and, moreover, that we can con-
trol the amount of detail by choosing the noise variance.
Thus, our knowledge of the level of noise determines the
amount of detail in the segmented image.

VI. CONCLUSION

We presented an algorithm for segmenting images of
objects with smooth surfaces. We used Gibbs random
fields to model the region process. The parameters of the
Gibbs random field model the size and the shape of the
regions. The intensity of each region is modeled as a
slowly varying function plus white Gaussian noise. The
adaptive technique we developed can be regarded as a
generalization of the K-means clustering algorithm. We
applied our algorithm to pictures of industrial objects,
buildings, aerial photographs, faces, and optical charac-
ters. The segmented images are useful for image display,
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(c)

Fig. 16. Example F. (a) Original image. (b) Adaptive clustering (K = 2).
(c) Hierarchical adaptive clustering (K = 2).
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Fig. 17. Example G: Hierarchical adaptive clustering (K = 2). (a) Original image. (b) ¢ = 4. (c) 0 = 8. (d) 0 = 16. (e)

32

QL
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coding, and recognition. We believe that our approach
can be extended to the case of images that include regions
with slowly varying textures, as well as moving images.
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